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Abstract

The subject of traffic classification is of great importance for effective network

planning, policy-based traffic management, application prioritization, and security

control. Although it has received substantial attention in the research community

there are still many unresolved issues, for example how to classify encrypted traffic

flows. This thesis is composed of four parts. The first part presents some theoretical

aspects related to traffic classification and intrusion detection, while in the following

three parts we tackle specific classification problems and propose accurate solutions.

In the second part, we propose an accurate sampling scheme for detecting SYN

flooding attacks as well as TCP portscan activity. The scheme examines TCP

segments to find at least one of multiple ACK segments coming from the server.

The method is simple and scalable, because it achieves a good detection with a

False Positive Rate close to zero even for very low sampling rates. Our trace-based

simulations show that the effectiveness of the proposed scheme only relies on the

sampling rate regardless of the sampling method.

In the third part, we consider the problem of detecting Skype traffic and classi-

fying Skype service flows such as voice calls, skypeOut, video conferences, chat, file

upload and download. We propose a classification method for Skype encrypted traf-

fic based on the Statistical Protocol IDentification (SPID) that analyzes statistical

values of some traffic attributes. We have evaluated our method on a representative

dataset to show excellent performance in terms of Precision and Recall.

The last part defines a framework based on two complementary methods for clas-

sifying application flows encrypted with TLS/SSL. The first one models TLS/SSL

session states as a first-order homogeneous Markov chain. The parameters of the

Markov models for each considered application differ a lot, which is the basis for

accurate discrimination between applications. The second classifier considers the

deviation between the timestamp in the TLS/SSL Server Hello message and the

packet arrival time. It improves the accuracy of application classification and al-

lows efficient identification of Skype flows. We combine the methods using a Naive

Bayes Classifier (NBC). We validate the framework with experiments on three recent

datasets—we apply our methods to the classification of seven popular applications

that use TLS/SSL for security. The results show a very good performance.
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Résumé

Le sujet de la classification de trafic réseau est d’une grande importance pour

la planification de réseau efficace, la gestion de trafic à base de règles, la gestion

de priorité d’applications et le contrôle de sécurité. Bien qu’il ait reçu une atten-

tion considérable dans le milieu de la recherche, ce thème laisse encore de nom-

breuses questions en suspens comme, par exemple, les méthodes de classification

des flux de trafics chiffrés. Cette thèse est composée de quatre parties. La première

présente quelques aspects théoriques liés à la classification de trafic et à la détec-

tion d’intrusion. Les trois parties suivantes traitent des problèmes spécifiques de

classification et proposent des solutions précises.

Dans la deuxième partie, nous proposons une méthode d’échantillonnage précise

pour détecter les attaques de type ”SYN flooding”et ”portscan”. Le système examine

les segments TCP pour trouver au moins un des multiples segments ACK provenant

du serveur. La méthode est simple et évolutive, car elle permet d’obtenir une

bonne détection avec un taux de faux positif proche de zéro, même pour des taux

d’échantillonnage très faibles. Nos simulations basées sur des traces montrent que

l’efficacité du système proposé repose uniquement sur le taux d’échantillonnage,

indépendamment de la méthode d’échantillonnage.

Dans la troisième partie, nous considérons le problème de la détection et de la

classification du trafic de Skype et de ses flux de services tels que les appels vocaux,

SkypeOut, les vidéo-conférences, les messages instantanés ou le téléchargement de

fichiers. Nous proposons une méthode de classification pour le trafic Skype chiffré

basé sur le protocole d’identification statistique (SPID) qui analyse les valeurs statis-

tiques de certains attributs du trafic réseau. Nous avons évalué notre méthode sur

un ensemble de données montrant d’excellentes performances en termes de préci-

sion et de rappel. La dernière partie définit un cadre fondé sur deux méthodes

complémentaires pour la classification des flux applicatifs chiffrés avec TLS/SSL.

La première modélise des états de session TLS/SSL par une châıne de Markov ho-

mogène d’ordre 1. Les paramètres du modèle de Markov pour chaque application

considérée diffèrent beaucoup, ce qui est le fondement de la discrimination entre

les applications. La seconde méthode de classification estime l’écart d’horodatage

du message Server Hello du protocole TLS/SSL et l’instant d’arrivée du paquet.

Elle améliore la précision de classification des applications et permet l’identification
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efficace des flux Skype. Nous combinons les méthodes en utilisant une Classification

Naive Bayésienne (NBC). Nous validons la proposition avec des expérimentations

sur trois séries de données récentes. Nous appliquons nos méthodes à la classification

de sept applications populaires utilisant TLS/SSL pour la sécurité. Les résultats

montrent une très bonne performance.
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Chapter 1

Introduction

Contents

1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Overview of the thesis . . . . . . . . . . . . . . . . . . . . . . 6

1.1 Motivations

”Accurate identification and categorization of network traffic according to appli-

cation type is an important element of many network management tasks such as

flow prioritization, traffic shaping/policing, and diagnostic monitoring.” [1]

”Classifying traffic flows according to the applications that generate them is an

important task for (a) effective network planning and design, and (b) monitoring

the trends of the applications in operational networks.” [2]

”Accurate network traffic classification is fundamental to numerous network ac-

tivities, from security monitoring to accounting, and from Quality of Service to

providing operators with useful forecasts for long-term provisioning.” [3]

”The subject of traffic classification has a crucial importance for effective network

planning, policy-based traffic management, application prioritization, and security

control.” (cf. Abstract)

When reading numerous publications in the domain of traffic classification and

intrusion detection many of them in the first place emphasize its importance for op-

erators, Internet Service Providers (ISPs), and local network administrators. How-

ever, for the sake of completeness let us take a look at the problem from a different,

user’s perspective. Many of our every day activities are closely associated with and

dependent on properly working Internet connections. Our daily habits consist of

checking our emails (usually two accounts, i.e. professional and private), reading

online news, etc. Other ”crucial” activities are related to our Facebook and Twitter

accounts, daily routine often includes Skype calls. While some of us like online

shopping others prefer different kinds of entertainment such as online gaming or

watching sport events in the pay-per-view (ppv) system, and many more. Many
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of our daily, legal routines would not be possible without research and industry

efforts in the domain of traffic classification. This is why this subject has received

substantial attention in the research community and still continues to grow.

Traffic classification is, however, a challenging task due to a massive proliferation

of new applications and new ways of spreading and infecting unaware, legitimate

users with malicious software. Moreover, existing programs tend to use more so-

phisticated communication mechanisms to bypass security checks. As a result, we

observe a race between illegal applications, such as streaming pirated videos, im-

proving their obfuscation methods and operators searching for new solutions to

filter unwanted traffic and prioritize remaining applications. Although we witness

much research interest in the domain of traffic classification and intrusion detection,

many issues still remain unsolved and even though research community finds appro-

priate methods, new countermeasures appear rapidly. For example, classification

approaches proposed some years ago and based on identifying network flows accord-

ing to corresponding ports or regular expressions in unencrypted packet header are

not effective any longer due to port randomization and traffic encryption respec-

tively.

Some of the problems presented in this thesis arose after extensive discussions

with the administrator of the campus network at AGH University of Science and

Technology in Cracow, whereas some others appeared from an in-depth analysis of

the existing literature. We further attempt to address these problems by designing

proof-of-concept classifiers. Where we possibly could, we have evaluated our classi-

fication methods on real-world datasets captured at edge routers to show excellent

performance in terms of different criteria. Methods presented in the thesis deal with

very different aspects of traffic classification, from network attack detection to the

classification of encrypted applications.

1.2 Overview of the thesis

The presented work is divided into four parts composed of dense chapters. Each

part of the thesis starts with a short introduction chapter with briefly described

contributions and the list of corresponding publications (if applicable). Moreover,

practical parts involve a complementary discussion on theoretical issues specific to

the addressed problems. Finally, we briefly survey the related work relevant to each

part of the thesis.

In Part I, we describe some traffic classification aspects. We present a tax-

onomy of network traffic classification as well as a short discussion on intrusion

detection methods. Part II introduces an accurate method for SYN flooding attack
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and portscan activity detection using sampling techniques to limit the volume of

inspected data. In the third and fourth part of the thesis, we focus on encrypted

traffic classification. In Part III, we develop a hybrid methodology based on flow and

content features for identifying TCP Skype flows tunneled over the SSL protocol

and classifying its service flows. In Part IV, we propose a framework for classifying

TLS/SSL flows of various applications.





Part I

State of the Art





Chapter 2

Introduction

The importance of appropriate traffic classification methods continues to grow.

They are essential for effective network planning, policy-based traffic management,

application prioritization, and security control. However, traditional classification

methods are becoming less efficient, because new applications begin to use sophis-

ticated obfuscation mechanisms and an increased number of applications make use

of encryption to avoid security checks. Moreover, applications are rapidly adapting

to counteract attempts to identify certain types of traffic, creating new challenges

for traffic classification schemes.

We use the expression traffic classification to refer to two areas of our interest

according to specific goals, namely to application classification and intrusion detec-

tion as well as to methods of classifying traffic data sets based on features passively

observed in the Internet traffic. In the following chapter, we discuss the above-

mentioned aspects of traffic classification with respect to classification goals—we

start with the formal definition of traffic classification, followed by a brief survey

on the classification and intrusion detection methods. Finally, we introduce two es-

sential concepts of the ground truth and the metrics of classification performance.

2.1 Contributions of Part I

The main contribution of this part is an extension to the payload-based tax-

onomy based on the research presented in the thesis. More specifically, we intro-

duce a more general taxonomy of payload-based methods in comparison to existing

ones. We propose to distinguish between the type of data to be analyzed rather

than between verification or processing techniques. We make a distinction be-

tween message-based and header-based analysis and we separate the analysis of

lower-layer protocol headers, in particular network and transport layers, from the

application-layer protocol header. We argue that in some classification problems

the analysis of lower-layer protocol fields is sufficient, while in other cases a more

detailed application-layer protocol header analysis is required.
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3.1 Definition of Traffic Classification

Traffic classification is a research area that helps us to understand the nature

of the Internet traffic. It consist of examining IP packets to extract some specific

features to answer some questions related to its origin, the carried content, or user

intensions. Frequently, it deals with packet flows defined as sequences of packets

uniquely identified by the same source IP address, source port, destination IP ad-

dress, destination port, and transport layer protocol. However, packets might be

grouped in any way according to classification needs.
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Let us now formalize the trafic classification problem. A pattern p represents

the object under analysis. Each pattern is described by a set of n features that

have been derived from the analyzed traffic. Thus, it can be interpreted by the

n-dimensional random variable X that corresponds to an accurate set of features:

p → x = (x1, x2, x3, . . . , xd).

In the application classification problem, where p could be represented by flows,

we attempt to assign each of them to one of the given application classes defined by

a random variable Y : y = {y1, y2, . . . , yc, yc+1}. Y = yc+1 means that the analyzed

flow is not recognized as any of the given classes, i.e., it is unknown.

In the intrusion detection problem p could be represented by the aggregated

traffic directed to the specific IP destination address. Thus, intrusion detection

refers to a binary classification problem—we attempt to verify if the traffic to an-

alyze corresponds to malicious behavior. Random variable Y takes values in the

set {y0, y1}, where Y = y0 means that the traffic conforms to legitimate behavior,

whereas Y = y1 indicates malicious activity.

In the presented thesis, solving the traffic classification problems corresponds to

defining classifiers that categorize each pattern into one of c => 2 classes.

3.2 Classification Goals

Although the research area of traffic classification is rather specific, the motiva-

tions of research papers are not identical [4].

In Figure 3.1, we present typical classification objectives or, in other words, three

different domains, where proposed methods operate. More precisely, some methods

classify traffic according to its category, i.e., whether the traffic represents bulk-

transfer, peer-to-peer (p2p) content sharing, games, multimedia, web, or attacks [3,

5, 6, 7, 2]. It is also referred to as the coarse-grained classification goal [8]. A number

of methods aim at identifying the application-level protocol such as FTP, HTTP,

SSH, Telnet [9, 1, 10, 11, 12], also referred to as the finer-grained classification goal

[8]. The last group of methods classifies the traffic according to the exact application

that generates traffic, such as Skype, Dropbox, eBay.

Unfortunately, users tend to confuse application classification with application -

level protocol classification (cf. Figure 3.1) [13]. For instance, classification of Skype

traffic illustrates the problem. It relies on a p2p infrastructure while its primary

objective is Voice over IP (VoIP) service delivery. Moreover, for data transmission

it uses its proprietary Skype protocol, but the HTTP or HTTPS (HTTP over SSL)

protocols might be used as well. As a result, it might not be clear how to classify

such traffic. Likewise, due to strict policies enforced by firewalls and restrictions
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firewalls—it randomly selects ports and can switch to port 80 or 443 if it fails to

establish a connection on dynamically chosen ports. As a result, simple inspection

of port numbers is no longer a reliable classification mechanism [5, 15], especially

when identifying applications.

Some recent studies critically revisit traffic classification including methods

based on transport layer ports [16]. One of several insights of their studies is that

ports still remain an important discriminator, particularly when combined with

other features such as packets sizes, TCP flags and protocol information. However,

their classification objectives are different from those presented in Parts III and IV.

The methods evaluated in their studies aim at application protocol classification

rather than in detailed application classification.

Maier et al. investigated the characteristics of residential broadband Internet

traffic using packet-level traces augmented with the DSL session information [17].

Their most significant conclusion is that p2p is no longer dominant traffic in terms

of bytes. HTTP once more seems to carry most of the traffic. Their classification

method was based on a purely port-based approach, showing quite good results

for their dataset. However, for a more detailed analysis aiming at the confirma-

tion of the relevance of the port-based approach, they have examined the HTTP

Content-Type header and the initial part of the HTTP body. Moreover, with this

methodology, they only attempt to distinguish between p2p and HTTP. Finally,

when analyzing application evolution, presented in Figure 3.2, we can observe that

restricted applications tend to encrypt/tunnel their traffic through HTTPS or even

through HTTP (e.g. Skype), which makes classification of p2p applications a par-

ticularly challenging task.

3.3.2 Payload-based approach

The second content-based approach involves inspecting the packet payload and

for years, it was considered as the most accurate method. As soon as we can identify

a unique payload-based signature, this technique can produce reliable classification

results [5, 7]. Moreover, payload-based classifiers are often used to establish ground

truth for other methods [16, 18]. Nevertheless, due to privacy issues and payload

encryption other techniques have received more attention in the research commu-

nity. We agree with the primary argument concerning users privacy, but we argue

the common belief that payload-based methods always fail when traffic is encrypted

[13, 4].

