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Stochastic Neighbor Compression

+  easy to implement
+  naturally multiclass
+  trivial to train

Optimization Details
Motivation: Nearest Neighbor Rule

Optimization Details

Main Idea

- expensive to test
- expensive to store

3. reduce instances1. reduce dimensionality 2. reduce distance 
computations

Results
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new idea: dataset compression
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inputs removed
inputs

(n)

(m){x1,x2, . . . ,xi, . . . ,xn−1,xn} {z1, . . . , zm}

Step 1. Dimensionality Reduction (Optional)

�•   Ideally,  

{y1, y2, . . . , yi, . . . , yn−1, yn} {ŷ1, . . . , ŷm}

Goal: Learn a compressed set that predicts training set correctly{z1, . . . , zm} {x1, . . . ,xn}

pi = 1 for all  i = 1, . . . , n

�•   KL-Divergence between      and   :pi 1 − log(pi)

min
z1,...,zm

−
n∑

i=1

log(pi)Solution: Solve the optimization,

pij =
exp(−‖A(xi − zj)‖22)∑m
k=1 exp(−‖A(xi − zk)‖22)

probability xiis nearest neighbor of zj

pi =
∑

j:ŷj=yi

pij

Optimization

Objective

L(Z,A) = −
n∑

i=1

log(pi) Z =
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where

Dene auxiliary matrices,

Q =




δy1,ŷ1 − p1 · · · δy1,ŷm − p1

...
...

...
δyn,ŷ1 − pn · · · δyn,ŷm − pn



 P =




p11/p1 · · · p1m/p1

...
...

...
pn1/pn · · · pnm/pn





δyi,ŷj =

{
1 yi = ŷj
0 otherwise
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Gradient with respect to A
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computation complexity computation complexity

total complexity: total complexity:

A ∈ Rr×d

Results

Stochastic Neighbor Compression
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Datasets and Training Time

normalized 
over all --- zk

solve using conjugate 
gradient descent!

SPEED-UP SNC 4% COMPARISON
COMPRESSION RATIO DISTANCE COMPS.

DATASET 1% 2% 4% 8% 16% BALL-TREES LSH
YALE-FACES − − − 28 17 3.6 19 11 3.5 12 7.3 3.2 6.5 4.2 2.8 7.1 21

ISOLET 76 23 13 47 13 13 26 6.8 13 14 3.7 13 7.0 2.0 13 13 14
LETTERS 143 9.3 100 73 6.3 61 34 3.6 34 16 2.0 17 7.6 1.1 8.4 3.3 23

ADULT 156 56 3.5 75 28 3.4 36 15 3.3 17 7.3 3.1 7.8 3.8 3.0 17 0.7
W8A 146 68 39 71 36 35 33 19 26 15 10 18 7.3 5.5 11 13 2.1

MNIST 136 54 84 66 29 75 32 16 57 15 8.4 37 7.1 3.6 17 11 8.5
FOREST 146 3.1 12 70 1.6 11 32 0.90 10 15 1.1 7.0 − − − 0.15 0.35

Test-time Speed-up

DATASET STATISTICS
NAME n |Y| d (dL)

YALE-FACES 1961 38 8064 (100)
ISOLET 3898 26 617 (172)

LETTERS 16000 26 16 (16)
ADULT 32562 2 123 (50)

W8A 49749 2 300 (100)
MNIST 60000 10 784 (164)

FOREST 100000 7 54 (54)

TRAINING TIMES
DATASET COMPRESSION RATIO

1% 2% 4% 8% 16%
YALE-FACES − 4s 6s 9s 15s

ISOLET 11s 17s 28s 50s 1m 26s
LETTERS 41s 1m 18s 2m 44s 4m 34s 8m 13s
ADULT 2m 27s 4m 1s 7m 39s 12m 51s 23m 18s

W8A 6m 5s 10m 19s 19m 26s 39m 12s 1h 12m
MNIST 17m 18s 36m 43s 1h 13m 2h 17m 4h 57m

FOREST 17m 38s 33m 55m 44s 1h 45m −

Table 3 Left: Speed-up of kNN testing through SNC compression without a data structure (in black) on top 
of ball-trees (in teal) and LSH (in purple). Results where SNC matches or exceeds the accuracy of full kNN 
(up to statistical signicance) are in bold. Right: Speed-up of SNC at 4% compression versus ball-trees 
and LSH on the full dataset. Bold text indicates matched or exceeded accuracy.
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Figure 2 YaleFaces before and after compression
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Parameter Sensitivity

Figure 3 The decision rule and SNC data set (white circles) learned from 2d USPS digits under varying A = γ2I
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Figure 4 kNN test error rates with various data set reduction 
methods on the letters dataset under articial label noise.  
The gure shows clearly that the kNN error increases 
approximately linearly with label noise. SNC with 2%, 4%, 
8% compression seems to smooth out mislabeled inputs 
and yields a signicantly more robust kNN classier. In 
contrast, CNN, FCNN and also subsampling (not shown in 
the gure to reduce clutter) do not mitigate the effect of label 
noise and at times tend to even amplify the test error.
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Figure 1 Dimensionality reduction before and 
after applying LMNN. A distance metric 
--------------is optimized, where ------------ is the 
reduced dimensionality and ----------------- is the 
new distance, so that neighbors of the same 
class lie closer than those of other classes.

‖A(xi − xk)‖22
A ∈ Rr×d r << d

Step 2. Subsampling
removed

inputs�•   Sample      compressed training inputs:                   
�•   Select to preserve class balance
�•   For each compressed input     , such that               , x its label
    as such,    
�•   Compression results are stable across different random samples

{z1, . . . , zm}m

zj zj = xj
ŷj = yj

(zj , ŷj)

Step 3. Learning Compressed Inputs

n
O
(
nd

)

(zj , ŷj)

probability --- is 
correctly classied

xi

sum over 
compressed 
inputs with 
same label 

as--- xi[Goldberger et al., 2004]
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