
Architecture of a Platform for Malware Analysis
and Confinement

Gilles Berger-Sabbatel, Maciej Korczyński, Andrzej Duda
Grenoble Informatics Laboratory, France

Email: {gberger, korczynski, duda}@imag.fr

Abstract—In this paper, we describe an architecture of a
platform for studying botnets, finding adequate analysis methods,
monitoring the activity of botnets, and finding efficient counter-
measures or confinement methods. The platform is composed
of a filtering and monitoring gateway, low and high interaction
honeypots, and a system for malware analysis. We present all
the elements, discuss their roles and functionnalities, and report
on already developed tools.

I. INTRODUCTION

A botnet is a network of zombie computers compromised
by some malware (virus, worm). Botnets are coordinated by a
botmaster through a command and control channel (C&C) to
which the malware connects to get instructions. A botmaster
can use botnets to perform malicious activities. Most of control
protocols are based on the IRC protocol [1], but other protocols
such as HTTP may be used and a new trend in controlling
botnets is to use peer to peer (P2P) based C&C channels.
Malicious activities performed by botnets are numerous: a
botnet can scan the Internet to discover vulnerable hosts and
eventually disseminate the malware, send spam messages,
perform denial of service attacks, steal personal data and many
others. They may generate considerable financial revenue
through fund extortion, fraud on credit cards, sending spam,
or selling counterfeit products (including medicines).

A typical botnet comprises several thousands hosts and there
are several thousands known botnets. The traffic generated by
botnets represents a significant part of the total Internet traffic.
Botnets are currently a major cause of nuisance and threat on
the Internet : they can potentially disrupt almost any computer-
based service as long as it is connected to the Internet, they are
the support of criminal activities, and the source of significant
underground economy [2], [3].

Another problem that we want to tackle is detecting and
confining distributed denial of service attacks (DDoS) and
portscans. Once a virus takes control over a victim host, it can
launch DDoS attacks by sending large amounts of packets to
target hosts so that they cannot provide service to legitimate
users.

Our goal is to study botnets, find adequate analysis methods,
monitor the activity of botnets, and find efficient countermea-
sures or confinement methods. This kind of studies requires
setting up a platform for capturing botnets (or malwares) and
observing their behaviour, particularly in respect to their inter-
actions with the Internet. While doing that, we have to avoid
the risk of participating in malicous activities (propagation of

worms, DDoS attacks, spam transmission), or at least minimise
the risk and the consequences of such activities.

In this paper, we present the architecture of the platform
designed for this study, discuss their roles and functionnalities,
and report on already developed tools.

II. RELATED WORK

Several approaches are possible to study botnets.
One of them is to passively monitor connection attempts

on unused network address ranges to get a statistical view
of malware activity (telescopes) : in almost all cases, they
are the result of malicious activities even though they can
also come from misconfigured host or routers. To get a
significant view of malware activity, a telescope should collect
connection attempts in a quite large address space, possibly
distributed over several sites. Kumar et al used telecopes
for the analysis of the propagation of an internet worm [4].
Anyway, a telescope only gives an external view of botnets
and does not provide a real knowledge of complex internal
botnet behaviour.

Solutions to monitor botnets may be based on the monitor-
ing of DNS lookups [5]. The problem with such solutions
in a research context is that they require the cooperation
of administrators of DNS at a rather high level. In fact, it
would be problematic for most research teams to get such a
cooperation and experiment on a highly sensitive component
of the internet architecture.

Another approach is to capture malware and study their
behaviour. Honeypot are a popular mean used to capture
malwares propagated on the internet. A first approach was to
setup vulnerable servers to observe the behaviour of intruders
[6], but now, the trend is rather to use honeypots to capture
internet worms.

The analysis of captured malware may be conducted by
the way of reverse engineering, emulation, trace of execution,
or automatic code analysis. In [7], Trinius et al propose an
abstract instruction set for the representation of the significant
activities of a malware. Such representation may be derived
from a trace of system calls and allows a higher level of
analysis. However, a number of malwares are able to detect
the fact that their execution is traced and work around it.

Another way would be to let the malware execute freely in
a controled environment. In [8], Alata et al proposed a method
based on connection redirection to monitor internet attacks [8].

In [9], Rajab et al present a platform for the study of botnets
in a confined environment.