Risso et al. introduced a taxonomy of payload-based classification approaches

regarding payload verification and processing methods. The former defines four de-

grees of verification. The first aims at locating some message signatures, the second
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syntactical one, checks if the message is well formed, e.g., HTTP payload must con-

tain HTTP headers. The third relates to protocol conformance, controlling client-

server message exchange, while the semantic one verifies the type of object sent

by the application layer protocol. The second taxonomy discusses payload-based

processing methods, namely packet-based and message-based techniques, from a

simple one that operates by checking some basic packet-header information to a

sophisticated one that consists of inspecting and interpreting exactly what each

application transmits.

In this thesis, we propose a more general taxonomy of payload-based classifi-

cation concerning the type of data to be analyzed rather than verification or pro-

cessing techniques. We propose to make a distinction between message-based and

header-based analysis as shown in Figure 3.3. Moreover, we propose to separate the

analysis of lower-layer protocol headers (until transport layer) from the application-

layer protocol header since in some classification problems, the analysis based only

on network and transport layer fields is sufficient, while in other cases, a more

detailed application-layer protocol header analysis is required.

The method presented in Part II of this thesis illustrates an example of lower-

layer protocol header analysis—we have proposed a scheme for detecting SYN flood-

ing attacks and portscans that is based on identifying TCP SYN segments and cor-

responding ACKs. Furthermore, Sen et al. [7] presented an approach to identify

the eDonkey protocol based on the application layer header analysis. More specif-

ically, the authors discovered that signaling and downloading TCP packets have

a particular eDonkey header on top of the TCP header. In the same paper, the

authors propose a simple signature to reveal the Kazaa traffic based on the analysis

of the HTTP protocol. Now, let us consider TLS/SSL encrypted traffic. Indeed,

both message and ”old” application layer protocol header are encrypted so simple

pattern verification methods based on signatures will fail. In Part III and IV of this

thesis, we adopt a payload-based approach to demonstrate that it is still possible

to effectively reveal and classify encrypted flows by inspecting ”new” application

layer protocol, namely TLS/SSL. Moreover, Bonfiglio et al. have investigated the

Skype traffic transported by the UDP protocol [18]. They concluded that the en-

crypted Skype UDP messages can be identified by examining the initial portion of

the payload the so-called Start of Message (SoM) located on top of the header.

3.3.3 Host behavior-based approach

Host behavior-based approaches [2, 19] can potentially address some limitations

of content-based methods. The approach is based on the analysis of the social

behavior of network hosts and can be observable even when payload is encrypted.
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More specifically, social interactions between communicating hosts are represented

by graphs that visualize the ”who-talks-to-whom” relationship. The classification

consists of matching previously observed graphs with graphs resulting from the

behavior of a host under examination [2].

BLINC, for example, proposes an interesting method based on observing and

recognizing models of host behavior and then classifying its flows according to the

models [2]. It analyzes patterns at three levels: (i) social level—it inspects the

interaction with other hosts, (ii) functional level—it checks whether a host acts as

a consumer or a provider of the service (or both), (iii) application level—it records

the transport layer ports to identify the origin of the application.

Iliofotou et al. introduce the idea of Traffic Dispersion Graphs (TDGs) as a

promising monitoring and classification tool [19]. Their work on TDGs represents

a natural extension of the previous approach. More precisely, they propose a differ-

ent way of looking at network traffic—they focus on network-wide interactions of

hosts instead of modeling single host behavior. The same authors extended their

previous work and developed a proof of the concept to detect p2p traffic [20]. Their

application classification framework, evaluated on real-world backbone traces, can

identify 90% of p2p flows with 95% precision.

3.3.4 Flow feature-based approach

The second fundamentally different group of content independent methods uses

flow features such as average packet sizes, packet inter-arrival times, or flow dura-

tions (cf. Section 3.5). Features are computed over multiple packets grouped in flows

and further used in the training process that associates sets of features with known

traffic classes. The classification consists of a statistical comparison of unknown

traffic with previously learned rules [21]. Flow feature-based approaches mainly

include data mining techniques and machine learning algorithms. We do not, how-

ever, describe these techniques when discussing approaches based on the analysis

of flow features because more and more other approaches including content-based

ones use machine learning in classification purposes. Instead, we briefly discuss

classification methods in Section 3.4.2.

For example, Bonfiglio et al. [18] presented a framework based on two com-

plementary techniques to reveal Skype traffic. The second approach is based on a

stochastic characterization of Skype traffic in terms of the packet arrival rate and

packet length, which are used as features of a decision process based on a Naive

Bayesian Classifier (NBC).

Moore et al. [3] proposed a statistical approach to classify traffic into different

types of services based on a combination of flow features such as flow length, time
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between consecutive flows, or inter-arrival times. The classification process using

a bayesian classifier combined with a kernel density estimation method leads to an

accuracy of up to 95%.

3.4 Methods

While machine learning algorithms using flow features for traffic classification

received substantial attention, the content-based approaches mainly relied a simple

pattern matching [13]. In recent studies, however, several hybrid solutions based on

machine learning methods and taking into account content features were proposed

[22, 23, 18, 24, 25, 12]. In this section, we present a brief survey of some popular

methods (cf. Figure 3.4) used in classification approaches discussed in the previous

section.

3.4.1 Pattern Matching

A few years ago, simple pattern matching combined with content-based ap-

proaches was one of the most accurate classification methods. However, pattern

matching based on identifying the application level signatures is less effective (if

possible) in the case of encrypted traffic. In one of the most interesting papers

considering the pattern matching problem in recent years [7], the authors provide

an efficient method for identifying five popular p2p applications through applica-

tion level signatures. All of the proposed signatures, however, become useless once

traffic encryption or tunneling methods are applied. Risso et al. [13], argue that

content-based approaches are mainly based on pattern verification, thus they always

fail in the case of encrypted traffic and often in the case of tunneled traffic. We

argue, however, that a key challenge in encrypted traffic classification is to replace

traditional pattern verification with more sophisticated methods based on statistical

fingerprints.

3.4.2 Machine Learning

In the last few years, machine learning algorithms using flow features for traffic

classification has received substantial attention [26, 27, 16, 3]. More recently, several

authors have investigated the use of machine learning techniques with payload in-

formation [22, 23, 18, 25]. In general, machine learning algorithms are categorized

into supervised learning and unsupervised learning (cf. Figure 3.4). Supervised

learning requires some labeled data to generate models of applications of interest,

whereas unsupervised learning clusters flows with similar characteristics. Since our
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This section provides only some insight into methods used in the thesis. The

formal definitions are presented in relevant chapters.

3.5 Feature Selection

As it was highlighted in the previous section, the majority of traffic classification

methods use some form of machine learning techniques to build traffic models from

observed data. They share the general idea of measuring the distance of new ob-

jects from the learned models that represent particular traffic classes. In practice,

however, the effectiveness of traffic classification frameworks strongly depends on

the choice of traffic attributes or features. Two families of features have recently

been used for traffic analysis. The first one consists of the in-depth analysis of the

packet content, whereas the second one relies on flow-level statistics.

Various packet content features have been applied to traffic classification, such

as an IP address [31, 32], a transport layer protocol [33], a packet (payload) size

[33, 34, 35, 36, 37, 38], or particular values in TCP and UDP headers [31, 18], for ex-

ample, a port number [5, 3, 39, 40, 41] and TCP flags [42, 43, 44, 45, 32, 41]. While

packet header based features have proved to be effective in traffic classification and

against some network attacks, other classification problems require more advanced

payload processing techniques. Thus, Deep Packet Inspection (DPI) methods have

been proposed to create some payload-based signatures based on an in-depth anal-

ysis of application layer data [23, 18, 22, 5, 2, 46, 18]. Moreover, features based

on the relationship between various metrics have been applied in many classifica-

tion problems [23, 22, 2]. For example, the detection methods based on matching

TCP control segments such as SYN and FIN (or RST) pairs have been proposed

in intrusion detection [42]. Furthermore, the approach based on the relationship

between the number of destination IP addresses and ports for specific applications

per source IP has been proposed in traffic classification [2].

On the other hand, researchers propose the use of flow-level features, such as

flow duration [33, 3, 27, 47], a number of packets per flow [33, 31, 32], a variance

and/or an average, minimum, maximum value of inter-arrival time [33, 31, 34, 18, 3,

26, 48, 27, 47, 49, 50], packet (or payload) sizes per flow (or per few first packets of

the flow) [31, 51, 18, 2, 3, 26, 52, 27, 49, 50], a bit rate [51, 35], a round-trip time [35],

a flow size [3, 27], or time between consecutive flows [3]. Moreover, joint application

of some metrics have been proposed, for example, distribution of flow duration and

number of packets transferred [53], or direction and packet size distribution [22].

In the second part of this thesis, we propose a scheme that relies on the simple

and robust packet header feature based on matching TCP SYN segments to at least
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one of multiple ACK segments coming from the server side. In Part III, we present

a hybrid method that combines traffic flow features with complex DPI elements

to identify Skype service flows (cf. Section 9.1.2). Finally, the last part defines

a framework based on two complementary methods applying payload features for

classifying application flows encrypted with TLS/SSL. The first proposed Markov

Classifier takes into account message types in a TLS/SSL session as a classification

feature while the second classifier considers the deviation between the timestamp

in the TLS/SSL Server Hello message and the packet arrival time.

A common problem in the domain of traffic classification is to decide among

different features to be used. The feature selection can be done manually, but a

better strategy is to have a learning algorithm that decides which set of features

is the best. The problem of automatic feature selection has been well studied in

the context of traffic classification [54, 55, 56, 57] and anomaly detection [58]. In

the third part of this thesis, we face the problem of selecting an appropriate subset

of features called attribute meters. We applied a method called forward selection

based on the Analysis of Variance (ANOVA) [59]. It consists of starting with an

initial attribute in the model trying attributes one by one, and adopting them, if

they improve the classification performance.

3.6 Intrusion Detection

In this section we focus on a special case of traffic classification, namely on in-

trusion detection. At first sight, the main difference between intrusion detection

and, for instance, application identification is the number of traffic classes consid-

ered in the classification process (cf. Section 3.1). Moreover, in terms of traffic

classification goals discussed in Section 3.2 the objective of intrusion detection is

to categorize traffic as either intrusive or legitimate. Nevertheless, the crucial im-

portance of network security resulted in decoupling intrusion detection from traffic

classification.

Two detection approaches have received substantial attention in the research

community, namely signature-based and anomaly-based detection. Although, they

are opposite in nature, they share a common drawback—they require an in-depth

knowledge of network traffic to be effective. Therefore, they are collectively referred

to as knowledge-based detection approaches [60]. A relatively new research area in

intrusion detection that can potentially overcome the limitations of knowledge-based

approaches relies on unsupervised anomaly detection. In the rest of this section, we

briefly discuss three approaches summarized in Figure 3.5

The signature-based approach [61] requires an extensive knowledge of security
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Section 5, we focus our attention on more specific problems we had to face when

proposing a scalable anomaly-detection sampling scheme of high-volume malicious

traffic composed of SYN flooding attacks and low-volume portscan activity.

3.7 Ground Truth

The appropriate set of pre-labeled packet traces containing the so-called ground-

truth information is one of the key aspects in any classification problem. The two

most popular approaches employ the following procedures. The first one consists of

the manual generation of Internet traffic by running a broad pool of applications on

many machines. Nevertheless, such a dataset might not cover realistic application

instances and traffic characteristics due to the lack of live, human interactions.

The second approach assumes assigning traffic labels to all flows by means of DPI

methods after packet capturing. However, simple pattern-matching techniques are

not reliable anymore due to many obfuscation mechanisms and traffic encryption.

Moreover, most of the existing methods deal with ground-truth flow labeling in

the protocol domain [1, 16]. A recent ground-truth classifier that could potentially

fulfill our requirements is based on a pre-installed client tool to supervise a kernel of

each monitored host [69]. Even if the presented results are very promising, we need

to find a number of users who consent to be monitored with the classifier. Finally,

the same authors compare some previous methods based on the joint port analysis

and payload inspection [70]. The experimental results demonstrate that, in many

cases, the ground-truth data provided is incorrect. In this thesis, we do not rely on

any of the systematic solutions presented above. Instead, we try to develop ad hoc

methods that meet our current classification needs.

The second dataset used in the evaluation process in Part II has been collected

on the link connecting an operational university campus network at the AGH Uni-

versity of Science and Technology in Cracow to the Internet. We have manually

generated some network attacks by the use of common attacking programs available

in BackTrack linux security distribution [71] against servers set up especially for this

purpose. The traffic has been captured on the border router that monitors packets

generated in the controlled part of the network. The methodology is reliable in

obtaining the ground-truth data, but, in addition, it enables us to take advantage

of rich background traffic generated by students including recent p2p applications

as well as standard services like web, ftp, or mail.

In Part III, we had to face even more challenging tasks, namely, generating

and labeling Skype service flows. Manual generation of each service separately in

a closed laboratory environment enabled us to effectively obtain the ground-truth
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information. It was particularly difficult due to the p2p nature of Skype resulting in

spreading services on several TCP connections. Another challenge was to manually

distinguish between service flows and the corresponding signaling Skype traffic.

To establish the ground truth in the third part of this thesis, we have developed

a simple Domain Name System Classifier (DNSC) to extract encrypted application

flows according to their domain names. More specifically, DNSC matches hostnames

to signatures of well known applications, such as opera in case of Opera or twitter,

twttr in case of Twitter. The solution presents the number of constraints like

a rather limited classification scope. For example, we cannot label Skype flows,

because in general, we are not able to convert IP addresses to domain names.

On the other hand, if the mapping between an IP address and a domain name is

possible, the method can classify flows with a very high confidence level.

3.8 Criteria for Classification Performance

To evaluate any classification method we need to define criteria for classification

performance. In this section we discuss the metrics we use to quantify the perfor-

mance of our classifiers, namely the False Positive Rate (FPR), the True Positive

Rate (TPR), which is also known as Recall, and Precision. They are defined as

follows:

FPR =
FP

FP + TN
, (3.1)

TPR = Recall =
TP

TP + FN
, (3.2)

Precision =
TP

TP + FP
(3.3)

The following metrics are built upon the concept of True Positives (TPs), True

Negatives (TNs), False Positives, (FPs), and False Negatives (FNs). These notions

are often used in anomaly detection and traffic classification where each object is

placed into one of several classes.

