
Using Loops Observed in Traceroute to Infer the
Ability to Spoof

Qasim Lone1, Matthew Luckie2, Maciej Korczyński1, and Michel van Eeten1

1 Delft University of Technology, the Netherlands
Q.B.Lone, Maciej.Korczynski, M.J.G.vanEeten@tudelft.nl

2 University of Waikato, New Zealand
mjl@wand.net.nz

Abstract. Despite source IP address spoofing being a known vulner-
ability for at least 25 years, and despite many efforts to shed light on
the problem, spoofing remains a popular attack method for redirection,
amplification, and anonymity. To defeat these attacks requires operators
to ensure their networks filter packets with spoofed source IP addresses,
known as source address validation (SAV), best deployed at the edge
of the network where traffic originates. In this paper, we present a new
method using routing loops appearing in traceroute data to infer inade-
quate SAV at the transit provider edge, where a provider does not filter
traffic that should not have come from the customer. Our method does
not require a vantage point within the customer network. We present
and validate an algorithm that identifies at Internet scale which loops
imply a lack of ingress filtering by providers. We found 703 provider ASes
that do not implement ingress filtering on at least one of their links for
1,780 customer ASes. Most of these observations are unique compared
to the existing methods of the Spoofer and Open Resolver projects. By
increasing the visibility of the networks that allow spoofing, we aim to
strengthen the incentives for the adoption of SAV.

1 Introduction

Despite source IP address spoofing being a known vulnerability for at least 25
years [6], and despite many efforts to shed light on the problem (e.g. [7,8,9]),
spoofing remains a viable attack method for redirection, amplification, and
anonymity, as evidenced in February 2014 during a 400 Gbps DDoS attack
against Cloudfare [19]. That particular attack used an amplification vector in
some implementations of NTP [19]; a previous attack against Spamhaus [10] in
March 2013 achieved 300+ Gbps using an amplification vector in DNS. While
some application-layer patches can mitigate these attacks [20], attackers contin-
uously search for new vectors.

Defeating amplification attacks, and other threats based on IP spoofing, re-
quires providers to filter incoming packets with spoofed source IP addresses [11]
– in other words, to implement BCP 38, a Best Current Practice also known as
source address validation (SAV). SAV suffers from misaligned incentives: a net-
work that adopts SAV incurs the cost of deployment, while the security benefits

diffuse to all other networks. That being said, SAV is a widely supported norm
in the community. Increasing the visibility of which networks have or have not
adopted SAV reduces the incentive problem by leveraging reputation effects and
the pressure of other providers and stakeholders. These factors put a premium
on our ability to measure SAV adoption.

In this paper, we report on the efficacy of a new measurement technique that
is based on an idea of Jared Mauch. It allows an external observer to use tracer-
oute to infer the absence of filtering by a provider AS at a provider-customer
interconnect. This study makes the following five contributions: (1) We show
that it is generally feasible for providers to deploy static ingress ACLs, as their
customers rarely change address space. (2) We describe a scalable algorithm
for accurately inferring the absence of ingress filtering from specific patterns in
traceroute data. (3) We validate the algorithm’s correctness using ground truth
from 7 network operators. (4) We demonstrate the utility of the algorithm by an-
alyzing Internet-scale inferences we made. (5) We build a public website showing
the provider-customer edges that we inferred to imply the absence of filtering,
combined with actionable data that operators can use to deploy filtering.

2 Background on Ingress Filtering

The canonical documents describing the use of ingress filtering methods for SAV
are RFCs 2827 [11] and 3704 [5], known in the network operations and research
communities as BCPs 38 and 84. BCP 38 describes the basic idea: the source
address of packets should be checked at the periphery of the Internet against
a set of permitted addresses. For an access network, this check could be at the
point of interconnection with a single customer; for an enterprise, this could be
on their edge routers to their neighbors; and for a transit provider, this could
be on the provider-edge router where a customer connects. For single-homed
customers, a transit provider can discard packets that have a source address
outside the set of prefixes the customer announces to the transit provider, using
Strict or Feasible Reverse Path Forwarding (RPF). A router using Strict RPF
will drop a packet if it arrived on a different interface than the router would
choose when forwarding a packet to the packet’s source address; a router using
Feasible RPF will consider all paths it could use to reach the source address, not
just the best path.

