Differentially Private Bayesian Optimization

Matt J. Kusner* Roman Garnett Jake Gardner Kilian Weinberger

*part of work done while at author was at Yahoo! Labs

"I can detect cancer with 98% accuracy" "These are the model hyperparameter values: [0.51,0.87]"

"I can detect cancer with 98% accuracy" "These are the model hyperparameter values: [0.51,0.87]"

Problem: Releasing hyperparameters from grid search compromises privacy [Chaudhuri & Vinterbo, 2013]

Problem: Releasing hyperparameters from grid search compromises privacy [Chaudhuri & Vinterbo, 2013] Solution: Design Diff. Private grid search

Bayesian Optimization

Can we make Bayesian Optimization private?

Bayesian Optimization

Bayesian Optimization

Differential Privacy A formalization of "privacy through randomness"

A formalization of "privacy through randomness"

A formalization of "privacy through randomness"

A formalization of "privacy through randomness"

informally: [in certain settings]

 $f(\boldsymbol{\lambda}) \approx f(\boldsymbol{\lambda}')$ $\boldsymbol{\lambda} \approx \boldsymbol{\lambda}'$

A formalization of "privacy through randomness"

Definition 1. A randomized algorithm \mathcal{A} is (ϵ, δ) -differentially private for $\epsilon, \delta \geq 0$ if for all $f(\lambda) \in \text{Range}(\mathcal{A})$ and for all neighboring datasets $\mathcal{V}, \mathcal{V}'$ (i.e., such that \mathcal{V} and \mathcal{V}' differ in the value of one record) we have that

 $\Pr[\mathcal{A}(\mathcal{V}) = f(\lambda)] \le e^{\epsilon} \Pr[\mathcal{A}(\mathcal{V}') = f(\lambda)] + \delta.$

Private Mechanisms

Definition 2. (Laplace mechanism) The **global sensitivity** of an algorithm \mathcal{A} over all neighboring datasets $\mathcal{V}, \mathcal{V}' (\mathcal{V}, \mathcal{V}')$ differ by the value of one record) is

$$\Delta_{\mathcal{A}} \triangleq \max_{\mathcal{V}, \mathcal{V}' \subseteq \mathcal{X}} \|\mathcal{A}(\mathcal{V}) - \mathcal{A}(\mathcal{V}')\|_{1}.$$

(Exponential mechanism) The global sensitivity of a function $q: \mathcal{X} \times \Lambda \to \mathbb{R}$ over all neighboring datasets $\mathcal{V}, \mathcal{V}'$ is

$$\Delta_q \triangleq \max_{\substack{\mathcal{V}, \mathcal{V}' \subseteq \mathcal{X} \\ \lambda \in \Lambda}} \|q(\mathcal{V}, \lambda) - q(\mathcal{V}', \lambda)\|_1.$$

Laplace Mechanism [Dwork et al., 2006]

- **I. Draw** $\omega \sim \text{Laplace}(0, \Delta_{\mathcal{A}}/\epsilon)$
- **2.** Release $\mathcal{A}(\mathcal{V}) + \omega$

The Laplace Mechanism is $(\epsilon, 0)$ -differentially private!

Exponential Mechanism [McSherry & Talwar, 2007] I. Draw $\tilde{\lambda} \sim \frac{1}{Z} \exp(\epsilon q(\mathcal{V}, \lambda)/(2\Delta_q))$

- 2. Release $\tilde{\lambda}$

The Exponential Mechanism is $(\epsilon, 0)$ -differentially private!

GP Assumption

suppose...

GPAssumption

Assumption for Privacy

Assumption for Privacy

Differential Privacy + Utility!

Theorems 1 & 2 Release: Private hyperparameter values Setting: We observe noisy validation accuracies Main idea: Run GP-UCB and use Exp. Mechanism [McSherry & Talwar, 2007] I. How to use Exp. Mechanism?

Theorem 1. Given the GP assumption, for any two neighboring datasets $\mathcal{V}, \mathcal{V}'$ and for all $\lambda \in \Lambda$ with probability at least $1 - \delta$ there is an upper bound on the global sensitivity of μ_T :

 $|\mu_T'(\lambda) - \mu_T(\lambda)| \le O\left(\sqrt{\log(|\Lambda|(T+1)^2/\delta)} + \sqrt{(1 - k_1(\mathcal{V}, \mathcal{V}'))\log(|\Lambda|/\delta)}\right)$

Theorems 1 & 2 Release: Private hyperparameter values Setting: We observe noisy validation accuracies Main idea: Run GP-UCB and use Exp. Mechanism [McSherry & Talwar, 2007] I. How to use Exp. Mechanism?