To give the reader intuition about the statistical metrics to be used in this thesis,

let us make an analogy. Suppose we want to make a blind test of beer recognition

to test the knowledge of beer according to the brewing process. We classify them

into two categories, i.e., either lager or ale. We select a set of 100 beers—60 of

these are lagers, whereas 40 represent ale. Let us assume that you have classified

70 beers as being lagers. Actually, 50 of these are lagers, which correspond to the
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number of True Positives, but 20 are ales, which represent the number of False

Positives. Moreover, you categorize 30 beers as ales. Of these, 10 represent in

fact the lager type, whereas 20 of them are indeed ales. Let us focus on the lager

type. True Positive Rate (or Recall) is the number of beers correctly categorized

as lager divided by the total number of beers that are actually lagers—you have

TPR = Recall = 50/(50+10) = 0.833. Moreover, False Positive Rate is the number

of falsely classified beers as the lager type to the total number of non-lager beers,

FPR = 20/(20 + 20) = 0.5. A complementary measure to Recall is Precision, that

is the number of correctly classified lager beers to all beers classified as the lager

type, thus, Precision = 50/(50 + 20) = 0.714.

To assess the performance of the proposed classification methods in the second

and fourth part of the thesis we use True Positive and False Positive Rates as clas-

sification metrics, whereas in Part III we use Precision, Recall, and F -Measure as

classification metrics. F -Measure, which combines Precision and Recall, is defined

as:

F -Measure =
2 ∗ Precision ∗Recall

Precision + Recall
, (3.4)

For more specific examples, please refer to the respective sections describing the

criteria for classification performance of each proposed method.

3.9 Summary

So far, we have introduced some background information on traffic classifica-

tion important to understand methodologies proposed in this thesis. In Table 6.1,

we present the summary of the discussed issues according to the further described

solutions. In the remaining parts of the thesis, we first propose an accurate sam-

pling scheme for defeating SYN flooding attacks and TCP portscans, while in the

two following parts we propose two frameworks for classifying application flows in

encrypted traffic.
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Table 3.1: Summary of traffic classification issues according to proposed so-

lutions

Research area Traffic classification

Sub-domain Application classification Intrusion detection

Proposed solutions

Classifying Classifying A sampling scheme

service flows TLS/SSL for detecting

in the encrypted encrypted SYN flooding attacks

Skype traffic application flows and portscans

Classification goals Application Application Category

Hybrid: header- Header-based Header-based

Classification (L7 protocol (L7 protocol (L2-L4 protocol

approaches header) & flow header) headers)

feature-based

Supervised ML: Supervised ML: Anomaly-based:

SPID algorithm K-L Div. & Rate limiting

Methods based on Markov Chain & method

Kullback-Leibler Naive Bayes

Divergence

Packet size, Message types Rate of TCP SYN

direction, byte and timestamps to ACK segments

Features frequencies, from a TLS/SSL

byte pairs session header

reoccurring, etc.

Manually University University

Ground truth/ generated flows campus campus datasets

datasets in a closed datasets pre- with manually

laboratory labeled with generated attacks

environment DNSC classifier

Performance True Positive and Precision, Recall, True Positive and

Metrics False Positive and F-Measure False Positive

Rates Rates
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Distributed Denial-of-Service (DDoS) attacks and portscan activity strongly in-

fluence Internet security. According to a NANOG report [72], the major cause of

denial of service attacks is TCP SYN flooding that consists of sending many SYN

segments from a large number of compromised computers. It prevents victim ma-

chines or even whole subnetworks from offering a service to their legitimate users.

A portscan activity is usually a precursor for an intrusion attempt—a compromised

computer sends multiple SYN segments to probe other hosts for open ports to gain

control over more computers that become potential attackers. SYN flooding and

portscans differ in terms of intensity, behavior, and security threats so usually they

are handled independently. However, both types of traffic exploit the inherent asym-

metry in the TCP three-way handshake mechanism and the fact that the victim

cannot authenticate TCP SYN segments it receives. As a result, malicious packets

can easily reach the victim without its approval.

Among various defense mechanisms, SYN flooding detection mechanisms placed

in border routers have received much attention in recent literature [42, 43, 44, 73,

74]. All these methods take advantage of the relationship between TCP control

segments responsible for connection establishment and release. However, they all

may fail when routers sample traffic by inspecting only some packets. Efficient traffic

monitoring requires advanced sampling techniques to limit the volume of inspected

data. Sampling consists of partial observation of the network traffic and drawing

conclusions about the whole behavior of the system. Detecting DDoS attacks and

portscans becomes more difficult when routers sample packets.
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4.1 Contributions of Part II

In this part, we propose a novel and scalable sampling detection scheme of high-

volume malicious traffic composed of SYN flooding attacks and low-volume portscan

activity. The scheme examines TCP segments to find at least one of multiple ACK

segments coming from the server. In this case, it concludes that the connection

was successfully established so its opening SYN segment was not a part of a SYN

flooding attack or portscan activity. This principle is particularly suitable when

routers sample packets with very low rates. We combine the proposed method with

a rate limiting scheme that controls traffic rates and compare with three other rep-

resentative detection methods. We show that our method achieves a high attack

detection rate (True Positive Rate). In comparison with existing methods, we sig-

nificantly reduce the False Positive Rate, i.e., when legitimate packets are classified

as malicious ones.

We also study the impact of three basic packet sampling techniques proposed by

PSAMP IETF working group [75] on our detection scheme. The results reveal that

even the simplest and the most commonly used sampling technique—systematic

sampling also known as deterministic sampling [76], performs fairly well under low

sampling rates when combined with our detection and rate limiting method. Unlike

some other proposals that used network simulations or experiments on obsolete data

sets with outdated background traffic, we validate our scheme on two recent data

sets of network traces captured during real network attacks.

4.2 Relevant Publications for Part II

[45] Maciej Korczyński, Lucjan Janowski, and Andrzej Duda. An Accurate Sam-

pling Scheme for Detecting SYN Flooding Attacks and Portscans. 2011 IEEE

International Conference on Communications (ICC’11), pages 1–5, June 2011

[77] Maciej Korczyński and Lucjan Janowski. Implementation of The Algorithm

to Detect and Prevent Network Attacks Based on Rate Limiting Method.

Conference on Next Generation Services and Networks - the Technical Aspects,

Application and Market, November 2010

[78] Gilles Berger-Sabbatel, Maciej Korczyński, and Andrzej Duda. Architecture

of a Platform for Malware Analysis and Confinement. 3rd INDECT/IEEE

International Conference on Multimedia Communications, May 2010

[79] Karol Adamski, Maciej Korczyński, and Lucjan Janowski. Trace2Flow. 3rd

NMRG Workshop on Netflow/IPFIX Usage in Network Managament, 2010
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5.1 Analyzing TCP Connections

Analyzing TCP connections is one of the most important issues to address in the

case of SYN flooding attacks and portscans. To open a connection, a client sends

an initial SYN segment. Upon its reception, the server allocates some resources

in the backlog queue and replies with a SYN/ACK segment. Finally, the client

returns an ACK segment (further called Client ACK ) to complete the three-way

handshake. Then, communication goes on until the client or the server sends a

segment with the FIN flag set, a RST segment, or the connection times out. The

potential for exploiting this behavior for denial of service lies in the early allocation

of the server resources. During a TCP SYN flooding attack, the attacker generates

multiple SYN requests without sending the Client ACK to complete the connection

establishment. The requests can quickly exhaust the server memory so it cannot

accept more incoming connection requests.

SYN scanning is fairly similar to TCP SYN flooding attacks: an attacking

computer tries to identify vulnerable hosts by sending multiple TCP SYN segments.

If a port is open, the server responds with a SYN-ACK segment, the port scanner

completes the three-way handshake and immediately closes the connection with a

RST segment.

Several authors proposed interesting detection methods that can operate in bor-

der routers to detect attacks and block them near their sources [42, 43, 44, 73, 74].

They take advantage of the relationships between the TCP control segments: the

appearance of a SYN segment implies further SYN/ACK, Client ACK, and FIN or

RST segments. However, if we want to apply sampling at border routers of Intranets

or parts of operator networks for improved monitoring efficiency, considering only
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a small part of packets may degrade the detection capacity of all existing methods,

because low probability of sampling essential control segments is fairly low. For in-

stance, without sampling, the ratio between SYN/ACK and Client ACK segments

should be around 1 for regular traffic while it may be different when routers use

high sampling rates. Because of this sampling effect, the existing methods result in

poor detection performance especially with respect to the False Positive Rate.

5.2 Sampling Techniques

We consider three basic and most commonly used count-based sampling tech-

niques: systematic, random 1-out-of-N, and uniform probabilistic sampling (cf. Fig-

ure 5.1) proposed by the PSAMP IETF working group [75] and thoroughly investi-

gated in the literature [80]. They present the advantage of simple implementation

with low CPU and memory requirements.

Systematic sampling takes every N-th packet, whereas random 1-out-of-N sam-

pling randomly chooses one packet in every bucket of size N. Finally, uniform proba-

bilistic sampling analyzes every packet with the same small probability. Systematic

sampling, also known as deterministic sampling, is usually used in current network

devices, one example being the Cisco Netflow protocol [76].

Some previous work addressed the problem of how sampling techniques influence

the anomaly detection process [81]. The authors focused on portscan anomalies and

evaluated some representative anomaly detection techniques. Later, they extended

this work and examined various kinds of sampling methods with respect to volume

and scanning anomalies [82]. They concluded that packet sampling can introduce

a fundamental bias by changing traffic features and they pointed out the need for

better measurement techniques. Other authors considered the impact of sampling

methods on various detection metrics examined on traces with TCP SYN flooding

attacks [80]. Their results reveal that systematic sampling does not perform well

under low sampling rates when the detection process depends on specific packet

characteristics like TCP flags. Our detection scheme also overcomes the limitation of

systematic sampling and it becomes as appropriate method as other more enhanced

sampling techniques.
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6.1 Principles of the Detection Scheme

To overcome the limitations of methods that match pairs of TCP control seg-

ments, we propose a novel method not limited to the analysis of the three-way

handshake or connection termination. To make it insensitive to sampling, we pro-

pose to find at least one of multiple ACK segments coming from the server instead

of looking for a single control segment like SYN/ACK, Client ACK, FIN, or RST.

In other words, to detect legitimate established connections, we take advantage of

the fact that all segments originated from the server with the ACK flag set on and

the SYN flag set off indicate a successfully established connection. Obviously, when

we sample packets, the probability that the sampled packet contains one of multiple

ACK segments coming from the server is much more greater than when we try to

detect a SYN-SYN/ACK pair. This approach decreases the False Positive Rate
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and does not influence the True Positive Rate, because in the case of SYN flood-

ing attacks as well as portscans, there are almost no corresponding ACK segments

coming from the server. Finally, it is impossible for the attacker to avoid detection

by spoofing control segments.

The proposed scheme is placed in a border router that monitors packets gener-

ated in the controlled part of the network (e.g. an Intranet or an enterprise LAN)

to confine the possible malicious activity close to the source of an attack. It is

composed of three modules: the first one validates outgoing TCP segments, the

second one processes corresponding control segments, while the third one changes

the packet filter list if needed.

We combine the method with a rate limiting scheme. If the traffic rate is less

than or equal to a predefined rate for a given IP address, it is allowed to pass the

filter of outgoing traffic, whereas traffic that exceeds the rate is dropped or delayed.

We provide a detailed description of the proposed defense scheme below.

6.1.1 TCP History Check

For each sampled packet, we extract its source and destination IP address and

place them in the Source IP List (SIPL) and the Destination IP List (DIPL), respec-

tively. We also extract other information such as timestamps, sequence numbers,

and ACK sequence numbers. When the router samples any outgoing TCP SYN

segment, the module checks if a timeout has elapsed. Depending on the result, it

either resets the source and destination IP lists and allows the segment to pass or

it increases request counter Rsrc corresponding to the particular source IP address

by a positive integer. If there are more unacknowledged SYN segments originating

from the specific source IP address and Rsrc > Rmax
src , then this module decides that

the segments are parts of portscan activity and inserts the source IP address in

the filter blacklist. Moreover, the module increases request counter Rdst by a posi-

tive integer for a particular destination IP address. If Rdst > Rmax
dst , it means that

there is an excessive number of connections to the destination address. Then, as

this behavior may indicate host scan activity or a SYN flooding attack, the module

updates the filter blacklist to block packets that follow.

6.1.2 TCP Validation Check

The goal of this module is to overcome the problem of losing some useful in-

formation because of sampling. It analyzes TCP control segments to determine

whether the three-way handshake was successfully completed. Any incoming seg-

ment from the server side with the ACK flag set and SYN flag disabled indicates
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Table 6.1: Summary of packet traces

Trace Attack ratio in packets/sec (%)

SYN flooding 4000 packets/sec (20%)

Host scan 120 packets/sec (9%)

Network scan 80 packets/sec (5%)

Clear1 0 packets/sec

Clear2 0 packets/sec

that the particular connection has been successfully established. In this case, the

module decreases the Rsrc (Rdst) counter, because the connection becomes legiti-

mate. Consequently, the requirement Rsrc > Rmax
src (Rdst > Rmax

dst ) might not be

valid any more, so the module will eventually update the packet filter blacklist to

permit further outgoing TCP requests from/to the specified IP address.

6.1.3 Filtering

This module applies all changes to the Access Control List (ACL) in the border

router so that it will discard all malicious segments.

6.2 Evaluation Results

To evaluate the method and compare it with the previous work, we have devel-

oped a prototype in the Matlab environment. We use the open source TracesPlay

program [83] to read traces and to directly put the required data into Matlab.

6.2.1 Dataset Description

We have validated our scheme by means of trace-driven simulations on two data

sets: the first traces were gathered on an operational university campus network

at the National Technical University of Athens (NTUA) with an average traffic of

70-80 Mbits/sec and 20000 packets/sec. It contains a Distributed Denial of Service

attack (TCP SYN flooding attack) captured on May 21, 2003 against a single host

inside the NTUA campus. The second set has been collected on the link connecting

an operational university campus network at the AGH University of Science and

Technology in Cracow with a limit of 45 Mbits/s for incoming and 22 Mbits/s for

outgoing traffic. In the evaluation presented in this thesis, we have used set of four

traces collected on March 24, 2010 containing host scans and port scans originated

from the campus network as well as packet traces without malicious activity (cf.
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Table 6.1). Moreover, traces contain rich background traffic including recent p2p

applications as well as standard services like web, ftp, or mail. Note that all traces

are bidirectional. We consider them as a meaningful set of traces—if the data set

is not recent, we cannot trust evaluation results especially when we consider the

False Positive Rate because of unrealistic background traffic (new applications have

different traffic characteristics from old ones). Some previous work proposed other

detection algorithms [84, 85], unfortunately the evaluation process uses outdated

data sets.

6.2.2 Criteria for Detection Performance

We consider two meaningful metrics to evaluate the performance of detection

methods: the True Positive Rate (TPR) and the False Positive Rate (FPR) (cf.