BCP 84 discusses challenges in deploying ingress filtering on multi-homed
networks. Both Strict and Feasible RPF are not always feasible if a customer is
multi-homed and does not announce all of its prefixes to each neighbor router, as
it might do for traffic engineering purposes. Instead, an operator might define a
set of prefixes covering source addresses in packets the router will forward, known
as an Ingress Access List, or Ingress ACL. BCP 84 states that while ingress ACLs
require manual maintenance if a neighbor acquires additional address space, they
are “the most bulletproof solution when done properly”, and the “best fit ... when
the configuration is not too dynamic, .. if the number of used prefixes is low.”

BCP−84BCP−38
Fr

ac
tio

n
of

 S
tu

b
A

Se
s

 5

 10

 15

 20

 25

Jan
’98

Jan
’00

Jan
’02

Jan
’04

Jan
’06

Jan
’08

Jan
’10

Jan
’12

Jan
’14

Jan
’16

IPv6
IPv4

 0

Fig. 1: Fraction of ASes whose prefix announcements changed month-to-month.

3 Related Work

Testing a network’s SAV compliance requires a measurement vantage point inside
(or adjacent to) the network, because the origin network of arbitrary spoofed
packets cannot be determined [5]. The approach of the Spoofer project [7] is to
allow volunteers to test their network’s SAV compliance with a custom client-
server system, where the client sends spoofed packets in coordination with the
server, and the server infers that the client can spoof if the server receives these
spoofed packets. However, the Spoofer project requires volunteer support to
run the client to obtain a view from a given network. In May 2016, CAIDA
released an updated client [1] that operates in the background, automatically
testing attached networks once per week, and whenever the system attaches to a
network it has not tested in the previous week. The number of prefixes tested per
month has increased from ≈ 400 in May 2016 to ≈ 6000 in December 2016 [1].

Jared Mauch deployed the first technique to infer if a network had inade-
quate SAV without requiring a custom client-server system. As a product of the
Open Resolver Project [3], he observed DNS resolvers embedded in home routers
forwarding DNS queries from his system with IPX to other resolvers, without
rewriting the source IP address of the packet. These other resolvers returned the
subsequent answer directly to IPX , rather than to the DNS resolver in the home
router as they should have.

We emphasize that these methods are complementary, and that no one tech-
nique is able to test deployment of SAV for all networks.

4 Motivation of Ingress ACLs

As described in §2, the best place to deploy filtering is at the edge. However, not
all edge networks have the technical ability or motivation to filter their own traf-
fic. A transit provider, however, is often managed by skilled network operators
who may already deploy defenses to prevent their customers from announcing
inappropriate routes. The provider-customer interconnect for an edge network
represents the other straightforward place to deploy ingress filtering.

Figure 1 quantifies the dynamism of address space announced by stub ASes
over time. Using BGP data collected by Routeviews and RIPE RIS with the
method described in §5.1, we aggregated the prefixes each stub AS originated

August 2016:

 0

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10
Prefixes in Ingress ACL

Fr
ac

tio
n

of
 S

tu
b

A
Se

s

IPv6, 7265 ASes
IPv4, 46693 ASes

 0.2

(a) Size of Ingress ACLs

IPv4 ASes
IPv6 ASes

 0

 0.6

 0.8

 1

Jan
’12

Jan
’13

Jan
’14

Jan
’15

Jan
’16

Fr
ac

tio
n

un
ch

an
ge

d

 0.2

 0.4

(b) Dynamism of Ingress ACLs

Fig. 2: Size and dynamism of ACLs to filter traffic from stub ASes.

in BGP into the minimum prefix set, and examined month-to-month changes
in the set. Perhaps a consequence of IPv4 address exhaustion, we see a trend
toward stable announcement patterns. This trend may improve the practicality
of static ingress ACLs: in May 2000, ≈ 15% of stub ASes would have required
deployment of a different IPv4 ingress ACL month-to-month, but in 2015, less
than 5% of ASes would have required the same.