III. ARCHITECTURE

The platform aims at providing tools able to fight botnets,
mitigate their nuisance, eventually disrupt them, and identify
botmasters. The tools will provide the following functionali-
ties:

• monitoring communications on C&C channel to detect
harmful activities,

• monitoring traffic for detecting and confining DDoS
attacks,

• detecting zombie computers on the network,
• filtering botnet-related traffic out of networks,
• confining infected parts of the network and limiting the

propagation of the malware,
• finding methods for disabling botnets.
In order to achieve these objectives, first we have to gather

a better knowledge of botnets. We choose to setup a honeypot
to capture malware, and study their behaviour, but we have to
do it with care, because malware can be dangerous and may
become a threat to our production networks. We also have to
take into account legal et ethical issues [10].

The overall architecture of the platform is presented in
Figure 1. It is a class C subnetwork with a gateway providing
connection to the Internet. A router connects the production
network and enforces filtering rules: all incoming communica-
tions from the Internet to this network will be allowed, while
outgoing communications could be restricted and monitored
according to given needs. Communications with the produc-
tion network should be strictly limited to only allow services
such as HTTP access from the platform to a local server
to allow software updates and ssh connections from a few
machines to allow remote control of the platform.

The platform contains several machines, possibly virtual
ones. The main functions are the following: a low interac-
tion and high interaction honeypots, and an environment for
malware analysis.

A. Filtering and monitoring gateway

The gateway is a carefully secured server or a workstation
under Linux with two Ethernet interfaces. Its functions are the
following:

• allow observation and control of the traffic between the
platform and the Internet. In this way the control can be
enforced in a more flexible and smart way than what can
be done on a standard production router,

• provide a secure environnement to work on the platform,
• protect the Internet and the production network against

attacks that may leak from the platform (e.g. DDoS
attacks or portscans),

• protect the platform against some types of attacks from
the Internet,

• provide services to the platform: ssh relay, file server,
HTTP proxy for software updates.

Gateway

Internet

aaa.bbb.ccc.0/23

ssh
http

ggg.hhh.iii.0/24

ddd.eee.fff.xxx

High interaction
Honeypot

Malware analysis

Low interaction
honeypot

Fig. 1. Architecture of the platform

While the gateway relays traffic between the Internet and the
platform, it should not have itself any direct communication
withq hosts on the Internet, so that strict filtering rules should
be enforced by the router and every outgoing connection
attempt should be considered as a sign of a compromised
platform.

The gateway can also run a detection method of DDoS
attacks and portscans [11]. We have proposed such a method
and the proposed platform is a suitable environment for
experimenting with the traffic generated by botnets. We discuss
more this aspect in Section VI.

B. Low interaction honeypots

Low interaction honeypots are programs that emulate ser-
vices with known vulnerabilities and let malware succeed
in its attack. The result is that malware is downloaded on
the honeypot. Such honeypots raise no security problems, as
malware is not executed. Malware can be sorted to eliminate
duplicates and malware executable is directly recovered. On
the other hand, low interaction honeypots only work with
malware that exploits known and emulated vulnerabilities.
Furthermore, some malware can detect such honeypots and
undertake preventive actions.

We have experimented with two low interaction honeypots:
• Nepenthes listens on multiple network ports and emulates

known vulnerabilities. When an emulated vulnerability
is triggered, it emulates the behaviour of the vulnerable
system until downloading the malware. With some effort,
it should also be possible to add new attack scenarios
from the shellcode.

• Honeyd can serve a different purpose than nepenthes—it
allows to create a large virtual network of hosts (up to
65535) running services including routers. Currently, it

implements very few services and it is up to the user
to implement further services and vulnerabilities with
significant effort.

Due to its simplicity of installation and use, we have chosen
Nepenthes to collect malware. To catch malware attacks,
Nepenthes must run on a network not protected by a firewall.
As this is not the case of our production network, Nepenthes
has been installed at home on a personnal computer running
Linux with an unfiltered connexion to the Internet. In a few
weeks of an intermittent operation (a few hours per day on
the average), Nepenthes allowed us to capture more than 40
malwares and did not cause any security problems. Nepenthes
can run on any machine with a standard installation of Linux
without particular requirements in terms of performance.

We are curently switching to Dionaea, a new implemen-
tation of a low interaction honeypot intended to become
a successor of Nepenthes that tries to make easier to add
emulation for new vulnerabilities or services. After one week
of continuous execution (still at home), dionaea captured a
hundredth of malware, and more than 4500 attacks, most of
which on ports 445 and 135.