Eq. 3.1 and 3.2). Such rates are usually presented as the Receiver Operating

Characteristics (ROC) curve by plotting TPR as a function of FPR. As attack

detection is a Boolean action, the ROC curve is useful for network operators, because

it indicates how to find the right tradeoff between the False Positive and True

Positive Rates. However, in our evaluation, we have separated both values and

presented them as a function of the sampling rate, because the evaluation is also

based on traces that do not contain malicious activity.

6.2.3 Comparing with Existing Detection Schemes

To evaluate our scheme, we have compared it with other three representative

detection schemes that leverage TCP relationships: SYN-SYN/ACK, SYN-FIN,

and SYN-Client ACK. The key point of schemes based on matching SYN-SYN/ACK

and SYN-Client ACK pairs is the need of finding the corresponding SYN/ACK or

Client ACK segment after the first SYN segment. The time interval between them

is the RTT (Round Trip Time), usually less than 500ms for more than 90% of

connections. Therefore, the methods have to inspect all control segments during

at least this interval to conclude that the connection was successfully established.

The detection methods based on matching SYN-FIN (or RST) pairs, simply waits

for the corresponding FIN (or RST) segment.

6.2.4 Calibration Process

We had to face the problem of setting the right rate limiting thresholds, i.e.,

maximum values of the request counters corresponding to a regular traffic pattern.

We have calibrated them for every examined trace in order to achieve a high TPR

with no FPs regardless of the detection method when we analyze all packets.
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Table 6.2: Rate limiting thresholds obtained during the calibration process

for particular traces.

Trace Rmax
src (packets) Rmax

dst (packets)

SYN flooding 200 1300

Host scan 300 100

Network scan 400 240

Clear1 50 170

Clear2 120 90

The calibrated values (cf. Table 6.2) reflect the relation between outgoing SYNs

per destination and per source and corresponding control packets (SYN/ACK,

Client ACK, FIN). In long-term regular conditions, the TCP semantics requires

a one-to-one match between TCP requests and control segments. Nevertheless,

in reality there is always quite huge difference between the number of SYNs and

SYN/ACK, Client ACK or FIN packets. Nowadays, the major cause of this dif-

ference is the legitimate p2p traffic that initiates TCP connections to unreachable

seeds. We have empirically found that the rate limiting thresholds expressed in

packets are directly proportional to the sampling rate, which alleviates the problem

of losing potentially useful data during the sampling process.

6.2.5 Influence of the Sampling Process on Different Detection

Schemes

In our experiments, we have evaluated the influence of uniform probabilistic

sampling on the proposed method and compared it with other three schemes. We

have decided to choose this particular sampling method, because it is claimed to be

more effective in the process of packet selection compared to systematic sampling

[80].

We have repeated all simulations to obtain 95% confidence intervals computed

according to the bootstrap method [86].

As shown in Figure 6.1, all methods present approximately the same high TPR

and very low FPR in case of TCP SYN flooding attacks. Similar results for all four

methods are due to setting high rate thresholds corresponding to regular traffic for

this particular trace. As we can observe, TPR curves of all detecting schemes are

similar until 0.008% when sampling process increases randomness in the results.

As far as FPR is concerned, we can see that SYN-SYN/ACK, SYN-FIN, SYN-

Client ACK methods deviate from our scheme, but differences are insignificant. For
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6.3 Related Work

We can observe that our results overcome the problems considered in the liter-

ature [80] in which the authors evaluated the impact of the same three sampling

methods on anomaly detection techniques. They conclude that methods that rely

on systematic sampling are the worst choice for the detection of attacks based on

certain TCP control flags like SYN or FIN, because such segments are not evenly

distributed across traffic. Our scheme alleviates the problem of sampling SYN-

SYN/ACK, SYN-FIN and SYN-Client ACK pairs and proposes a novel solution

based on considering ACK segments.

To detect and mitigate scanning activity, SYN flooding, and DDoS attacks,

several authors proposed various methods [87, 88, 89, 90]. The end-host method

based on SYN cookies is the most commonly used technique to protect against SYN

flooding attacks [91]. Nevertheless, SYN cookies are not able to encode all TCP

options, in particular the window scale and selective acknowledgements that are

widely supported and serve to significantly improve TCP performance. Moreover,

the method does not overcome the problem of bandwidth consumption in case

of high-volume TCP SYN attacks. Consequently, we have focused on SYN flood

methods located in border routers [42, 43, 44, 73, 74] and we designed a novel

scheme insensitive to sampling.

6.4 Conclusion

We have proposed a novel scheme for detecting TCP SYN flooding attacks

and portscans that offers good performance in the case of sampling. The scheme

considers TCP connections as legitimate if it samples one of multiple ACK segments

(with disabled SYN flag) coming from the server. This differs from existing methods

based on pair matching of control segments SYN/ACK, FIN (RST) or Client ACK

etc. Our trace-based simulations show that unlike other techniques, the proposed

method significantly decreases the False Positive Rate under a sampling process.

Moreover, the results reveal that our method alleviates the problem of losing some

information when systematic sampling is used. The effectiveness of the presented

method only relies on the sampling rate and not on the type of a sampling method.
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Accurate traffic identification and classification are essential for proper network

configuration and security monitoring. Application-layer encryption can however

bypass restrictions set by network configuration and security checks. Several ap-

plication protocols adopted the Secure Socket Layer (SSL) encryption to protect

the confidentiality of communications, which raises new challenges with respect to

traffic classification and malware detection.

In this chapter, we focus on Skype as an interesting example of encrypted traffic

and provide a method for identifying different encrypted TCP Skype flows tun-

neled over SSL—we want to discriminate between voice calls, video conferencing,

skypeOut calls, chat, and file sharing. Previous papers on Skype concentrated on

its architecture and the authentication phase [33, 31, 34], on the mechanisms for

firewall and NAT traversal [92] as well as on characterizing traffic streams generated

by VoIP calls and Skype signaling [51, 35]. Bonfiglio et al. proposed identification

methods for encrypted UDP Skype traffic [18], but no work has tackled the problem

of how to classify encrypted TCP flows generated by all Skype services.

Skype exemplifies the problem of identifying encrypted flows, because it multi-

plexes several services using the same ports: VoIP calls, video conferencing, instant

messaging, or file transfer. A network administrator may assign a higher priority

to VoIP calls, but other flows may also benefit in an illegitimate way from a higher

priority if we cannot distinguish them from VoIP calls.

7.1 Contributions of Part III

We propose a classification method for Skype encrypted traffic based on the Sta-

tistical Protocol IDentification (SPID) [22] that analyzes statistical values of flow

and application layer data. We propose an appropriate set of attribute meters to de-



58 Chapter 7. Introduction

tect encrypted TCP Skype traffic and identify its service flows. We consider a very

special case of Skype traffic that is, in addition to proprietary encryption, tunneled

over SSL. Our method involves three phases with progressive identification: the first

classification phase early reveals Skype traffic, while the second one provides the

preliminary Skype flows identification: the distinction between voice/video commu-

nication, chat, voice calls towards phones using skypeOut, and file sharing. The

final phase identifies Skype flows in detail: voice calls, video and voice communi-

cation (denoted later as just video), chat service, skypeOut calls, file upload and

download. To select the right attribute meters for each phase, we applied a method

called forward selection [55] that evaluates how a given attribute meter improves

classification performance and promotes it to the traffic model if its influence is sig-

nificant. Forward selection uses the Analysis of Variance (ANOVA) [59]. We have

evaluated our classification method on a representative dataset to show excellent

performance in terms of Precision and Recall.

7.2 Relevant Publications for Part III

[23] Maciej Korczyński and Andrzej Duda. Classifying Service Flows in the En-

crypted Skype Traffic. 2012 IEEE International Conference on Communica-

tions (ICC’12), pages 1–5, June 2012.
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Issues in the Analysis of Skype

Traffic

Skype traffic presents a major challenge for detection and classification, because

of proprietary software, several internal obfuscation mechanisms, and a complex

connection protocol designed for bypassing firewalls and establishing communication

regardless of network policies.

Skype differs from other VoIP applications, because it relies on a p2p infrastruc-

ture while other applications use the traditional client-server model. Skype nodes

include clients (ordinary nodes), supernodes, and servers for updates and authenti-

cation. An ordinary node with a public IP address, sufficient computing resources

and network bandwidth may become a supernode. Supernodes maintain an overlay

network, while ordinary nodes establish connections with a small number of supern-

odes. Authentication servers store the user account information. A Skype client

communicates with the authentication server and another ordinary node in an in-

direct way via supernodes that relay packets. Skype can multiplex different service

flows such as voice calls to another Skype node, skypeOut calls to phones, video

conferencing, chat, file upload and download. Our goal is to detect and classify the

service flows in Skype traffic.

Even if the maintenance of the supernode list is possible through some active

and passive methods [31], the associated information may only be useful in revealing

Skype traffic and not in detecting Skype service flows. We cannot use traditional

port-based flow identification methods, because Skype randomly selects ports and

switches to port 80 (HTTP) or 443 (HTTP over SSL) if it fails to establish a

connection on chosen ports.

Another feature of the Skype design is the possibility of using both TCP and

UDP as a transport protocol. Skype uses TCP to establish a connection and then it

can switch to UDP for both signaling and regular communication. Once it makes the

initial connection, it can interchangeably use TCP or UDP depending on network

restrictions.

Skype encrypts its traffic with the proprietary encryption technologies to protect
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communications exchanged between its clients and severs. It uses several encryption

algorithms [93], which makes traffic classification a challenging task. Its servers

use the strong 256-bit Advanced Encryption Standard (AES), the supernodes and

clients use three different types of Rivest Cipher 4 (RC4) encryption. Finally,

the clients also use AES-256 on top of RC4 algorithm to protect from potential

eavesdropping. Skype entirely encrypts TCP traffic, but some information in the

UDP payload is not encrypted so a part of the Skype messages encapsulated in

UDP can be obtained and used for identification [18].

We propose an accurate method for classification of encrypted TCP Skype ser-

vice flows tunneled over SSL. It is a hybrid method combining traffic flow metering

with Deep Packet Inspection (DPI) elements.
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9.1.1 Classification Based on SPID

We build our method upon SPID (Statistical Protocol IDentification) [22] (cf.

Figure 9.1). It is based on traffic models that contain a set of attribute fingerprints

represented as probability distributions. They are created through frequency anal-

ysis of traffic properties called attribute meters of application layer data or flow

features. An example of such an attribute meter is byte frequency that measures

the frequency at which all of the possible 256 values occur in a packet. Other at-

tribute meters defined later in Table 9.1 and 9.2 include for instance byte offset,

byte re-occurring, direction change, and packet size.

As illustrated in Figure 9.1, SPID operates in three steps. First, packets are

classified into bi-directional flows. All connections are represented as 5-tuples ac-

cording to the source IP address, source port, destination IP address, destination

port, and transport layer protocol. However, only packets carrying data are sig-

nificant, because the analysis is based on both the application layer data and flow

features. Then, each flow is analyzed in terms of attribute meters to obtain a collec-

tion of attribute fingerprints. Finally, the obtained attribute fingerprints are used

either in traffic model generation or in traffic classification.

To illustrate the process of fingerprint creation, consider an example of the

byte frequency attribute meter computed on the first 5 bytes of the SSL Server

Hello packet, a part of the SSL handshake protocol. The first 3 bytes refer to

the message type (0x16) and the SSL version (0x03 01), while the last two bytes

correspond to the size of the remaining part of the SSL record (0x00 4a). Each time

we observe a particular value, its counter is incremented. In the example, all five

counters referring to the five values will be incremented. Then, SPID maintains a

probability vector—the normalized counter vector with all elements summing up to

one.

At the initial training phase, the method creates traffic models—attribute fin-

gerprints representative for the traffic we want to detect. During the classification

phase, the method computes attribute fingerprints on the flows to classify and com-

pares them with traffic models by means of the Kullback-Leibler (K-L) divergence

[28]:

D(P ||Q) = K-L(P,Q) =
∑

x∈X

P (x)log2
P (x)

Q(x)
. (9.1)

The K-L divergence is a measure of the difference between two probability dis-

tributions P (x) and Q(x). P (x) represents the distribution of a particular attribute

of an observed flow and Q(x) is the distribution corresponding to a known traffic

model. Classification consists of comparing P (x) with all known traffic models and
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selecting the protocol with the smallest average divergence D(P ||Q) and lower than

a given threshold. We need to correctly set the divergence threshold to decrease

the False Positive Rate for known traffic models—we only take into consideration

the K-L divergence average values below the threshold.

Figure 9.2 presents a simplified process of the proposed classification method. In

the first phase, it detects Skype traffic after a TCP three-way handshake based on

the first five packets of the connection by considering attribute meters, the majority

of which reflects application level data. Then, it changes the set of attribute meters

to both packet independent and application level data features to detect service

flows in the Skype traffic: voice/video, skypeOut, chat, and file transfer. This

phase requires a larger number of packets to analyze to be effective: our calibration

sets this value to 450 packets. Finally, the method considers more packets (the

threshold is set to 760) to further distinguish between voice and video flows, and

between file upload and download.

9.1.2 Attribute Meters for Skype

In this subsection, we present the set of attribute meters defined for classifying

Skype traffic (cf. Table 9.1 and 9.2) with notation presented in Table 9.3.

• byte frequency: in each packet it measures and returns the frequency of indi-

vidual bytes in the payload. Encrypted data seems to have equally distributed

byte frequencies, whereas the plain text may exhibit different distributions.

The SSL protocol, in the first bytes of the transmitted packets, tends to pro-

vide some unencrypted information related to the session, such as the SSL

version, message type, compression method selected by the server, etc.

• action-reaction of first bytes: it creates hash values based on the first 3

bytes of each packet that was sent in a different direction than the previous

one. It is sometimes better to analyze packets sent alternately in different

directions instead of looking at all packets, because we can easily analyze the

request-response phase between a client and a server.