As BCP 84 states that because ingress ACLs require manual maintenance
they are best suited “when the configuration is not too dynamic” and “if the
number of used prefixes is low”, figure 2 examines the size and dynamism of
ingress ACLs required for stub ASes in August 2016. Figure 2a shows that 88.9%
of stub ASes would require an IPv4 ACL of no more than 4 prefixes, and 85.6%
of stub ASes would require an IPv6 ACL of a single prefix. Figure 2b shows the
dynamism of these ACLs over time, based on ACLs that could have been defined
for all stub ASes in January 2012, 2013, 2014, and 2015. For stub ASes for these
times, at least 77.4% of IPv4 ACLs would not have had to change over the course
of one year; for those defined in January 2012, 54.4% of the inferred ACLs would
not have required change even up to August 2016. Further, required IPv6 ACLs
would be even less dynamic: more than 74.6% of IPv6 ACLs would not have
needed to change over the course of 4.5 years until August 2016. We believe the
observed number of prefixes and dynamism over time imply that ingress ACLs
are feasible in the modern Internet.

5 Inferring Absence of Ingress Filtering using Traceroute

The key idea of our approach is that traceroute can show absence of ingress
filtering by providers of stub ASes when a traceroute path reaches the stub AS
and then exits out of the stub, as the traceroute packets contain a source address
belonging to the vantage point (VP) launching the traceroute. If the provider’s
border router is performing SAV, it should filter the traceroute packet when it
arrives from the stub AS, as the packet has a source address not belonging to
the stub AS. If the provider’s router does not perform SAV, it will forward the
packet, and the traceroute will show an apparent IP-level forwarding loop as the
provider’s router returns subsequent packets to the stub AS.

Xia et al. found that 50% of persistent loops were caused by a border router
missing a “pull-up route” covering address space not internally routed by the
customer [21]. However, a forwarding loop does not imply absence of SAV at the
edge: a loop resulting from a transient misconfiguration or routing update can
occur anywhere in the network. The key challenge in this work is inferring the
provider-customer boundary in traceroute [16,18]. In this paper, we superimpose
millions of traceroutes towards random IP addresses in /24 prefixes to build a
topology graph, and use a small set of heuristics to infer provider-customer edges
for stub ASes in the graph. §5.1 describes the Internet topology datasets that
we used, and §5.3 describes the algorithm we used to filter the loops that imply
the absence of ingress filtering by the provider – in other words, the lack of
compliance with BCP 38.

5.1 Input Data

CAIDA IPv4 routed /24 topology datasets: We used CAIDA’s ongo-
ing traceroute measurements towards every routed /24 prefix in the Internet.
CAIDA’s probing of all routed /24s is especially useful here, as the goal is to
find unrouted space that can result in a forwarding loop. CAIDA’s traceroute
data is collected with scamper [15] using Paris traceroute which avoids spurious
loops by keeping the ICMP checksum value the same for any given traceroute [4].
As of August 2016, CAIDA probes every routed /24 using 138 Vantage Points
(VPs) organized into three teams; each team probes the address space indepen-
dently. Each team takes roughly 1.5 days to probe every routed /24.
CAIDA IPv4 AS relationships: We used CAIDA’s ongoing BGP-based AS
relationship inferences [17] to identify customer-provider interconnections in
traceroute paths. The relationship files were inferred by CAIDA using public
BGP data collected by Routeviews and RIPE RIS, using RIB files recorded on
the 1-5 of each month. We also used the same BGP data to identify the origin
AS announcing each prefix measured with traceroute.
CAIDA Sibling Inferences: We used CAIDA’s ongoing WHOIS-based AS-
to-organization inference file [13] to identify ASes that belong to the same un-
derlying organization (are siblings). The sibling files were inferred by CAIDA
using textual analysis on WHOIS databases obtained from Regional Internet
Registries (RIRs) at 3-month intervals. We used sibling inferences to avoid mis-
classifying a loop that occurs within a single organization using multiple ASes
as one that occurs between distinct provider and customer ASes.