C. High interaction honeypots

High interaction honeypots are systems with real vulner-
abilities often run on virtual machines. They are able to
more efficiently capture some malware, but they raise security
problems, because they may become infected and pose a
threat to other computers on the network. When deployed,
they should be protected against already known and unwanted
malware. Moreover, malware executables are often hidden
in the file system and can be hard to recover. A successful
infection must be detected and the system should be reinstalled
after getting the malware.

A possible solution to the problem of filtering unwanted
malware could be to use some kind of a smart gateway able to
detect an infection payload, intercept it (catch the executable),
and prevent it to be transfered to the honeypot.

D. Environment for malware analysis

Once malware is obtained, we have to study how it works
and what are its interactions with the Internet, particularly its
interactions with the C&C channel (Command and Control -
IRC, or whatever else). This implies letting the malware run
on a machine (real or virtual) and interact with the network,
while blocking communications that could be harmful to other
Internet hosts (infection, spam sending, DoS attacks).

The environment for malware analysis will include tools to
control communications between the infected machine and the
Internet, to monitor the activity of C&C channels, and to let
the infected machine interact with machines on an isolated
simulated network.

IV. MALWARE ANALYSIS

A. Basic tools

Once collected, malware is installed on a Windows XP sys-
tem (the victim), which can run on a real or a virtual machine.

Virtualization with hardware assistance is now supported by
Linux distributions on most recent processors (KVM) and is
able to run Windows. The state of virtual machines can be
saved in order to be able to quickly restore a machine in a
clean state or to save an infected state for further study. In
the case of an installation on a physical machine, a Linux
distribution is installed on another disk partition, so that we
can keep a copy of the clean Windows installation by copying
the Windows partition.

The victim is directly connected to a workstation with two
interfaces—the analysis workstation. It is connected to the
Internet through the other interface (forwarding between the
interfaces should not be activated). The dnsmasq software is
run to provide a DHCP and DNS service to the victim PC.

We can adopt several solutions to intercept traffic generated
by the malware:

• Interception through the pcap library. This solution
may be used to passively analyse any traffic that passes
through the monitoring machine, but it does not allow to
implement actions such as selectively forward packets,
modify and forward packets, return a fake answer to
packets.

• DNS may be tweaked to return the adress of one of our
machines for some domain names. Then, packets may
be processed at the applications level, forwarded to the
real destination, or answered. The drawback is that it can
only work as long as we can find a one-to-one mapping
between destination adresses and destination ports.

• External adresses may also be redirected to the gateway
workstation by an iptable rule set by a command such
as : “iptables -i eth0 -t nat -A PREROUTING

-p tcp --dport 80 -j REDIRECT --to-port

8080”. This can be useful for intercepting traffic
through an application-specific proxy.

• Traffic may be intercepted at the kernel-level: this solu-
tion is much more powerful, but harder to implement. We
discuss this issue in Section V.

Some basic tools are used for the analysis:

• Relay: it is a home-made tool that runs on the analysis
workstation to analyse the interaction of malware with
some external systems such as its C&C IRC channel
without letting it really connect to the Internet. It takes
a list of addresses and port numbers in the form ad-
dress:port as arguments. This means that we must first
identify relevant ports and addresses. Then, it listens
to TCP connections to given port numbers. When a
connection is accepted, it establishes a connection to the
same port at the corresponding address, forwards and
records every segment received on one side to the other
side. Hence, a malware can normaly interact with its
C&C channel, while harmful trafic remains confined to
the private network. Optionally, packets can be forwarded
with a small delay to let the operator some time to see
what happens and possibly stop forwarding.

• Relay-http: an HTTP proxy such as squid is quite

complex to configure, does not allow us to monitor trafic,
and it is quite tricky to recover transmitted data. Hence,
we have implemented relay-http, a very basic HTTP
relay that does exactly what we need.

• Fakemta: it is used to mimic a mail transfert agent (MTA).
It listens to port 10025 by default, answers SMTP re-
quests, accepts emails, stores them in a file, and obviously
does not forward them to an actual MTA. All SMTP
traffic coming from the victim should be redirected to port
10025 of the analysis workstation with an iptables
rule.

B. Methodology

The first malwares that we have captured were manually
analysed with the following methodology:

• Unless it is already done, we try to identify
the malware using various anti-virus tools: we
use clamav under Linux, but other Windows
anti-virus tools may also be used. The malware
can also be submitted to Norman Sandbox
(http://www.norman.com/microsites/nsic/Submit/en:
this can provide useful information, such as Internet
accesses done by the malware).