• byte value offset hash: it combines individual byte values in each packet

with the offset at which the bytes are positioned. The meter considers up

to 32 bytes of the 4 first packets. The SSL is one of the protocols that use

several positions in particular packets (e.g. in Client Hello or Server Hello

messages). As a result, the combination of bytes with their positions provides

some additional information with respect to the byte frequency.
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Table 9.1: Definition of attribute meters used in classification

Attribute meter Definition

byte frequency M1 : {(k, pk)}, k = 0, 1, ..., 255; pk = mk∑
mk

, mk =
∑8

i=1

∑100
j=1 δxi

j

action-reaction of first 3

bytes

M2 : {(hi, phi), ∀i∈(1,3)}, h : (yi3∆, z
i
3∆) → h(yi3∆, z

i
3∆),

phi =
m

hi∑
m

hi
, mhi = δh(yi

3∆
,zi

3∆
)

byte value offset hash M3 : {(h, ph)}, h : (j, xij) → h(j, xij), ph = mh∑
mh

,

mh =
∑4

i=1

∑32
j=1 δh(j,xi

j)

first 4 packets byte re-

occurring distance with

M4 : {(h, ph)}, ∀d<=16 : h : (xij , d) → h(xij , d), ph = mh∑
mh

,

byte mh =
∑4

i=1

∑32
j=1 δh(xi

j ,d)
)

first 4 packets first 16

byte pairs

M5 : {(h, ph)}, h : (xij , x
i
j+1) → h(xij , x

i
j+1), ph = mh∑

mh
,

mh =
∑4

i=1

∑16
j=1 δh(xi

j ,x
i
j+1

)

first 4 ordered direction

packet size

M6 : {(f, pf )}, f : (i, s(xi), dir(xi)) → f(i, s(xi), dir(xi)),

pf =
mf∑
mf

, mf =
∑4

i=1 δf(i,s(xi),dir(xi))

first packet per direc-

tion first N byte nibbles

M7 : {(f, pf )}, ∀x1∈{z1,y1} : f : (nib(x1j ), j, dir(x1))

→ f(nib(x1j ), j, dir(x1)),

pf =
mf∑
mf

, mf =
∑8

j=1 δf(nib(x1
j ),j,dir(x

1))
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Table 9.2: Definition of attribute meters used in classification - cont.

Attribute meter Definition

direction packet size

distribution

M8 : {(f, pf )}, f : (s(xi), dir(xi)) → f(s(xi), dir(xi)), pf =
mf∑
mf

,

mf =
∑s(x)

i=1 δf(s(xi),dir(xi))

byte pairs reoccurring

count

M9 : {(f, pf )},

∀
xi
j=xi+1

j
: f : (xij , dir(xij), dir(xi+1

j )) → f(xij , dir(xij), dir(xi+1
j )),

pf =
mf∑
mf

, mf =
∑s(x)

i=1

∑32
j=1 δf(xi

j ,dir(x
i
j),dir(x

i+1
j ))

• first 4 packets byte reoccurring distance with byte: it creates a short

hash value (usually a 4-bit representation) and combines it with the distance

between the two occurrences. The measurement detects the bytes that oc-

curred more than once within 16 previous bytes. Originally, it was created to

identify banners in plain text packets like e.g. TT in HTTP GET and POST

messages, but it also applies to the case of the encrypted or the tunneled SSL

content.

• first 4 packets first 16 byte pairs: it combines neighboring bytes in a

16-bit value and converts to a 8 bit hash value (the size is determined by the

fingerprint length). It analyzes only application layer data regardless of the

flow information, i.e. packet size, directions, or inter-arrival times. The meter

indicates that there are some specific, not random two-byte combinations like

e.g. list compression methods supported by the client in the SSL Client

Hello message sent to the server.

• first 4 ordered direction packet size: the meter returns the compressed

version of the packet size—it represents a range in which the packet lies instead

of the exact value. Measurements are separately done for each of four first

packets in connection and the returned value is associated with the packet

direction and the order number. It is a flow based attribute created for early

traffic recognition.
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Table 9.3: Notation

M : {(k, pk)} – attribute meter

k = 0, 1, 2, . . . , 255 – random variable of an attribute meter

mk – attribute meter counter

pk – probability distribution of an attribute meter (corresponds to Q(x) in traffic

model generation and P (x) in traffic classification)

δ – indicator function; δ : X → {0, 1}, δxi
j

=

{

1 if X = xij
0 if X 6= xij

h – hash function, h = 0, 1, 2, . . . , 255

f – compressing function, f = 0, 1, 2, . . . , 255

xi – packet i

xij – byte j in packet i

xi
j(m) – bit m in byte j in packet i

∑

i x
i ↔ x – all packets in a TCP session

yi – packet i, zi – packet sent in a different direction than yi

xi∆j – first j bytes in packet i

d – distance between two identical bytes; if xij = xij−d ⇒ d, 0 < d < j

s(x) – size of x; amount of packets in a TCP session

s(xi) – size of packet xi in bytes

dir – packet direction

nib: xij ↔ xi
j(m∈(1...8)); x

i
j(m∈(1...4)) XOR xi

j(m∈(5...8) ⇒ nib(xij)

• first packet per direction first N byte nibbles: it analyzes the first

packet in each direction and inspects its first few bytes depending on the fin-

gerprint length (8 bytes for a fingerprint length of 256). It provides a measure

combining the packet direction, byte offset, and a compact representation of

the byte value so-called nibble, (it divides a byte into two 4-bit groups, per-

forms an XOR calculation, and returns the resulting 4-bit value). The first

packet in each direction and the first few bytes corresponding to these packets

say a lot about the application layer protocol and might also provide some

hidden information of the underlying service.

• direction packet size distribution: this attribute is very similar to the

first 4 ordered direction packet size meter. The only difference is that it

inspects all packets in a connection and does not mark each measurement

with the order number of the packet in a connection. It is an example of a

flow based attribute especially suitable for detailed Skype classification: it is

able to classify flows in which packet sizes per direction are different, which
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enables to distinguish, for example, file upload from download.

• byte pairs reoccurring count: it detects bytes that reoccur in the same

position in two consecutive packets. In addition, it takes into account the

direction of a given packet and its predecessor.

9.1.3 Methodology for Attribute Meter Selection

Our classification process is based on three phases and each of them requires a

proper set of attribute meters. We applied a method called forward selection for

choosing attribute meters. It consists of starting with an initial attribute in the

model, trying attributes out one by one, and adopting them, if they improve the

classification performance. The selection terminates when adding an attribute does

not improve the performance.

We consider a set of n attribute meters x1, ..., xn ∈ X and a set of m Skype

services. We begin with a model that includes the most significant attribute in the

initial analysis. More precisely, we compute Precision, Recall, and F -Measure

(cf. Eq. 3.2 - 3.4) for a particular Skype service and for each individual attribute

meter. The True Positive (TP) term refers to all Skype flows that are correctly

identified, False Positives (FPs) refer to all flows that were incorrectly identified as

Skype traffic. Finally, False Negatives (FNs) represent all flows of Skype traffic that

were incorrectly identified as other traffic.

We select attribute xi ∈ X with the largest average F -Measure defined as:

max
x∈X

1

m

∑

a∈(1,m)

FMx
a , (9.2)

where FMx
a denotes ath observation of F -Measure value corresponding to xth at-

tribute meter.

In the next step, each of the remaining attributes x1, ...xi−1, xi+1, ...xn ∈ X is

tested for inclusion in the model. We run several F -tests (explained below) that

compare the variance of F -Measure values obtained in the preliminary selection,

i.e. FMxi
a , where a ∈ (1,m), with the corresponding values obtained after including

each attribute meter separately.

Let us focus on a particular F -test [59] that compares the influence of attribute

meter xj ∈ x1, ...xi−1, xi+1, ...xn ∈ X with the first model based on xi ∈ X. We

examine two groups of F -Measure values FMxi
a and FM

xij
a that respectively cor-

respond to attribute xi and to the set of two attribute meters, i.e. xi and xj . We

test the null hypothesis that two means of the discussed population are equal. If we

fail to reject it, the additional attribute meter does not improve the classification
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performance and we need to exclude it from further consideration. To examine

these two groups, we use the one-way Analysis of Variance (ANOVA) F -test [59]

that compares the variance between the groups to the variance within the groups.

The between–groups variance is given by:

Sbet = m ∗
∑

x

(FM
x
− FM)2

(k − 1)
, (9.3)

where FM
x

denotes the mean of FMx
a values, FM denotes the overall mean of

F -Measure observations, i.e. FMxi
a and FM

xij
a , m is the number of F -Measure

values for Skype services and k is the number of groups (in the discussed case equal

to 2). The within–group variance is given by:

Swit =
∑

x,a

(FMx
a − FM

x
)2

k ∗ (m− 1)
, (9.4)

where FMx
a denotes ath observation corresponding to each xth classification (in the

discussed case to the classification based on xi and the classification based on the

set of two attributes xi and xj).

The F -statistics is computed as:

F =
Sbet

Swit
, (9.5)

and it follows the F -distribution with k−1, k∗(m−1) degrees of freedom under the

null hypothesis. If the null hypothesis is rejected and the average F -Measure value

corresponding to xi is lower than F -Measure related to the set of two attribute

meters, i.e. xi and xj , then attribute xj is considered as a candidate to be included

in the model.

For each of the attribute meters, the method computes F -statistics that reflects

the contribution of attributes to the model. The most significant attribute is added

to the model, if F -statistics is above a predefined level set to 0.1. Moreover, if

F -statistics is above 1, it is included in the model and considered as a significant

attribute meter. The forward selection method then computes F -statistics again

for the attribute meters still remaining outside the model and the evaluation process

repeats. Therefore, attributes are added one by one to the model until no remaining

attribute results in significant F -statistics.
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9.2 Evaluation Results

We start with the description of the datasets used for training the method and

evaluating its performance. We then present the criteria for classification perfor-

mance and we discuss the evaluation results of the proposed method. We also

explain how we calibrate the parameters of the method (the choice of the number

of packets to analyze during each step, the number of flows used in the training

process, and the selection of the right K-L threshold).

9.2.1 Dataset Description

The appropriate selection of packet traces containing ground-truth information

is one of the key aspects in the training and evaluation process. It should be as

extensive as possible and should cover various environments. We have generated

TCP Skype traffic in the following conditions:

• various operating systems: Linux, MacOS, Windows,

• wireless and wired networks,

• connections within one LAN as well as WAN connections between LANs lo-

cated in France and Poland,

• different versions of Skype (2, 3, and 5)

To force Skype to generate desired flows, we have used firewall rules to block

UDP so that all communications use TCP and allowed only well-known TCP ports

so that Skype switches to port 443.

We have used Wireshark [94] to collect packet traces and to distinguish Skype

flows from other network traffic. We have tested all Skype services separately to

simplify the extraction of the desired flows and captured flows containing voice,

video, skypeOut, chat, file upload and download. We have observed the use of the

G.729 codec for skypeOut calls and SILK V3 for Skype-to-Skype voice communi-

cation. Skype adopts VP7.1 codec for video communication. Overall, we gathered

479 Skype flow traces taking more than 770 MB.

Therefore, we have divided the collected set of flows into several groups accord-

ing to operating systems, network access technologies, and Skype versions. For

the traffic model generation purpose we have selected a group of traces generated

by MacOS over a WAN connection between wireless LANs located in France and

Poland. We have used the remaining datasets to evaluate the classification mech-

anism. Our fingerprint database with 6 Skype service flow models has the size of

1.78MB in the XML format.
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Furthermore, we have gathered a separate set of traces without Skype traffic

to test the discrimination of our method. It contains various types of traffic: SSL,

SSH, HTTP, SCP, SFTP, VoIP, BitTorrent, and standard services like streaming,

video conferencing, chat service, mail, file sharing. The traces contain 18945 flows

of around 3GB and were gathered between December 2010 and March 2011.

9.2.2 Criteria for Classification Performance

We use three metrics to quantify the performance of classification: Precision,

Recall, and F -Measure (cf. Eq. 3.3 - 3.4). F -Measure is an evenly weighted

combination between Precision and Recall, which means that if the system can

for instance identify skypeOut traffic with Precision 100% (no False Positives) and

Recall is 96.6% then the F -Measure is 98.2%.

9.2.3 Performance of Classification

To evaluate the proposed method, we have extended the version 0.4.6 of SPID

[95].

Our method depends on three parameters: the amount of packets required for

reliable traffic and flow identification during each of the three steps, the K-L di-

vergence threshold, and the number of flows used in the training process. We first

present the classification results for the number of packets in each phase set to

5, 450, and 760 packets, respectively, the K-L divergence threshold of 1.9, and 15

training flows (we evaluate the impact of parameters further on and explain how

we have chosen their values, cf. Section 9.3).

After each classification step, the classifier decides if there are any instances

of Skype flow for further analysis. If the identification result is positive, then it

continues with more detailed classification of Skype flows with a different set of

attribute meters. Otherwise, it finishes as no Skype flows were recognized.

The objective of the first classification phase is to early detect encrypted TCP

Skype flows tunneled over the SSL protocol. The most significant attribute meter

chosen in the selection process is M5 (cf. Table 9.1). Two other important at-

tributes are M7 and M6 while M3, M4, and M1 are less meaningful. In addition

to payload inspection attributes (M5, M7, M3, M4, and M1), we have chosen one

typical flow based attribute that combines features like size, direction, and packet

order number (M6). Such selection indicates that the first SSL packets contain

some characteristic values that differ from the headers of other services that use

SSL (cf. Section 12.2).

Our experiments show that inspecting only the first five packets containing the
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Table 9.4: Performance of Phase 1, Early Recognition of Skype Traffic

Traffic Precision % Recall % F-M. %

Skype 100 100 100

No Skype 100 100 100

payload is sufficient to reveal Skype traffic with Precision, Recall, and F-Measure

equal to 100% (cf. Table 9.4).

Once the method detects Skype traffic, it classifies the underlying type of service,

i.e. voice/video communication, skypeOut calls, chat, file sharing. In the second

phase, the method uses another set of attribute meters (M8 as the most important,

M7 as a significant one, and M9, M2, and M5 as additional ones). The selected set

of attributes is composed of payload independent direction packet size distribution

attribute meter (M8) with DPI attributes (M7, M9, M2, and M5).

Table 9.5: Performance of Phase 2, Classification of Skype Flows

Skype Service Precision % Recall % F-M. %

voice/video 99.1 95.7 97.4

skypeOut 100 96.6 98.2

chat 86.4 100 92.7

file sharing 100 98.6 99.3

Table 9.5 shows very good results of classification after inspecting 450 pack-

ets. However, this phase cannot distinguish between voice communications and

voice/video calls due to similar traffic characteristics. Nevertheless, from the Qual-

ity of Service (QoS) perspective, network administrators may already give priority

to Skype voice/video traffic and limit Skype file sharing flows regardless of the

traffic direction.

The objective of Phase 3 is to further refine the classification of voice and video

flows as well as file sharing. We have applied M8 as the most important flow based

attribute meter and DPI based M7 as an additional one. Table 9.6 presents the

final results obtained after analyzing 760 packets. We can observe that the results

are very good for most of Skype flows. We can easily distinguish between file upload

and download based on the flow attribute combining the direction with the packet

size distribution (cf. attribute M8 in Table 9.2). The classification is based on the

fact that the sizes of packets sent from the client significantly differs from the sizes

of packets sent in the opposite direction.