5.2 Construction of Topology

Our first goal is to correctly identify the provider-customer boundaries towards
stub ASes with high precision. Because the customer usually uses address space
provided by the provider to number their interface on their router involved in the
interconnection, the customer-edge router usually appears in traceroute using an
IP address routed by the provider. Therefore, one of our goals is to accurately
identify customer routers using provider address space without incorrectly infer-
ring that a provider’s backbone router belongs to a customer.

a4a1
R1 R3

AS A AS B
a2 a3 a5

R2
path to B

2 3

4

51

AS C
R5

c1

c2

Traceroute to prefix announced by B
not routed by B: a1 a3 a5 a4 a5

R3 configured with default

route via a4 on R2

R4

b1 b2

R6
d1

d2

AS D

Fig. 3: A simple loop between AS A and its customer B implying absence of
filtering by A at R2. R2 should discard packet 4 because it arrives with a source
address outside of B’s network, rather than send it back to B (5).

We assemble all traceroutes collected for a single cycle by a single team that
do not contain loops, and label each interface with (1) the origin AS of the
longest matching prefix for the interface address, and (2) the set of destination
ASes the interface address is in the path towards. If an address is in the path
towards multiple ASes, the address could not be configured on a customer router
of a stub AS.

5.3 Algorithm to Infer Absence of Ingress Filtering from Loops

Our algorithm considers two different ways a traceroute path may enter a stub
AS and exit through a provider AS: (1) a simple point-to-point loop between a
single provider-edge router and a single customer-edge router, (2) a loop from a
customer-edge router that exits using a different provider.

Simple point-to-point loops: Figure 3 illustrates the first case, where R3

is a customer-edge router belonging to AS B configured with a default route via
R2. If the operator of B announces address space in BGP but does not have an
internal route for a portion of that address space, and does not have a “pull-up
route” covering the unused portion on R3, then R3 forwards the packet back
to R2 using the default route [21]. R2 will then forward the packet back to R3,
the loop sequence will likely be a5 (customer-edge router), a4 (provider-edge
router), and a5 (customer-edge router), with a4 and a5 assigned from the same
IPv4 /30 or /31 prefix the routers use to form the point-to-point link. Therefore,
our criteria are: (1) that the addresses in the loop are assigned from a single
/30 or /31 prefix, (2) that the AS originating the longest matching prefix is
an inferred provider of the stub AS and not a sibling of the stub AS, (3) that
the assumed customer router only appears in traceroute paths towards the stub
AS, (4) that there is at least one other address originated by the provider in
the traceroute path towards the stub. Criteria #3 avoids incorrectly inferring a
provider-operated router as a customer-edge router when a loop occurs before
the stub AS (e.g. a1 a3 a2 a3) as a3 appears in traceroute paths towards both

a4a1
R1 R3

AS A

AS B

a2 a3 a5
R2

2 3

4

5

1

Possible traceroutes to prefixes
announced by B not routed by B

R3 configured with default

R4

b1

b2

c4 c1
R6

AS C

c2c3
R5

6

7

route via b2 on R4
8

c5

c6

R4 configured with default
route via c2 on R5

a1 a3 a5 b2 c2 c4 c6 a3
a1 a3 b1 b2 c2 c4 c6 a3
a1 a3 a5 c1 c2 c4 c6 a3

a
b
c

Fig. 4: A two-provider loop between ASes A and C and their customer B implying
absence of filtering by C at R5. R5 should discard packet 5 because it arrives
with a source address outside of B, rather than forward the packet to R6.

B and C. Criteria #4 avoids incorrectly inferring which router in a traceroute
path is the customer-edge router when the customer-edge router is multi-homed
and the traceroute path enters via a second provider AS D (e.g., d2 a4 a5 a4).