• Connect a clean victim PC (no malware installed) to the
analysis workstation.

• Make sure that the analysis workstation is correctly
configured.

• Start wireshark on the analysis workstation and cap-
ture packets on the second interface (the private network).

• Boot the victim PC. Observe the generated traffic. De-
pending upon the network configuration, there should be
a fair amount of traffic during several seconds. Wait until
there is no more traffic for a few seconds.

• Run the malware on the victim PC, while observing the
traffic captured by wireshark and record the events
that would likely denote attemps to connect to the C&C
channel:

– DNS requests,
– attempts to connect to unknown ports,
– scanning of unknown ports.

• According to the previous observations, setup dnsmasq
to return the address of the analysis workstation for
adresses we found interesting, start relay to intercept
connection attempts, and restart the victim PC to observe
packets exchanges, and further network traffic.

• If the victim attempts to connect to an SMTP server, use
fakemta to intercept emails. It it tries to connect to
HTTP servers, use relay-http.

• If the victim tries to connect to unknown ports other
than their C&C channel, use relay with a delay of a few
seconds, observe the traffic with wireshark, and be ready
to stop the transmission if it appears harmfull (simply kill
relay).

C. Case study

The first malware that we studied was labeled
“Trojan.SdBot-4763” by clamav. Once started, the malware
tries to connect to botz.noretards.com, port 65146 that
appears to be an IRC server. This address corresponds to a
pool of several machines most probably compromised ones.
Figure 2 plots the number of IP addresses corresponding to
botz.noretards.com day by day on a period of 250
days while Figure 3 presents the cumulative distribution
function of the number of days each machine remains in the
pool. As we can see, the number of machines vary, but is
most often around 9. A majority of machines stays in the pool
less than 20 days, but there is a long tail of machines that
stay more than 40 days. All this seems to indicate that the
botnet was actively maintained during this period, as machine
recovered by their administrators were quickly replaced.

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250

N
um

be
r

of
 a

dd
re

ss
es

Day

Fig. 2. Number of machines resolving to botz.noretards.com

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50

%

Nb of days

Fig. 3. Cumulative distribution function of the number of days each machine
remains in the pool of compromised machines

Once connected to its IRC server, the malware enters
random nicknames and user names, and connects to a channel

with a password hard wired in the program. Then, it gets the
command “:!root.mass -a -r -s” from the C&C channel and
begins to scan ports 135 and 445 with adresses randomly
generated in the adress range xxx.0.0.0/8 (where xxx is the
first byte of the IP address of the victim).

We did not observe any other malicious activities of this
malware. We can make a few hypothesis to explain this ap-
parent lack of valuable activity for such an actively maintained
botnet :

• it may by a spyware that does not find any interesting
data to send,

• we may have missed interesting activities as we did not
observe its behaviour long enough,

• it may expect some events (such as infecting other hosts)
before being ordered to do other activities.

Obviously, we cannot afford neither to let the malware unat-
tended, nor to spend a long time observing it, nor letting it
infect a third party computers. So, on one hand, we need a
means to monitor the activity of the C&C channel without the
need of running the actual malware, and on the other hand, we
need a means to let the malware infect other hosts—actually
another honeypot.

V. MWNA : MALWARE NETWORK ANALYSER

The methodology presented in Section IV-B is cumbersome:
• We have to manually set up multiple tools. In most cases,

this implies to reboot the victim as soon as we identify
interesting transmission attempts and decide what to do
with them.

• We have to redirect connection attempts on a case by
case basis using either DNS redefinition (reconfiguring
and restarting dnsmasq), or iptables rules.

• we have to identify interesting traffic among a lot of other
regular communications.

• when the malware begins to scan the network,
wireshark becomes almost unusable unless we filter
out scanning activity, which can only be done after
observing a significant number of attempts.

Furthermore, it is not possible to observe the malware activity
for a long period of time.

Hence, we need a tool to securely support the analysis of
the malware network activity.

To achieve this, we have started to develop mwna (MalWare
Network Analyser). It is based on the Linux packet filter
mechanism (cf. Figure 4) that allows to intercept and process
packets passing through several hooks in the processing of
packets flowing through the kernel.