Classification of voice and video flows performs slightly worse, because our
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Table 9.6: Performance of Phase 3, Detailed Classification of Skype Flows

Skype Service Precision % Recall % F–M. %

voice 72.9 57.4 64.2

video 60.3 73.2 66.1

skypeOut 100 96.6 98.2

chat 90.2 97.4 93.7

file upload 100 96.9 98.4

file download 100 97.5 98.7

method does not capture some characteristics of the Skype behavior (it is meant

to be applied to other classification problems as well). We have observed that in

the case of Skype calls (both voice and video), the Skype client sends traffic simul-

taneously through several nodes depending on network conditions. In other words,

the Skype voice or video traffic may spread on several TCP connections, which we

cannot capture, because our method considers each TCP flow separately.

In contrast to voice/video communication and file sharing, we have noticed

that chat messages and skypeOut calls seem to be sent through a single node.

Considering chat messages, we have observed that when an intermediary node goes

down, communication switches to another one without any interference for the

users. This is not surprising if we take into account a small amount of data to send.

For skypeOut calls, however, we have observed that the whole communication goes

through a single intermediary node and the range of relay addresses is limited.

This may come from higher requirements for bandwidth and computing resources

to support high quality of calls. To sum up, in this classification step it was easier

to identify these two type of services, because the whole traffic was sent over single

flows.

9.3 Calibration of the Method

In this section, we consider the choice of the right values for the mathod param-

eters:

• the K-L divergence threshold,

• the number of inspected packets per flow in each classification phase,

• the number of flows used in the training process.

Figure 9.3 shows the F-Measure for 15 training flows and for three classification

steps (analysis after 5, 450, and 760 packets) depending on the K-L divergence
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Figure 9.3: F-Measure depending on the K-L divergence threshold for three

classification phases.

threshold. Choosing an appropriate value of K-L divergence threshold is important

because a too low value results in an increased number of False Negatives, i.e. Skype

flows are incorrectly identified as unknown traffic, which decreases the F-Measure.

If the threshold is too high, then it may lead to multiple False Positives, i.e. other

protocols are incorrectly identified as Skype. As shown in Figure 9.3, a large value

of the threshold significantly affects the F-Measure. The results suggest that the



9.3. Calibration of the Method 75

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

Number of inspected packets

F
−

M
e

a
s
u

re
 [

%
]

 

 

 

Skype

50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

Number of inspected packets

F
−

M
e

a
s
u

re
 [

%
]

 

 

 
voice/video chat file sharing skypeOut

100 300 500 700 900 1100 1300 1500
0

20

40

60

80

100

Number of inspected packets

F
−

M
e

a
s
u

re
 [

%
]

 

 

 
voice video chat file up. file d. skypeOut

Figure 9.4: F-Measure depending on the number of inspected packets for

three classification phases.

optimal value for all three classification phases is 1.9.

Figure 9.4 shows the F-Measure depending on the number of inspected packets

containing payload for three classification phases with the K-L divergence threshold

equal to 1.9 and 15 training flows per traffic model. As we can see in the figure, the

first classification phase requires only 4 packets to achieve the F–Measure equal to

100%. In the second classification phase, the distinction between Skype services, i.e.

voice/video, skypeOut, chat, and file sharing, is very clear (the average F-Measure

close to 97%) after 450 packets containing payload. A slightly lower Precision for

the chat service when the number of inspected packets is less than 450 packets is
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Figure 9.5: F-Measure depending on the number of training flows for three

classification phases.

probably due to a limited number of observations during the construction of the

chat traffic model. Despite the same number of training flows set up to 15 for all

traffic models, i.e. voice, video, chat, skypeOut, traffic upload and traffic download,

the amount of data available during the creation of the chat traffic model was three

times lower than in other cases. Therefore, the lower Precision for chat means

that other Skype services were incorrectly identified as chat, which results in a
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lower Recall for voice/video as well as for file sharing, while the performance for

skypeOut remains almost unaffected due to different traffic characteristics.

In the third classification phase, the F-Measure significantly raises with the

number of inspected flows up to around 700 packets. Choosing the number of 760

results in the F–Measure for voice and video traffic models around 65%, whereas

the accuracy of the classification is nearly ideal for other types of Skype traffic.

Finally, Figure 9.5 presents the influence of the number of training flows on the

F–Measure value for three classification phases. We can see that the critical amount

of training flows essential for identification of the encrypted Skype traffic is equal

to 3. However, to improve classification performance, we have used 15 training

sessions for each traffic model, because the training phase is done off line, so it does

not influence the speed of classification.

9.4 Related Work

Much research has concerned the domain of traffic classification during recent

years [5, 2, 3, 26, 96], however only a few authors focused on encrypted traffic

[52, 25, 33, 31] or on the classification of encrypted flows [97, 18, 51, 35]. Some of

these methods were applied to the problem of Skype classification and cannot be

easily extended to other identification problems of encrypted traffic.

Teixeira et al. [52] extended their previous work [26] and proposed a method

based on the size of the first few packets of an encrypted connection, which enables

an early application protocol recognition with the accuracy of more that 85%. In

our work, we make a step forward by proposing an accurate method for detecting

service flows in encrypted Skype traffic based on various traffic flow and payload

attributes.

A recent approach focused on the detection of Skype flows especially voice ser-

vice traffic [31]. Even if the method results in high accuracy, it is not applicable to

other classification problems, because it makes use of flow features and node infor-

mation obtained from some passive and active measurements within the Skype p2p

network. The solution proposed by Alshammari et al. [33] is based on a machine

learning algorithm using flow features without taking into account IP addresses,

port numbers, and the payload. It is a fairly general methodology and like for us,

Skype is a test case for the classification of encrypted traffic. However, it is not

sure that the method can classify Skype flow services. Another approach tries to

address the problem of identifying encrypted application layer protocols by means

of a hybrid method that combines signature-based and statistical analysis methods

[25]. The work is closely related to ours, but their objective is limited to the classifi-
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cation of encrypted application layer protocols, while we focus more on an in-depth

analysis of particular Skype services. Wright et al. tackled the challenging task

of identifying the language of conversations by using the length of encrypted VoIP

packets [97]. Even if their work differs from our study in terms of classification

objectives, we believe that the conclusions may remain the same, i.e. when using

certain traffic characteristics it is possible to extract some meaningful information

even from encrypted traffic.

Bonfiglio et al. investigated the characteristics of traffic streams generated by

voice and video communications as well as the signaling traffic generated by Skype

[51]. Chen et al. concentrated on the QoS level provided to Skype users [35]. Due to

simple classification criteria, they cannot however distinguish between voice, video,

and skypeOut calls.

Finally, Bonfiglio et al. proposed a framework based on two complementary

techniques [18]. The first one detects Skype traffic fingerprints and the second one

is based on flow characteristics (the packet arrival rate and the packet size). The

authors evaluate two classifiers to reveal Skype traffic. The first Chi-Square Clas-

sifier checks the characteristics of the message content after cyphering. With this

methodology, they can only distinguish between voice and skypeOut flows trans-

ported over UDP based on some deterministic unencrypted bytes in Skype messages.

The second Naive Bayes Classifier checks the resemblance of the measured traffic

with expected stochastic characteristics. Despite the fact that the framework is in-

spiring and innovative, it is limited to only classifying some classes of Skype traffic

and depends on the deterministic byte values in the unencrypted UDP payload. In

our studies, we have focused on TCP traffic where the whole content of a Skype

message is encrypted and tunneled over the SSL protocol.

To summarize, the research described above focused either on limited classifi-

cation of Skype traffic depending on particular unencrypted payload bytes or on

some typical behavior of the Skype protocol. We believe that the problem of the

detailed classification of encrypted traffic, in particular, the identification of service

flows in the encrypted Skype traffic has not received sufficient attention yet. Our

hybrid method provides a step forward in this direction.

9.5 Conclusions

In this paper, we have considered the problem of detecting encrypted TCP

Skype traffic tunneled over SSL and classifying Skype service flows. Our three-phase

hybrid classification method is based on SPID and combines traditional statistical

flow features with DPI elements. In each phase, we select a subset of relevant
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attribute meters through forward selection based on ANOVA. The performance of

the method on a representative dataset is very promising—it achieves high Precision

and Recall for most Skype service flows, whereas distinguishing between voice and

video flows in the final classification phase is more challenging due to spreading

traffic on several TCP connections.
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In this thesis, we have already emphasized the importance of adequate traf-

fic classification methods for effective network planning, policy-based traffic man-

agement, application prioritization, and security control. Traditional port-based

[14, 17, 98] and payload-based [7, 5, 99] classification methods, however, become

less efficient, because new applications begin to use sophisticated obfuscation mech-

anisms and an increased number of applications make use of encryption, e.g., Tor

[100], I2P [101], Bittorrent [102], IMule [103], Skype [93]. Applications can hide

their nature by dynamically assigning ports, by using tunneling, or by applying

proprietary payload encryption methods. This situation has led to the development

of new flow feature-based [3, 52] and host behavior-based [2, 19] classification meth-

ods. In opposition to these approaches, we propose a classification framework that

uses two statistical, payload-based methods to accurately classify traffic encrypted

with the Transport Layer Security/Secure Sockets Layer (TLS/SSL) protocols.

TLS/SSL is a fundamental cryptographic protocol suite that supports secure

communication over the Internet [104] by encapsulating and encrypting application

layer data. Many WWW portals and servers, especially those providing commer-

cial services, use TLS/SSL for guaranteeing security of all operations. In addition

to security, TLS/SSL tunnels are increasingly used as tools for defeating security

control and bypassing restrictions set by network configuration and security checks.

Enforcing control over TLS/SSL encrypted flow is difficult, because the protocol

was specifically designed to prevent eavesdropping and data tampering. Thus, the

side-effect of its powerful mechanisms for supporting security is the lost capability

of monitoring and controlling traffic.

The past research on traffic analysis and classification showed that once we are

able to generate a unique signature based on the packet or message payload (e.g.,

HTTP request headers), we can classify applications with high accuracy [7, 16].
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Unfortunately, such approaches fail in case of encrypted traffic [13], which spawned

the development of flow-based and host behavior-based approaches. Nevertheless,

recent research has also shown that it is still possible to create some statistical

signatures despite traffic encryption [18, 23]. We follow this approach by defining a

framework for classifying TLS/SSL encrypted applications based on inspecting the

packet content of the application layer. We have found that the use of the TLS/SSL

protocol strongly depends on service and application needs so it can reflect some

traffic features, which allows us to discriminate between applications. In other

words, we extract some indirect information from the TLS/SSL layer and use it to

classify underlying applications.

10.1 Contributions of Part IV

Following these principles, we define a framework based on two complementary

methods for classifying applications. In the first method, we use a first-order ho-

mogeneous Markov chain to build a stochastic model reflecting TLS/SSL session

states. We call this method a Markov Classifier (MC). The session states represent

the TLS/SSL protocol and message types in single-directional traffic flows (client

to server and server to client). In this way, we obtain a TLS/SSL session model per

flow direction associated with each application. To the best of our knowledge, such

a method is applied for the first time to the classification of encrypted traffic. The

second method called a Timestamp Classifier (TC) considers the deviation between

the timestamp in the TLS/SSL Server Hello message and the packet arrival time.

We validate the framework with experiments on three recent datasets gathered

on two edge routers. They serve in a training phase to build application models. To

obtain the ground truth, we use a simple Domain Name System Classifier (DNSC)

that extracts application flows based on the corresponding host names. We only

keep the flows for which we can find the domain names of the chosen portals and

services so we are sure that training flows correspond to the considered applications.

Then, we use the proposed methods to classify chosen applications and evaluate the

amount of true positives and false positives. The chosen applications are represen-

tative of TLS/SSL encrypted traffic: PayPal, MBank (an on-line bank service),

Mozilla, Twitter, Opera, Gadu-Gadu (a popular Polish instant messenger), and

Dropbox.

We test the proposed classifiers separately or jointly on different datasets and

we evaluate the contribution of each method to the final classification result. In the

case of the most heterogenous datasets used for training and in the testing phase

(the conditions favorable for the methods), we achieve very good accuracy with
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more than 92% of the True Positive Rate and less than 1.5% of the False Positive

Rate. Under adverse conditions for the methods, in the case of a less representative

training dataset, the methods obtain slightly less accurate results with the True

Positive Rate ranging from 77.7% to 80.1% and the False Positive Rate between

2.4% to 3.8%.

Our key contributions are:

• we successfully apply stochastic modeling in terms of a first-order homoge-

neous Markov chain to the classification of application flows encrypted with

TLS/SSL;

• we propose a simple discrimination method based on the deviation between

the timestamp in the TLS/SSL Server Hello message and the packet arrival

time. The method improves the accuracy of application classification and

allows efficient identification of Skype flows;

• our experimental results show very good classification performance on recent

datasets reflecting different network environments and conditions.

10.2 Relevant Publications for Part IV

Maciej Korczyński and Andrzej Duda. Classifying TLS/SSL Encrypted Applica-

tion Flows. to be submitted.
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11.1 Related Work

A lot of research effort concerned traffic classification [7, 5, 99, 3, 52, 2, 19, 16,

13, 25, 96]. Recent attention has turned to the problem of revealing and identifying

encrypted applications and their underlying flows [18, 23]. We briefly review this

recent work.

As new Internet applications started to use obfuscation methods (port mas-

querading, tunneling, and encryption) to evade traffic control and restrictions, sim-

ple inspection of port numbers is no longer a reliable classification mechanism [5, 15]

(cf. Section 3.3.1). Moreover, payload encryption easily thwarts traditional payload-

based classification based on pattern matching. Host behavior-based approaches

[2, 19] (cf. Section 3.3.3) can potentially address the inefficiency of content-based

methods. BLINC for example, proposes an interesting method based on observing

and recognizing models of host behavior and then classifying its flows according to

the models [2]. However, the method might be less effective when only a small part

of behavioral information on individual hosts is available.

The second fundamentally different group of payload-independent approaches

use flow-based features such as average packet sizes, packets inter-arrival times,

or flow durations [3, 52, 25] (cf. Section 3.3.4). A recent hybrid method tries to

identify TLS/SSL encrypted application layer protocols with a combination of a

signature-based and a flow-based statistical analysis scheme [25]. The method is

closely related to our proposal, however its objective is limited to the classification
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of encrypted application layer protocols, while we concentrate more on an in-depth

analysis of the TLS/SSL protocol and revealing application flows.