Two-provider loops: Figure 4 illustrates the second case, where R3 and
R4 are customer-edge routers belonging to AS B, with default routes configured
on R3 and R4. The underlying routing configuration issues are the same as a
point-to-point loop, except the default route is via a different AS than the AS
the traceroute entered the network. Figure 4 shows the traceroute visiting two
routers operated by AS B; however, it is possible that the traceroute will never
contain an IP address mapped to B, depending on how many routers in B the
traceroute visits, and how the routers respond to traceroute probes. Therefore,
our criteria are: (1) that the assumed customer router where the traceroute exits
appears only in paths towards the stub AS, (2) that both the ingress and egress
AS in the traceroute path are inferred providers of the stub AS and not a sibling
of the stub AS, (3) that there is no unresponsive traceroute hop in the traceroute
path where a customer router could be located, (4) that at least two consecutive
IP addresses mapped to the same egress AS appear in the loop. Criteria #2
does not require different provider ASes: if the stub AS is multi-homed to the
same provider with different routers, our method will still infer an absence of
filtering. Criteria #3 ensures that we do not mis-infer where the customer router
is located in the path, and thus incorrectly infer the AS that has not deployed
ingress filtering. Finally, criteria #4 reduces the chance that a loop inside the
customer network is mis-classified as crossing into a provider network if the
customer router responds with a third-party IP address.

5.4 Finding Needles in a Haystack

As discussed in §5.1, CAIDA uses three teams of Ark VPs to probe a random
address in every routed /24 prefix. In this section, we report on the characteristics
of cycle 4947 conducted by team 3. The characteristics of data conducted by
other teams and for other cycles is quantitatively similar. In total, cycle 4947

contains 10,711,132 traceroutes, and 163,916 (1.5%) of these contain a loop.
105,685 (64.5%) of the traceroutes with loops were not towards a stub network.

Of the remaining 58,231 traceroutes with loops towards stub ASes, we in-
ferred 31,023 (53.3%) had a loop within the stub network, i.e. the addresses in
the loop were announced in BGP by the stub, or involved the customer-edge
router. A further 11,352 traceroutes (19.5%) contained a loop with an unrespon-
sive IP address, and 1,373 traceroutes (2.4%) contained an unrouted IP address
that prevented us from inferring if the loop occurred at a provider-customer in-
terconnect. 610 traceroutes (1.0%) had a loop that we disqualified as occurring
at a customer-provider boundary, as the loop occurred at a router that also ap-
peared in paths towards multiple destination ASes, and 494 traceroutes (0.8%)
contained an IP address that could have been a third party address on a cus-
tomer router, rather than a router operated by a provider. In total, only 2,530
traceroutes with loops (4.3%) contained simple point-to-point loops, and only
93 (0.2%) contained more complex two-provider loops.

5.5 Persistence of Loops

Given that we are looking for needles in haystacks, how reliably can we find
them? Ideally, we would be able to consistently reproduce the loops that imply
absence of ingress filtering, and discard observations caused by transient events.
Unfortunately, there is currently no straightforward way of doing so.

The data we used was collected by CAIDA using traceroutes conducted by
a distributed set of VPs towards a random IP address in each routed /24 prefix.
This approach adds efficiency by reducing the number of probes, at the cost of
potentially missing loops that occur for smaller prefixes. It also means that when
such a loop is in fact discovered, the next probe might miss it again by selecting
a random address outside the smaller prefix. In other words, the traceroute data
itself does not tell us much about the persistence of loops.

To better understand the impact of random address selection and the persis-
tence of loops, we collected traceroutes towards the same addresses that revealed
the loops. We first applied the algorithm outlined in §5.3 to the traceroute data
for August 2016 and found 2,500 unique loops between 703 provider and 1,780
customer ASes. In October 2016, we collected traceroutes towards the same IP
addresses that revealed the loops, using two different vantage points. We were
able to reproduce 1,240 of the loops between 461 provider and 1,026 customer
ASes. Next, we repeated this procedure for over a year of traceroute data: Au-
gust 2015-August 2016. We found 7,784 unique loops between 1,286 provider
and 3,993 customer ASes. In October 2016, we were able to reproduce 1,542
unique loops between 505 provider and 1,176 customer ASes. In other words,
the additional data identified 342 loops that persisted.