Intercepted packets can be handled by programs running in
the user space (not in the kernel) by the way of iptable
rules set by the following commands, where a.b.c.d is the
IP address of the victim:

iptables -t mangle -A PREROUTING -s a.b.c.d -j NFQUEUE
iptables -t mangle -A POSTROUTING -d a.b.c.d -j NFQUEUE

These commands append two rules to the mangle table. The
first is applied at the prerouting hook to packets coming from

Input
Interface

Output
Interface

Prerouting Postrouting

Routing Routing

Input Output

Forward

Higher levels

Netfilter

Fig. 4. The packet filter mechanism

the victim, and the second is applied to the postrouting hook
to packets outgoing to the victim. For both rules, packets are
sent to queue 0 of the packet filter, which passes them to
mwna. After processing, packets can continue their way in
the network stack or they can be dropped. They can also be
modified, which means that they can be redirected.

The overhead due to the handling of packets through the
packet filter is small : if the user program immediately reinject
the packets into the kernel (without anay processing), more
than 900 Mbit/s can be processed while the normal rate is
934Mbit/s in TCP.
mwna gets raw ethernet packets. Hence, a basic analysis of

the protocol headers must be done to identify most common
protocols.

DNS packets are analysed to maintain a list of known hosts,
i.e., hosts whose addresses have been resolved: most regular
transmissions would be addressed to a known host, while
packets sent to unknown hosts are likely to be parts of a scan.

A list of TCP connections is also built in order to be able
to take decisions according to the context.

The program can accept rules to determine what to do
with specific packets. Rules can be attached to a specific
protocol. A rule contains conditions that must match packets
and actions. The rules are put in a configuration file parsed
with the config library.

Any combination of conditions can be specified. The cur-
rently defined and mostly implemented conditions allow to
check:

• whether the destination or source IP address has been
resolved by DNS (known, unknown).

• the direction of the transmission (in, out).
• whether the packet is internal (to/from the local network)

or external (to or from the internet) (int, ext).
• whether the packet is sent to a multicast, a broadcast or

a unicast address (multicast, broadcast, unicast).
• the source or destination port (sport/dport),
• the source or destination IP address (ipfrom, ipto).
• time to live of the packet (ttl).

Actions can be the following:

• set verdict: specify what to do with the packet (accept,
drop, etc.).

• trace: display a trace of the packet on the terminal.

• ctrace: display a trace of connexion changes on the
terminal.

• interval: only accept packets if the given time interval
from the previous packet is elapsed.

• redirect: redirect the packet to a specified address/port.
• ask: ask the user what to do.

VI. DETECTION OF DDOS ATTACKS AND PORTSCANS

The most difficult problem in the detection of DDoS attacks
is to distinguish between the malicious behavior and the
regular traffic in an early stage of an attack for efficient
prevention. The difficulty of solving the problem is even ex-
acerbated by the ever increasing capacity of current networks
and important traffic fluctuations. Consequently, we cannot
always consider traffic anomalies as a result of potentially
malicious activities. Otherwise, such an assumption may lead
to an increased false positive rate, i.e. we may classify legit-
imate packets as malicious ones. Moreover, existing anomaly
detection methods may fail when applied to the backbone,
because traffic characteristics are not necessarily visible at
this level of traffic aggregation. For instance, the distribution
of source IP addresses may stay approximately the same even
during high-volume attacks. This is an important reason for an
increased false negative rate, i.e. we may classify malicious
packets as legitimate.

Complexity of algorithms is another problem faced when
designing efficient detection methods. The cost of some meth-
ods such as those based on entropy is extremely high, because
they need to analyze every packet to be efficient. Sampling
methods like Cisco NetFlow [12] only inspect some packets,
which if combined with simple and robust detection techniques
may significantly reduce the amount of monitored traffic data.
The last aspect relates to the detection time—the time to
react after an attack detection needs to be sufficiently short
to avoid severe damages or rapid proliferation in case of a
worm epidemic. This calls for an automated defense method.

We have proposed a detection method of high-volume
malicious traffic composed of DDoS attacks and portscans
[11]. Our method first analyzes packets during normal net-
work operation to establish baseline parameters and derive
thresholds that may reflect different network environments.
We extract a number of essential attack features such as
concentrated destination and source IP addresses. We examine
TCP sessions from a new perspective so that we can easily
detect traffic asymmetry in case of DDoS attacks or portscans.
Finally, we combine the method with a rate limiting scheme
that controls traffic rates. Our method is suitable for sampling
so that we can reduce the amount of monitored traffic and still
achieve good detection performance.