In our work, we adopt a payload-based approach (cf. Section 3.3.2) to demon-

strate that it is possible to effectively reveal and classify application flows by in-

specting application layer protocols. Risso et al. introduced a taxonomy of payload-

based classification methods [13] and argued that they are mainly based on pattern

verification. A key challenge in encrypted traffic classification is to replace tra-

ditional pattern verification with more sophisticated methods based on statistical

fingerprints, for instance, by identifying groups of bits or bytes that exhibit unique

distributions. Indeed, few researchers attempted to create such statistical finger-

prints [18, 22, 23]. Bonfiglio et al. in their inspiring work have investigated Skype

traffic transported mainly by UDP [18]. Skype traffic presents a major challenge

for classification, because of proprietary software and internal encryption methods

(cf. Chapter 8). However, they concluded that the Skype messages can be iden-

tified by examining the initial portion of the payload—so-called Start of Message

(SoM). Specifically, authors examine randomness of initial groups of bits by means

of a Chi-Square test. Some blocks of bits are random, whereas some other appear

to be deterministic or mixed. While their innovative approach can be successfully

extended to other traffic classification problems, the method depends on the obser-

vation of specific fields in the proprietary Skype protocol. Our method applies to a

general case of the standard TLS/SSL encryption protocol.

In our previous work [23] (cf. Part III), we have considered the problem of

detecting encrypted TCP Skype traffic tunneled over SSL and classifying Skype

service flows such as voice calls, skypeOut, video conferencing, chat, file upload and

download. The initial classification phase is based on Statistical Protocol IDenti-

fication (SPID) algorithm [22] that analyzes some statistical values of the packet

payload. Our experiments showed that inspecting only the first five packets con-

taining the payload is sufficient to reveal encrypted TCP Skype flows tunneled over

SSL with Precision, Recall, and F-Measure equal to 100%.

11.2 TLS/SSL Overview

Secure Sockets Layer (SSL) and its successor Transport Layer Security (TLS)

are cryptographic protocols that provide secure communication between two parties

over the Internet [104]. They encapsulate application protocols such as HTTP or

FTP.

Figure 11.1 illustrates the structure of TLS/SSL and its components:

• Record Protocol : compresses and encrypts upper-layer data using the security
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In this chapter, we use the principles of TLS/SSL protocol design to classify en-

crypted applications. In particular, we propose two classifiers that exploit different

aspects and characteristics derived from TLS/SSL messages.

12.1 Markov Classifier

Our Markov Classifier (MC) takes into account message types in a TLS/SSL

session observed at a client or a server: we refer to the server-side MC as MCS

and to the client-side MC as MCC. Depending on the network environment, we

expect slightly different characteristics for the client side, whereas the service-side

model should be representative of all networks. Moreover, the separation of client-

and server-side classifiers helps tackling the problem of asymmetric routing (if a

network has two edge routers, routes may be asymmetric so each router can only

gather information on a flow in one direction).

We use the following compact notation of messages types—the decimal protocol

types and the Handshake message types present in TLS/SSL headers (cf. Figure

12.1).

To define the state space used in classification based on first-order homogeneous

Markov chain, let us consider again the message exchange presented in the previous

section (cf. Figure 11.2). This time, however, we will translate the client-server
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protocol types remain visible, because the message types are encrypted. There-

fore, we cannot extract either handshake Finished message (represented as 22:) or

underlying type of Alert protocol (represented as 21:). To summarize, from the

diagram presented in Figure 12.2 we can distinguish one Markov chain per direc-

tion representing the underlying application. The client-side session, corresponding

to MCC classification, is composed of two states, whereas the server-side session,

associated with MCS classification, consist of five states.

We consider discrete-time random variable Xt for any t = t0, t1, ..., tn ∈ T . It

takes values it ∈ {1, ..., s} corresponding to the observed TLS/SSL message types

during a session. We assume that Xt is a first-order Markov chain [105, 29]:

P (Xt = it|Xt−1 = it−1, Xt−2 = it−2, . . . , X0 = i0)

= P (Xt = it|Xt−1 = it−1). (12.1)

We further assume that the Markov chain is homogeneous, i.e. a state transition

from time t− 1 to time t is time-invariant:

P (Xt = it|Xt−1 = it−1) = P (Xt = j|Xt−1 = i) = pi,j , (12.2)

with the transition matrix [105, 29]:

P =













p1,1 p1,2 · · · p1,s

p2,1 p2,2 · · · p2,s
...

...
. . .

...

ps,1 ps,2 · · · ps,s













, (12.3)

where:
∑s

j=1 pi,j = 1. We denote by:

Q = [q1, q2, . . . , qs], (12.4)

the Initial Probability Distribution (IPD) where qi = P (Xt = i) at time t = 0.

Finally, the probability that a sequence of states X1, . . . , XT representing a

single TLS/SSL session occurs is as follows:

P ({X1, . . . , XT }) = qi ∗
T
∏

t=2

pit−1,it . (12.5)

To illustrate our approach, we present the observed transition probability ma-

trices and the initial probability distributions of the MCS models for selected ap-

plications.











98 Chapter 12. Classifiers

Actually, Skype is a proprietary piece of software that uses its own internal

encryption mechanisms and a complex connection protocol designed for bypassing

firewalls and establishing communication regardless of network policies [92, 93, 23].

Skype randomly selects ports and can switch to port 443 if it fails to establish a

connection on chosen ports (cf. Chapter 8). Such technique is sufficient to bypass

network-layer firewalls, however, it results in establishing a particular TLS/SSL

session.

Table 12.1: Number of non-zero transition matrix elements for different ap-

plications

Application
# training flows # transition

(# servers) matrix elements

Gadu-Gadu 1196 (51) 63

MBank 2665 (3) 29

Opera 4357 (13) 26

PayPal 434 (6) 16

Mozilla 2669 (21) 38

Twitter 1530 (13) 36

Dropbox 3134 (317) 43

12.1.2 Discussion

The most important conclusion that we can draw from the examples is that the

parameters of the Markov models for chosen applications differ a lot, which is the

basis for accurate discrimination between applications. We have also found that the

number of transition matrix elements in each application model significantly differ.

Table 12.1 presents the number of non-zero elements in the transition matrix, the

number of training sessions, and the number of servers that generated them, in the

most representative Campus2 dataset.

12.1.3 Training Phase

To build the Markov models representing the applications behavior, our classi-

fier needs a training phase during which it analyzes ground-truth data containing

application flows. The classifier analyzes traces pre-processed and filtered out by

tshark [106] so that only TLS/SSL encrypted packets are passed to further inspec-

tion. Then, it uses the DNSC classification to create a benchmark dataset in which

application flows are identified with a high confidence level (cf. Section 13.1.1). The
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classifier only considers a limited number of fields—it first extracts the IP source

and destination addresses, the source and destination ports to create unique iden-

tifiers of each session. Further, it builds 14 single-directional models corresponding

to 7 chosen applications based on all unencrypted TLS/SSL protocol and message

types.

12.1.4 Classification Phase

The classifier first pre-process the test dataset to extract application flows and

then applies a decision process based on the Maximum Likelihood criterion [107].

Classification corresponds to a multi-hypothesis decision problem. More specifically,

we consider seven hypothesis Hi, i = 1, . . . , 7 corresponding to each of seven appli-

cations. We apply a classical approach based on Maximum Likelihood criterion—we

select the hypothesis under which the data sequence Y is most likely:

H = arg max
Hi

logL({Y1, . . . , YT }|Hi), (12.6)

where L({Y1, . . . , YT }) is the likelihood of the input data sequence under each

hypothesis: L({Y1, . . . , YT }) ≡ P ({X1, . . . , XT }) (cf. Eq. 12.5) is the probability of

a message sequence computed over each of the application models.

12.2 Timestamp Classifier

The second classifier analyzes the probability distribution of the gmt unix time

field in the TLS/SSL Server Hello message. The initial handshake Client Hello

and Server Hello messages include a random structure used later in encryption

composed of two fields: gmt unix time (4 bytes) and random bytes (28 bytes) [104].

Depending on applications, the gmt unix time field contains different timestamps:

the current time and date set by the sender clock, a random sequence of 32 bits, or

a constant value, and in particular, 0.

The Timestamp Classifier extracts the gmt unix time timestamp from the Server

Hello message and the packet reception instant from the capture file. It keeps only

the first 3 most significant bytes of the value to neglect possible small time differ-

ences between the sender and the device that captures packets. 3 bytes are consid-

ered separately as integer values. More formally, let us define Xi, Yi ∈ 0, . . . , 255

as random variables of possible values of byte i ∈ 1, 2, 3 of the gmt unix time field

and the packet reception timestamp, respectively. δi = |Xi − Yi|, is a deviation

measure between the gmt unix time field and the corresponding packet timestamp.
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Table 12.2: Content characteristics of the gmt unix time field

gmt unix time δi

Current time Const (= 0)

Random Rnd

Deterministic Const

The relationship between gmt unix time field and δi is summarized in Table 12.2:

we expect obtained fingerprints to present random or deterministic distributions

depending on the application.

At the initial training phase, the method creates statistical fingerprints of the

timestamp deviation for each application traffic. During the classification phase,

the method computes the deviation and compares with the traffic models by means

of the Kullback-Leibler (K-L) divergence [28]:

D(P ||Q) = K-L(P,Q) =
∑

δi∈0,...,255

P (δi)log2
P (δi)

Q(δi)
. (12.7)

The K-L divergence is a measure of the difference between two probability dis-

tributions P (δi) and Q(δi). P (δi) represents the distribution of the byte frequency

of δi in an observed flow and Q(δi) is the distribution corresponding to one of seven

application models. Classification consists of comparing P (δi) with all known ap-

plication models and selecting the one with the smallest average divergence. When

TC is a part of the classification framework explained in Section 12.3, then we con-

sider probability distributions Q(δi), where δi refers to the analyzed session for all

application models.

After the analysis of Q(δi) for seven chosen applications over the Campus2 dataset

and for Skype over the Skype dataset, we have observed four groups of applications.

The largest group represented by Gadu-Gadu, Mozilla, Twitter, and Dropbox,

has the same Q(δi) distribution determined by the current time. Another group con-

tains PayPal with a uniform distribution. The Q(δi) distributions of MBank and

Opera indicate that in both cases around 80% of all sessions has the gmt unix time

field determined by the clock while the remaining 20% of values are evenly dis-

tributed. Finally, the most interesting statistical fingerprint corresponds to the

Skype traffic tunneled through TLS/SSL protocol: the gmt unix time field is deter-

ministic and interpreted by network protocol analyzers as Jan 31, 2004 18:23:18

CET—the whole 32-byte long random structure is in fact deterministic (note that

it is normally used in the encryption process). Nevertheless, it is not so important
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for Skype—it uses TLS/SSL only to establish a tunnel bypassing firewalls and it

encrypts its data with a proprietary protocol.

So, in general, we can only determine a class of applications by inspecting the

timestamps. However, in the case of Skype, the deterministic value of gmt unix time

gives us an accurate signature for identifying the Skype traffic tunneled over TLS/SSL.

12.3 Classification Framework

Our classification framework is built upon the Naive Bayes Classifier (NBC)

[30] that combines previously described methods, i.e. two Markov Classifiers corre-

sponding to server and client-side models and the Timestamp Classifier that con-

siders the randomness of timestamps. The Naive Bayes Classifier has been used

extensively in the domain of traffic classification [3, 18] and proved to be very ef-

fective despite its simplicity [30].

The Naive Bayes Classifier applies the Bayes theorem with a strong (naive)

assumption of the independence of input features describing an object. Let vector

F = F1, . . . , Fn represent the set of n features used to categorize an object in one

of C classes. By applying the Bayes theorem we can quantify probability P (C|F )

that the object represent class C using the a-priori probability P (F |C):

P (C|F ) =
P (C ∩ F )

P (F )
=

P (F |C)

P (F )
∗ P (C). (12.8)

As we assume that each feature Fi is conditionally independent of another fea-

ture Fj , where i 6= j and i, j ∈ {1, . . . , n}, we can write:

P (F |C) =
∏

i

P (Fi|C). (12.9)

In our classification framework, different classifiers play the role of features.

More specifically, class C is associated with one of seven applications, whereas

Fi may represent the server-side or/and the client-side message chain or/and the

timestamp fingerprint of the session to analyze. The final decision discriminating

between different applications is made based on the Maximum Likelihood crite-

rion (cf. Eq. 12.6). Finally, in the presented framework, we naively assume the

independence between various classifiers, e.g., between MCS applied to messages

coming from the server side and MCC used to compute the probability of message

sequence originated at the client side. However, as our framework does not require a
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strong independence assumption of underlying classifiers, NBC results in very good

accuracy shown in the next section.
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13.1 Experiments

In this section, we present the results of applying the proposed classification

framework to trace datasets.

13.1.1 Datasets

We have gathered three datasets at two edge routers located in Poland. Campus1

and Campus2 datasets come from a link connecting a campus network of the AGH

University of Science and Technology in Cracow to the Internet. The link has the

capacity of 70 Mbits/s for incoming and 30 Mbits/s for outgoing traffic. Campus1

dataset contains a one day long trace starting on Thursday, March 1, 2012, whereas

the 24 hours long Campus2 dataset was obtained starting on Saturday, March 26,

2012. Both datasets contain traffic generated by standard services such as web,

chat, mail, VoIP, file transfer, or streaming applications. The Campus2 dataset

is the most heterogenous one with numerous applications and a large number of

active online users reaching 500 people (majority of users are university students

and faculty). Due to strict policies enforced by firewalls and restrictions for certain

streaming and p2p applications, users commonly tunnel restricted traffic.

Enterprise dataset contains traces gathered during a 93 hour period starting

on Sunday, July 1, 2012 on a 20 Mbit/s link connecting a small IT company to
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the Internet. The traffic reflects the company profile and mainly contains office

applications such as mail, VoIP, or web. There are no strict firewall rules applied at

the edge router. Enterprise dataset contains more homogeneous traffic than the

two datasets captured on the campus.

To establish the ground truth, we have developed a Domain Name System Clas-

sifier (DNSC) to extract and classify TLS/SSL application flows according to their

domain names. More specifically, DNSC matches hostnames against our array of

signature strings like for example twitter, twttr in case of Twitter. The method

is simple and results in a very high confidence level confirmed by manual payload

inspection. Nevertheless, we might not cover all instances of signatures for a par-

ticular application. Another constraint of the approach is that we cannot obtain

the instances of applications if we are not able to resolve IP addresses into the

corresponding domain names. To overcome these limitations, we have used in our

experimental evaluation only the traffic for which the IP address resolution was

possible and corresponding strings are straightforward and unambiguous.