A significant portion of all loops could not be reproduced and the longer
the time lag, the higher the odds of failure, for four reasons. First, the loop
might have been transient, i.e., it only occurred during routing protocol con-
vergence [12] or temporary misconfiguration [21]. Second, it might depend on
the vantage point of the probe, e.g., because of multi-homed routers. Third, the

provider might have fixed the routing issue that caused the loop. Fourth, and
most relevant, the provider has implemented ingress filtering.

Future work is needed to untangle these causes. We know from our validation
effort (§6) that even loops that appeared only once can correctly signal absence
of ingress filtering. Some of the loops that we could not reproduce had already
been validated by the provider as true positives. In the remainder of the paper,
we will work with the full set of loops as identified by our algorithm.

6 Validation by Network Providers

In order to validate our results and obtain ground truth, we contacted providers
in two rounds: September 2015 and September 2016. We got feedback from one
hosting provider, four ISPs, two national research and education networks, and
two Tier 1 networks. We contacted some providers only in one round, some
in both, depending on whether we inferred absence of ingress filtering for links
involving their network at both times, and our ability to reach the right specialist
in the organization. We gave all providers a formal assurance that their names
would not be included in the paper.

Feedback from the providers during the first round resulted in improvements
in our methodology. We applied the final methodology to both the August 2015
and August 2016 data. We then compared the final results to the feedback that
we received from the providers in both rounds. We talked to 6 providers in round
1 and 7 in round 2, and 4 providers participated in both rounds.

We defined a result as a true positive if we identified a provider-to-customer
link where the provider does not perform ingress filtering and an operator at the
provider confirms this. That is, we correctly inferred the absence of SAV as well as
the boundary between provider and customer. A false positive occurred when we
either incorrectly detected the boundary or the provider is actually performing
SAV at the boundary. Our methodology correctly identified the absence of ingress
filtering on the provider boundary in 95 out of 97 IP links between provider and
customer ASes (45 of 47 links in round 1, and 50 of 50 links in round 2).

The two false positives had different causes. One of them occurred because of
route aggregation. Providers perform route aggregation by consolidating multiple
routes in a single, more general route. This practice can lead to problems with
our border router detection. Imagine this scenario: a provider is assigned a /16
prefix X by the Regional Internet Registry (RIR). The provider allocates a /24
subnet Y from prefix X to a customer, and the customer assigns addresses from
Y to its routers. The customer also has its own prefix Z allocated by an RIR.
If the provider aggregates Y into a single /16 advertisement for X, we would
infer that customer routers with addresses in Y belong to the provider AS.
Our methodology would then categorize a loop between provider prefix X and
customer prefix Z as signaling the absence of SAV, when the loop was actually
within the customer network.

For the second false positive, the provider informed us that the traceroute
data suggested that the loop had occurred inside their network rather than on
the boundary. However, they could not reproduce it anymore and blamed it on

a transient event. Note that in the second round, we found 2 loops for the same
provider and they were both true positives.

One additional piece of feedback that we received was that some of the
providers, while confirming the validity of our inference that they were not doing
ingress filtering on their boundary, objected to the implication that they should
be filtering. They saw their services as offering transit and contracted them
as such, which meant no filtering on the provider’s side. In the view of these
providers, the downstream customer AS should perform SAV at their border
router. The customer ASes were business entities like ISPs, hosting providers or
large enterprises. Evaluating whether this interpretation of BCP 38 [11] is mer-
ited falls outside the scope of this paper and is for the community to address.
For this paper, the key point is that the proposed method performed accurately.

7 Results

We first summarize the results in terms of the number of networks that do
not implement SAV. We then compare our method to the two alternatives: the
Spoofer and the Open Resolver projects. Like those methods, our approach only
observes a subset of the networks without SAV. In the absence of loops, we
cannot tell anything about the presence of ingress filtering.