Theorem 1. Given the GP assumption, for any two neighboring datasets $\mathcal{V}, \mathcal{V}'$ and for all $\lambda \in \Lambda$ with probability at least $1 - \delta$ there is an upper bound on the global sensitivity of μ_T :

$$|\mu_T'(\lambda) - \mu_T(\lambda)| \le O\left(\sqrt{\log(|\Lambda|(T+1)^2/\delta)} + \sqrt{(1 - k_1(\mathcal{V}, \mathcal{V}'))\log(|\Lambda|/\delta)}\right)$$

Theorems 1 & 2 Release: Private hyperparameter values Setting: We observe noisy validation accuracies Main idea: Run GP-UCB and use Exp. Mechanism [McSherry & Talwar, 2007] I. How to use Exp. Mechanism?

Theorem 1. Given the GP assumption, for any two neighboring datasets $\mathcal{V}, \mathcal{V}'$ and for all $\lambda \in \Lambda$ with probability at least $1 - \delta$ there is an upper bound on the global sensitivity of μ_T :

 $|\mu_T'(\lambda) - \mu_T(\lambda)| \le O\left(\sqrt{\log(|\Lambda|(T+1)^2/\delta)} + \sqrt{(1 - k_1(\mathcal{V}, \mathcal{V}'))\log(|\Lambda|/\delta)}\right)$

Theorems I & 2

Release: Private hyperparameter values

Setting: We observe noisy validation accuracies

Main idea: Run GP-UCB and use Exp. Mechanism [McSherry & Talwar, 2007] I. How to use Exp. Mechanism?

Theorem 1. Given the GP assumption, for any two neighboring datasets $\mathcal{V}, \mathcal{V}'$ and for all $\lambda \in \Lambda$ with probability at least $1 - \delta$ there is an upper bound on the global sensitivity of μ_T :

 $|\mu_T'(\lambda) - \mu_T(\lambda)| \le O\left(\sqrt{\log(|\Lambda|(T+1)^2/\delta)} + \sqrt{(1 - k_1(\mathcal{V}, \mathcal{V}'))\log(|\Lambda|/\delta)}\right)$

2. How good are the noisy hyperparameters?

Theorem 2. (McSherry & Talwar, 2007) The exponential mechanism selects $\tilde{\lambda}$ that has value $\mu_T(\tilde{\lambda})$ that is close to the maximum $\max_{\lambda \in \Lambda} \mu_T(\lambda)$, w.p. $\geq 1 - (\delta + e^{-a})$

$$\max_{\lambda \in \Lambda} \mu_T(\lambda) - \mu_T(\tilde{\lambda}) \le O\left(\frac{B}{\epsilon} (\log |\Lambda| + a)\right)$$

Theorems 3 & 4

Release: Private validation accuracies Setting: We observe noisy validation accuracies

Main idea: Run GP-UCB and use Lap. Mechanism [Dwork et al., 2006] I. How much noise to add?

Theorem 3. Given the GP assumption, and neighboring $\mathcal{V}, \mathcal{V}'$, we have the following global sensitivity bound for the maximum v, w.p. $\geq 1-\delta$

$$\left|\max_{t\leq T} v_t' - \max_{t\leq T} v_t\right| \leq O\left(\frac{1}{\sqrt{T}} + \sqrt{(1 - k_1(\mathcal{V}, \mathcal{V}'))\log(|\Lambda|/\delta)} + \sqrt{\log(1/\delta)}\right).$$

where $k_2(\lambda, \lambda')$ is the squared exponential kernel.

Theorems 3 & 4

Release: Private validation accuracies

Setting: We observe noisy validation accuracies Main idea: Run GP-UCB and use Lap. Mechanism [Dwork et al., 2006] I. How much noise to add?

Theorem 3. Given the GP assumption, and neighboring $\mathcal{V}, \mathcal{V}'$, we have the following global sensitivity bound for the maximum v, w.p. $\geq 1-\delta$

$$\left|\max_{t\leq T} v_t' - \max_{t\leq T} v_t\right| \leq O\left(\frac{1}{\sqrt{T}} + \sqrt{\left(1 - k_1(\mathcal{V}, \mathcal{V}')\right)\log(|\Lambda|/\delta)} + \sqrt{\log(1/\delta)}\right)$$

where $k_2(\lambda, \lambda')$ is the squared exponential kernel.

2. How good is the noisy error?

Theorem 4. Given the GP assumption we have, with probability at least $1 - (\delta + e^{-a})$

$$|\tilde{v} - f(\lambda^*)| \le O\left(\sqrt{\log(1/\delta)} + \frac{a+\epsilon}{\epsilon\sqrt{T}} + \frac{aB}{\epsilon}\right).$$

2. If $f(\lambda)$ satisfies Lipschitz smoothness and convexity assumptions then, private $f(\lambda)$ (exact observation) using any BO procedure!

Take Home Points

I. Releasing sensitive validation grid search results can compromise privacy [Chaudhuri & Vinterbo, 2013]

2. Bayesian Optimization is the state-of-the-art for hyperparameter tuning

3. We present initial results for private Bayesian optimization

Thank you. Questions?