Differentially Private Bayesian Optimization Matt J. Kusner¹, Jacob R. Gardner^{1,2}, Roman Garnett¹, Kilian Q. Weinberger^{1,2} ¹Department of Computer Science & Engineering, Washington University in St. Louis, USA

²Department of Computer Science, Cornell University, USA

$\begin{array}{l} \textbf{vate Mechanism} \\ \textbf{unge in } \mathcal{A} \text{ when run on } \mathcal{V} \text{ vs. } \mathcal{V}' \\ \textbf{ivity of an algorithm } \mathcal{A} \text{ over all neighboring datasets} \\ \textbf{lue of one record) is} & \textbf{is} (\epsilon, 0) \\ \triangleq \max_{\mathcal{V}, \mathcal{V}'} \ \mathcal{A}(\mathcal{V}) - \mathcal{A}(\mathcal{V}') \ _{1}. & \textbf{differentially} \\ \textbf{private} \\ \textbf{ce}(0, \Delta_{\mathcal{A}}/\epsilon) & \textbf{2. Release } \mathcal{A}(\mathcal{V}) + \omega \end{array}$
Dur Results (λ) and $f'(\lambda)$ are GP distributed
and the assumptions in Theorem 2 of de Freitas et al. $\mathcal{V}, \mathcal{V}'$ we have the following global sensitivity bound,
$-f(\lambda_T) \le Ae^{-\frac{T\tau}{(\log T)^{d/4}}} + c$
fined in the paper and given constants A and τ in dends of BO.
, and neighboring $\mathcal{V}, \mathcal{V}'$, we have the following global m v (noisy validation accuracy) after BO, w.p. $\geq 1-\delta$
$\max_{t \le T} v_t \le \frac{\sqrt{C_1 \beta_T \gamma_T}}{\sqrt{T}} + c + q.$
e paper), where γ_T is bounded above for the squared (Srinivas et al., 2010).
$(\boldsymbol{\lambda})$ and is L-Lipschitz (additionally

Theorem 3. Given Assumption 2, for neighboring $\mathcal{V}, \mathcal{V}'$ and arbitrary $\lambda < \lambda'$ (and

 $|f(\lambda) - f'(\lambda')| \le \frac{(\lambda' - \lambda)L}{\lambda'\lambda} + \min\left\{\frac{g^*}{m}, \frac{L}{m\lambda_{\min}}\right\}$

where L is the Lipschitz constant of f, m is the size of \mathcal{V} , and g is defined in the paper.

References

- 9. Raef Bassily, Adam Smith, and Abhradeep Thakurta. Private empirical risk minimization: Efficient algorithms and tight error bounds. In FOCS, pages 464–473. IEEE, October 18–21 2014.
- 11. Hutter, F., Hoos, H. H., and Leyton-Brown, K.. Sequential model-based optimization for general algorithm configuration. In Learning and Intelligent Optimization, pp. 507–523. Springer, 2011
- 15, Dwork, Cynthia, McSherry, Frank, Nissim, Kobbi, and Smith, Adam. Calibrating noise to sensitivity in private data analysis. In Theory of Cryptography, pp. 265–284. Springer, 2006
- 17. Eric Brochu, Vlad M. Cora, and Nando de Freitas. A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement
- 18.Srinivas, Niranjan, Krause, Andreas, Kakade, Sham M, and Seeger, Matthias. Gaussian process optimization in the bandit setting: No regret and experimental design. In ICML, 2010. 19. de Freitas, Nando, Smola, Alex, and Zoghi, Masrour. Exponential regret bounds for gaussian process bandits with deterministic observations. In ICML, 2012.