Using one month of CAIDA’s traceroute data from August 2016, our ap-
proach identified 2,500 unique loops involving 703 provider ASes as lacking SAV
on one or more of their customer-facing links and 1,780 customer ASes. These
represent approximately 1.3% and 3.2% of all advertised ASes, respectively.
Moreover, when compared to all advertised stub ASes and their providers [17],
we found 9.0% of provider ASes without ingress filtering involving 3.8% of all
stub ASes.

As discussed in §6, some providers argued that customer ASes should be
responsible for SAV within their networks or at their borders. However, we found
that about 63% of the involved customer ASes advertise /20 or smaller prefix
lengths. It is unlikely that such small entities have the resources and incentives
to implement SAV in their networks. On the other hand, such small prefixes
should allow the providers to implement static ACLs.

We now compare our results to the data from the Spoofer and Open Resolver
projects (see §3 for details). Our method only detects the lack of ingress filtering
for provider networks, which means that their customer ASes might be able to
spoof. We compared those customer ASes with the Spoofer data from February
to August 2016 [1]. Of 54 overlapping ASes, 38 of the Spoofer tests were only
conducted from behind a Network Address Translation (NAT) device that likely
prevented spoofing. Of the systems not behind a NAT, 10 of the 16 stub ASes
allowed spoofing, i.e., more than half of these ASes had not deployed SAV,
suggesting the provider’s expectation for their customers to deploy filtering is not
being met, and supporting the case for transit providers to filter their customers.
This means that the connected provider ASes do not implement ingress filtering,
which is consistent with our results. Packets with spoofed source addresses from
Spoofer tests in the 6 remaining customer ASes were not received, suggesting

that filtering took place in the customer AS. The overlap between both methods
contains only a small sample, but it does indicate that the majority of the
overlapping customer networks were not doing SAV – a finding that reinforces
the point that providers should not expect their customer ASes to be willing
and able do SAV, even if they are not that small.

Kührer et al. used the Open Resolver data in 2014 by to identify 2,692 unique
ASes from within which spoofing was possible [14]. Following the same approach,
we analyzed the August 2016 data from the Open Resolver project, generously
provided to us by Jared Mauch, and found a total of 3,015 unique ASes that
were able to spoof. We compared these to the customer ASes that our method
identified as allowing spoofing – i.e., those connected to the providers which lack
ingress filtering. We found only a modest overlap: 244 ASes.

In sum: these findings show that our method can add unique data points to
both existing methods, and improve visibility of networks lacking SAV. In terms
of the volume of observations, it resides between Spoofer and Open Resolver.
The three methods are complementary and provide views into the problem,
contributing to improved overall visibility of SAV adoption.

8 Conclusion

In this paper we implemented and validated an algorithm that uses tracer-
oute data to infer a lack of SAV between a stub and provider network. We
inferred 703 providers that do not implement ingress filtering on at least one
of their links facing 1,780 customer ASes. We also built a public website show-
ing the provider-customer edges that we inferred as lacking ingress filtering:
https://spoofer.caida.org/. Providers can use the data to deploy filtering,
which would not only stop attackers from sending packets with spoofed ad-
dresses from the customer’s network, but also block attempts to attack the
provider-customer link by sending packets to addresses that enter the forwarding
loop [21].

To improve the reliability of the method, future work is needed on border
detection and on untangling the different factors that prevent loops from being
reproduced, to separate the implementation of ingress filtering from the other
causes. A completely different direction for future work is to experimentally test
the strength of reputation effects among providers and network operators. The
networks that allow spoofing could be made public in varying ways, to see which
mechanism best incentivizes providers into taking action.

For the community of network operators, the results support efforts such as
the Routing Resilience Manifesto [2] and other community initiatives to improve
network security. By complementing the Spoofer and Open Resolver data, our
method increases visibility into the adoption of SAV. Public visibility of spoofing-
enabled networks is a critical step in incentivizing providers to deploy ingress
filtering in their networks. The dataset is also useful for the national CERTs
who want to push BCP 38 compliance in their countries. The problems caused
by IP spoofing have been recognized for years [6], and the task to reduce its role
in attacks is becoming increasingly urgent.