Table 13.1: Applications, the number of application flows, the number of

servers vs. number of clients in three datasets

Application Campus1 Campus2 Enterprise

PayPal 546 (9 - 96) 434 (6 - 97) 172 (13 - 11)

Twitter 1411 (17 - 29) 1530 (13 - 30) 157 (11 - 6)

Dropbox 1160 (171 - 95) 3134 (317 - 133) 177 (31 - 9)

Gadu-Gadu 987 (50 - 321) 1196 (51 - 343) 30 (17 - 4)

MBank 321 (2 - 49) 2665 (3 - 51) 44 (2 - 6)

Opera 3246 (15 - 140) 4357 (13 - 132) 2034 (13 - 16)

Mozilla 2436 (20 - 271) 2669 (21 - 292) 2867 (24 - 68)

Table 13.1 shows the parameters of three datasets: the number of application

flow samples and in the brackets, the number of servers versus the number of clients

that use the service (for example, Campus1 dataset contains the traces of 321 users

who have connected to 50 Gadu-Gadu servers in 987 flows).

Table 13.2 presents more statistics on the relationship between datasets: the

corresponding number of servers and clients common to respective datasets (e.g.,

there are 6 common PayPal servers in Campus1 and Campus2 datasets as well as 46

common clients). Their purpose is to estimate the applicability of datasets. From

the joint analysis of two presented tables, in case of Gadu-Gadu for example, we can

expect very good classification results if the server-side behavior is computed on the

basis of the Campus2 dataset and is applied to the Enterprise dataset (Campus2
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Table 13.2: Applications and the corresponding number of servers and clients

common to respective datasets

Application
Campus1 Enterprise Enterprise

∩ Campus2 ∩ Campus1 ∩ Campus2

PayPal 6 - 46 2 - 2 -

Twitter 12 - 8 9 - 9 -

Dropbox 113 - 65 19 - 21 -

Gadu-Gadu 44 - 230 16 - 16 -

MBank 1 - 12 1 - 1 -

Opera 13 - 105 12 - 11 -

Mozilla 17 - 169 6 - 6 -

contains almost all Gadu-Gadu servers accessed in Enterprise, 16 out of 17). By

contrast, we may expect slightly worse results for Gadu-Gadu client models because

of a small number of common clients (Campus2 has 343 clients different from 4 clients

in the Enterprise dataset).

Finally, we will often refer to Skype as an example of traffic tunneled through

TLS/SSL. The evaluation runs on a set of packet traces referred to as Skype dataset

generated in the experiments of classifying Skype service flows (cf. Section 9.2.1).

13.1.2 Criteria for Classification Performance

We assume that the classification based on the DNSC reference classifier pro-

vides the ground truth and we evaluate the proposed classifiers with respect to its

classification decisions. We consider two meaningful metrics to assess the perfor-

mance of a classification method: the True Positive Rate and False Positive Rate,

denoted as TPR and FPR, respectively (cf. Eq. 3.1, 3.2). TPR is known as sen-

sitivity, and 1− FPR is commonly referred to as specificity. True Positive occurs

when the classification result is consistent with the classification decision taken by

DNSC and the application session is correctly classified as a given application, e.g.,

a PayPal session is accurately recognized as PayPal. Conversely, False Positive

occurs when the classification result is inconsistent with the decision taken by the

reference classifier and a session is incorrectly classified, e.g., a Twitter session is

falsely recognized as PayPal.

13.1.3 Classification Results

In this section, we report on the classification results of the proposed framework:

we first test MCS+MCC+TC and MCS+TC on Campus1 and Enterprise datasets,
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respectively when Campus2 dataset served for training.

Table 13.3: Results for MCS+MCC+TC on Campus1 dataset: applications,

total number flows, number of not classified flows, absolute TP

and FP as well as their rates. Training set: Campus2

Application # flows # missed # TP TPR #FP FPR

PayPal 546 55 437 0.89 54 0.006

Twitter 1411 30 1138 0.824 174 0.021

Dropbox 1160 1 1102 0.951 32 0.004

Gadu-Gadu 987 18 939 0.969 24 0.003

MBank 321 20 277 0.92 73 0.008

Opera 3246 224 2832 0.937 217 0.032

Mozilla 2436 5 2375 0.977 80 0.011

Table 13.3 shows the results for MCS+MCC+TC classifiers. Let us take the

example of Mozilla for which we observe that the TP rate is very large (97.7%) with

relatively small rate of FP (1.1%). The good results come from the fact that for

Mozilla, Campus1 and Campus2 share common servers and clients (Campus2 covers

17 out of 20 servers and 169 out of 271 clients that also occurred in the analyzed

Campus1 dataset, cf. Tables 13.1 and 13.2).

In the case of Twitter, we can observe less accurate results (TPR of 82.4%, FPR

of 2.1%), because the overlap of clients and servers in the two datasets is not so

significant. By manual inspection, we have observed that the degradation in the

TP rate for Twitter is due to some similarities of its MC models with Opera and

MBank, which also results in a slightly higher rate of FP for Opera and MBank,

because some Twitter sessions are falsely classified as either Opera or MBank.

Table 13.4 presents the results for the MCS+TC classifiers on the Enterprise

dataset with the Campus2 dataset used for training. We can see that for Gadu-

Gadu, the classifiers have correctly recognized all application instances with only

two sessions incorrectly classified as Gadu-Gadu. A similar reasoning applies to

the Enterprise dataset—the training Campus2 dataset covers 16 out of 17 servers

(cf. Tables 13.1 and 13.2). However, notice that 17 Gadu-Gadu sessions (that

correspond to 56% of all application instances) were not classified. By manually

inspecting the flows, we have observed slightly different TLS/SSL message sequences

compared to those in the training phase.

All MBank sessions were correctly classified, but this time, there were no un-

recognized sessions (marked in Table 13.4 as missed). We can explain less accurate

results with TPR equal only to 64.3% for PayPal by a small number of session
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Table 13.4: Results for MCS+TC on Enterprise dataset: applications, total

number flows, number of not classified flows, absolute TP and FP

as well as their rates. Training set: Campus2

Application # flows # missed # TP TPR #FP FPR

PayPal 172 29 92 0.643 212 0.04

Gadu-Gadu 30 17 13 1 2 0.000

Twitter 157 0 125 0.796 154 0.029

Dropbox 177 1 168 0.955 16 0.003

MBank 44 0 44 1 52 0.010

Opera 2034 4 1723 0.848 459 0.135

Mozilla 2867 2 2319 0.809 49 0.019

instances in the training phase. All manually inspected PayPal flows either slightly

differ from the pre-computed model or they are classified as other applications for

which the models were constructed using a richer set of session instances and have

a complex structure allowing for diverse messages sequences.

13.1.4 Classifier Selection

In this part, we want to evaluate the impact of the proposed classifiers on the

final classification decision by the framework. For all experiments reported in this

section, we analyze up to five transitions of both server and client-side Markov chains

(we explain the limit of five transitions in the discussion of parameter calibration

in Section 13.1.5). We consider the analysis of Campus1 and Enterprise datasets

under the training phase on Campus2 as well as the analysis of Campus1 and Campus2

datasets under the training phase on Enterprise. We present the results by plotting

TPR on y-axes and FPR on x-axes (cf. Figure 13.1)—the values correspond to

the average TPR and FPR obtained for each of seven applications, i.e. Gadu-

Gadu, MBank, Opera, PayPal, Mozilla, Twitter, and Dropbox. We test our Bayes

framework composed of: the single MCS, MCC, or TC classifier, and the joint

MCS+TC, MCC+TC, MCS+MCC+TC classifiers.

Let us first focus on the most heterogeneous Campus2 dataset used for training.

The left-hand side of Figure 13.1 presents the results of the analysis on Campus1 and

Enterprise datasets. We can observe that Markov models computed for the server

side give significantly better results than the models constructed at the client side

regardless of the dataset used in the classification process. Server-side models are

much easier to build and are more universal across different networks, while client-

side models are more network-specific. Recall that clients on different networks
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Enterprise dataset.

Enterprise as a training dataset leads to slightly worse results than in the pre-

vious case, because the MC models do not cover enough TLS/SSL session instances

to be effective compared to the associated Campus1 and Campus2 datasets (cf. Ta-

bles 13.1 and 13.2). The results reported in the right top graph of Figure 13.1

indicate that the set of MCS+TC performs slightly better (TPR of 80.1%, FPR of

3.8%) than the jointly used MCC+MCS+TC classification (TPR of 78.1%n FPR of

3.3%). Finally, the results obtained for the classification of the most heterogeneous

Campus2 dataset are much worse for the MCS classifier, which leads to the selection

of MCS+MCC+RC for the classification framework (cf. the right bottom graph of

Figure 13.1).

From the above experimental results, we can conclude that

• MCS is the essential part of the classification framework. If we build the

application models on a heterogenous training dataset that covers a wide

range of session instances, they can apply across different subnetworks;

• MCC can be very effective when the framework analyzes the datasets collected

on the same subnetwork used for collecting training datasets;

• the joint usage of TC with Markov classifiers gives considerably better classi-

fication results compared to the performance only based on MCS and MCC.

13.1.5 Parameter Calibration

In this section, we investigate the sensitivity of a separately used server-side

or client-side Markov classifier on the number of considered transitions in a given

Markov chain. We perform the sensitivity analysis on the most heterogenous Cam-

pus2 dataset pre-classified by applying DNSC classification described in Section

13.1.1. TP and FP rates represent the average values obtained for each of seven

considered applications. Figure 13.2 presents the impact of the number of state

transitions used in both training and testing phase on TP and FP rates. We can

notice that for both TPR and FPR, classification based on only 5 transitions is

roughly as accurate as classification based on 100 transitions. These results high-

light the scalability of the proposed framework—it requires considering only several

first TLS/SSL messages to obtain very good classification results.

13.2 Conclusion

In this part, we have defined a framework based on two complementary meth-

ods for classifying applications. The first one uses a stochastic model representing





Chapter 14

Conclusions

Even though the domain of traffic classification is relatively well explored, our

primary goal is to enrich existing research efforts by our own contributions. The

issues considered in this thesis were inspired by common problems existing in real -

operational networks. Thus, we have tried to bridge the gap between academia and

professional practice. In this chapter, we summarize the thesis claims and highlight

the future directions of this research.

Efficiency and scalability

In Part II, we have proposed a detection scheme for high-volume SYN flooding

attacks and low-volume portscan activity. We have demonstrated that our

method achieves a high attack detection rate (True Positive Rate). Moreover,

in comparison with existing methods, we have reduced the False Positive

Rate, i.e., when legitimate packets are classified as malicious ones. Finally, by

using sampling methods, we have significantly reduced the influence of packet

sampling on the performance of the detection scheme. However, as far as

scalability is concerned, we believe that the future practical implementation

based on Snort [61] or Bro [108] might be even more convincing than the

evaluation process based on the proof-of-the-concept algorithm presented in

this thesis.

Challenges ahead

Among various challenges in the domain of traffic analysis, classifying en-

crypted flows seems to be the most urgent one because, an increased number

of applications make use of encryption, e.g., Tor [100], I2P [101], BitTorrent

[102], IMule [103], Skype [93]. In Part III, we have proposed a classification

method for recognizing Skype encrypted traffic tunneled over SSL and iden-

tifying its service flows. Then, in Part IV, we have defined a more generic

framework based on two complementary methods for classifying applications

encrypted with TLS/SSL protocol. Our results shed a new light on the poten-

tial of approaches based on application-layer protocol analysis for encrypted

and tunneled traffic.
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Refute the myths

In the research community, there is a number of common beliefs that should

be verified such as the opinion that port-based classification approaches are in-

adequate any longer in traffic classification, or that DPI methods do not scale

to hight bandwidth rates. In our work, we argue the belief that payload-based

methods always fail in case of encrypted traffic. In Part IV, we have inves-

tigated in-depth TLS/SSL header structure and we have proposed a frame-

work for encrypted traffic classification. We believe that there are still many

”myths” in the domain of traffic classification that should be investigated in

detail and perhaps revised.

Formalization of the domain

A comparison (if possible) between different methodologies is an important

part of any evaluation process. However, it is a difficult task, not only due

to the lack of a shared testing platform or easily available packet traces, but

basically because of the lack of a common understanding of concepts such as

the definition of the classification classes. In this thesis (cf. Section 3.2), we

have addressed this particular problem by proposing three classification goals,

i.e., we propose to classify traffic according to its category, application-level

protocol, or application that generates traffic. Moreover, in Section 3.3 we

have presented an extended taxonomy for approaches in traffic classification

based on the research presented in this thesis. For completeness, another

attempt aiming at formalizing the domain based on ontology paradigms has

been proposed recently [109].

Practical deployment

Many of research methodologies, especially based on statistical methods, have

never been evaluated in the real- -operational networks (with some excep-

tions, for example, TCP STatistic and Analysis Tool (Tstat) [110] or Hybrid

Traffic Identification (HTI) [24]). Thus, as mentioned before, one of interest-

ing research directions would be practical implementation and deployment of

methods presented in this thesis in a campus network.

Inter-domain portability

Although, we have presented intrusion detection as a sub-domain of traffic

classification problem, it is often considered in the literature as a separate

research subject. Thus, we believe that applying some of existing classification

methods in detection of intrusive activity would be an interesting research

subject. Even if not presented in this thesis, we have successfully applied
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the method proposed in Part III to the detection of malicious traffic—the

propagation of Worm.Win32.Skipi.b that spreads over the Skype messenger

[111]. In the future work, we would like to explore how the proposed methods

can be extended to other classification problems.

Appropriate feature selection

The problem of feature selection and parameter calibration has been well

studied in the domain of traffic classification including the presented thesis.

However, we believe that some standard recommendations should be intro-

duced to separate training traces from datasets used in parameter tuning and

in the evaluation process. Indeed, feature selection and parameter calibration

methods tend to optimize performance results for particular datasets. More-

over, in the future work, we may consider automatic feature selection and

calibration process as a part of practical implementations.

Hybrid approaches

As it was mentioned earlier, in recent years, we have observed that application

developers tend to evade traffic classification by encryption and other obfus-

cation methods. Even some governments are interested in an anonymous p2p

technology, for example, Tor project aims at protecting users’ privacy [100].

As a result, more complexed, hybrid methods combining different approaches

should be applied in the future such as the one presented in Part III of the

thesis, which puts together traffic flow features and complex DPI elements to

identify Skype service flows.

Ground truth

The last but not least issue revised in the thesis conclusions is related to

pre-labeled datasets, namely to the ground-truth information, crucial for ev-

ery evaluation process. In Part IV, we have developed a simple method called

DNSC to extract encrypted application flows according to their domain names.

Although the method can classify even encrypted traffic with high confidence

level, it is characterized by a limited classification scope. As a result, we be-

lieve that a common testbed based on multiple reliable, but not necessarily

scalable or light weight algorithms is required for cross-checking and generat-

ing a valid ground truth.
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