Previous work has shown that anomalies, which only impact
packet counts, are likely to be visible at lower sampling rates,
while anomalies that influence flow counts go undetected. We
have found that it is important to take into account appro-
priate metrics and integrate them with an efficient detection
method as well as an adequate sampling technique. We have
validated our method on traces captured during real network

attacks unlike other proposals that used network simulations
or experiments on obsolete data sets with outdated background
traffic. The prototype implementation effectively detects 99%
of DDoS attacks including TCP SYN, ICMP flooding, and
scanning activity. In comparison with the Uniform Rate Lim-
iting method [13], our results are much superior with no false
positives. We have also shown that three different sampling
schemes (deterministic, random 1-out-of-N, and random uni-
form) result in very good performance despite extremely low
rates like 0.0625%, which means analyzing 1 out of 1600
packets on the average.

The method will be deployed on the gateway of our platform
so that we will be able to experiment with real botnet traffic
and observe the detection performance.

VII. CONCLUSIONS

In this paper, we have described an architecture of a
platform for studying botnets, finding adequate analysis meth-
ods, monitoring the activity of botnets, and finding efficient
countermeasures or confinement methods. The platform is
composed of a filtering and monitoring gateway, low and
high interaction honeypots, and a system for malware analysis.
We have presented all the elements, discussed their roles and
functionnalities, and reported on already developed tools.

ACKNOWLEDGMENTS

This work was partially supported by the EC FP7 project
INDECT under contract 218086.

REFERENCES

[1] J. Zhuge, T. Holz, X. Han, J. Guo, and W. Zou, “Characterizing the irc-
based botnet phenomenon,” Department for Mathematics and Computer
Science, University of Mannheim ; TR-2007-010, Tech. Rep., 2007.

[2] A. Hackworth and N. Ianelli, “Botnets as a vehicle for online crime,”
The International Journal of Forensic Computer Science, vol. 2, no. 1,
pp. 19–39, 2007.

[3] J. Franklin, V. Paxson, S. Savage, and A. Perrig, “An inquiry into the
nature and causes of the wealth of internet miscreants,” in Conference
on Computer and Communications Security. ACM, 2007, pp. 375 –
388.

[4] A. Kumar, V. Paxson, and N. Weaver, “Exploiting underlying structure
for detailed reconstruction of an internet-scale event,” in IN PROC. ACM
IMC, 2005.

[5] D. D. Anirudh Ramachandran, Nick Feamster, “Revealing botnet mem-
bership using dnsbl counter-intelligence,” in SRUTI ’06: 2nd Workshop
on Steps to Reducing Unwanted Traffic on the Internet, U. Association,
Ed., 2006, pp. 49–54.

[6] E. Alata, V. Nicomette, M. Kaâniche, M. Dacier, and M. Herrb, “Lessons
learned from the deployment of a high-interaction honeypot,” in 6th
European Dependable Computing Conference (EDCC-6), Coimbra (Por-
tugal), 2006, pp. 39–44.

[7] P. Trinius, C. Willems, T. Holz, and K. Rieck, “A malware instruction
set for behavior-based analysis,” University of Mannheim, Tech. Rep.
2009-007, 12 2009.

[8] E. Alata, I. Alberdi, V. Nicomette, P. Owezarski, and M. Kaaniche,
“Internet attacks monitoring with dynamic connection redirection mech-
anisms,” Journal on Internet Computer Virology, vol. 7, no. 2, 2008.

[9] M. Abu Rajab, J. Zarfoss, F. Monrose, and A. Terzis, “A multi-
faceted approach to understanding the botnet phenomenon,” in IMC
’06: Proceedings of the 6th ACM SIGCOMM conference on Internet
measurement. New York, NY, USA: ACM, 2006, pp. 41–52.

[10] A. Burstein, “Conducting cybersecurity research legally and ethically,”
in first USENIX Workshop on Large-Scale Exploits and Emergent
Threats (LEET ’08). San Francisco: Usenix association, April 2008.
[Online]. Available: http://www.truststc.org/pubs/322.html

[11] M. Korczyński, L. Janowski, and A. Duda, “An Accurate Sampling
Scheme for Detecting SYN Flooding Attacks and Portscans,” in IEEE
ICC 2011, June 2011.

[12] “Cisco IOS NetFlow,” http://www.cisco.com/go/netflow/.
[13] K. Park, D. Seo, J. Yooand, H. Lee, and H. Kim, “Unified Rate Limiting

in Broadband Access Networks for Defeating Internet Worms and DDoS
Attacks,” in Information Security Practice and Experience, vol. 4991.
Springer Berlin / Heidelberg, October 2008, pp. 176–187.