Acknowledgments: The technique in this paper is based on an idea from Jared
Mauch. Christian Keil (DFN-CERT) provided informative feedback. This work
was partly funded by the EU Advanced Cyber Defence Centre (ACDC) project
CIP-ICT-PSP.2012.5.1 #325188. This material is based on research sponsored
by the Department of Homeland Security (DHS) Science and Technology Direc-
torate, Homeland Security Advanced Research Projects Agency, Cyber Security
Division BAA HSHQDC-14-R-B0005, and the Government of United Kingdom
of Great Britain and Northern Ireland via contract number D15PC00188.

References

1. CAIDA spoofer project. https://spoofer.caida.org/
2. Mutually Agreed Norms for Routing Security (MANRS),

https://www.routingmanifesto.org/manrs/
3. Open Resolver Project, http://openresolverproject.org/
4. Augustin, B., Cuvellier, X., Orgogozo, B., Viger, F., Friedman, T., Latapy, M.,

Magnien, C., Teixeira, R.: Avoiding traceroute anomalies with Paris traceroute.
In: IMC. pp. 153–158 (Oct 2006)

5. Baker, F., Savola, P.: Ingress filtering for multihomed networks. RFC 3704 (Mar
2004), IETF BCP84

6. Bellovin, S.: Security problems in the TCP/IP protocol suite. CCR 19(2), 1989
7. Beverly, R., Bauer, S.: The spoofer project: Inferring the extent of source address

filtering on the Internet. In: Proceedings of USENIX SRUTI (Jul 2005)
8. Beverly, R., Berger, A., Hyun, Y., k claffy: Understanding the efficacy of deployed

Internet source address validation. In: IMC. pp. 356–369 (Nov 2009)
9. Beverly, R., Koga, R., kc claffy: Initial longitudinal analysis of IP source spoofing

capability on the Internet (Jul 2013), http://www.internetsociety.org/
10. Bright, P.: Spamhaus DDoS grows to Internet-threatening size (Mar 2013)
11. Ferguson, P., Senie, D.: Network ingress filtering: Defeating denial of service attacks

which employ IP source address spoofing. RFC 2827 (May 2000), IETF BCP38
12. Francois, P., Bonaventure, O.: Avoiding transient loops during IGP convergence

in IP networks. In: INFOCOM. pp. 237–247 (Mar 2005)
13. Huffaker, B., Keys, K., Koga, R., kc claffy: CAIDA inferred AS to organization

mapping dataset, https://www.caida.org/data/as-organizations/
14. Kührer, M., Hupperich, T., Rossow, C., Holz, T.: Exit from Hell? Reducing the

impact of amplification DDoS attacks. In: USENIX Security (Aug 2014)
15. Luckie, M.: Scamper: a scalable and extensible packet prober for active measure-

ment of the Internet. In: IMC. pp. 239–245 (Nov 2010)
16. Luckie, M., Dhamdhere, A., Huffaker, B., Clark, D., k claffy: bdrmap: Inference of

borders between IP networks. In: IMC. pp. 381–396 (Nov 2016)
17. Luckie, M., Huffaker, B., Dhamdhere, A., Giotsas, V., k claffy: AS relationships,

customer cones, and validation. In: IMC. pp. 243–256 (Oct 2013)
18. Marder, A., Smith, J.M.: MAP-IT: Multipass accurate passive inferences from

traceroute. In: IMC (Nov 2016)
19. Prince, M.: Technical details behind a 400Gbps NTP amplification DDoS attack

(Feb 2014), http://blog.cloudflare.com/
20. Vixie, P.: Rate-limiting state: The edge of the Internet is an unruly place. ACM

Queue 12(2), 1–5 (Feb 2014)
21. Xia, J., Gao, L., Fei, T.: A measurement study of persistent forwarding loops on

the Internet. Computer Networks 51(17), 4780–4796 (Dec 2007)

