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Abstract

Bayesian optimization is a powerful tool for fine-
tuning the hyper-parameters of a wide variety of
machine learning models. The success of ma-
chine learning has led practitioners in diverse
real-world settings to learn classifiers for prac-
tical problems. As machine learning becomes
commonplace, Bayesian optimization becomes
an attractive method for practitioners to automate
the process of classifier hyper-parameter tuning.
A key observation is that the data used for tun-
ing models in these settings is often sensitive.
Certain data such as genetic predisposition, per-
sonal email statistics, and car accident history, if
not properly private, may be at risk of being in-
ferred from Bayesian optimization outputs. To
address this, we introduce methods for releas-
ing the best hyper-parameters and classifier ac-
curacy privately. Leveraging the strong theoreti-
cal guarantees of differential privacy and known
Bayesian optimization convergence bounds, we
prove that under a GP assumption these private
quantities are often near-optimal. Finally, even if
this assumption is not satisfied, we can use dif-
ferent smoothness guarantees to protect privacy.

1. Introduction
Machine learning is increasingly used in application areas
with sensitive data. For example, hospitals use machine
learning to predict if a patient is likely to be readmitted
soon (Yu et al., 2013), webmail providers classify spam
emails from non-spam (Weinberger et al., 2009), and in-
surance providers forecast the extent of bodily injury in car
crashes (Chong et al., 2005).
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In these scenarios data cannot be shared legally, but compa-
nies and hospitals may want to share hyper-parameters and
validation accuracies through publications or other means.
However, data-holders must be careful, as even a small
amount of information can compromise privacy.

Which hyper-parameter setting yields the highest accuracy
can reveal sensitive information about individuals in the
validation or training data set, reminiscent of reconstruc-
tion attacks described by Dwork & Roth (2013) and Dinur
& Nissim (2003). For example, imagine updated hyper-
parameters are released right after a prominent public fig-
ure is admitted to a hospital. If a hyper-parameter is known
to correlate strongly with a particular disease the patient is
suspected to have, an attacker could make a direct correla-
tion between the hyper-parameter value and the individual.

To prevent these sorts of attacks, we develop a set of al-
gorithms that automatically fine-tune the hyper-parameters
of a machine learning algorithm while provably preserving
differential privacy (Dwork et al., 2006b). Our approach
leverages recent results on Bayesian optimization (Snoek
et al., 2012; Hutter et al., 2011; Bergstra & Bengio,
2012; Gardner et al., 2014), training a Gaussian process
(GP) (Rasmussen & Williams, 2006) to accurately predict
and maximize the validation gain of hyper-parameter set-
tings. We show that the GP model in Bayesian optimization
allows us to release noisy final hyper-parameter settings to
protect against aforementioned privacy attacks, while only
sacrificing a tiny, bounded amount of validation gain.

Our privacy guarantees hold for releasing the best hyper-
parameters and best validation gain. Specifically our con-
tributions are as follows: 1. We derive, to the best of our
knowledge, the first framework for Bayesian optimization
with differential privacy guarantees, with/without oberser-
vation noise, 2. We show that even if our validation gain is
not drawn from a Gaussian process, we can guarantee dif-
ferential privacy under different smoothness assumptions.

We begin with background on Bayesian optimization and
differential privacy we will use to prove our guarantees.
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2. Background
In general, our aim will be to protect the privacy of a val-
idation dataset of sensitive records V ⊆ X (where X is
the collection of all possible records) when the results of
Bayesian optimization depends on V .

Bayesian optimization. Our goal is to maximize an un-
known function fV : Λ → R that depends on some valida-
tion dataset V ⊆ X :

max
λ∈Λ

fV(λ). (1)

It is important to point out that all of our results hold for the
general setting of eq. (1), but throughout the paper, we use
the vocabulary of a common application: that of machine
learning hyper-parameter tuning. In this case fV(λ) is the
gain of a learning algorithm evaluated on validation dataset
V that was trained with hyper-parameters λ ∈ Λ ⊆ Rd.

As evaluating fV is expensive (e.g., each evaluation re-
quires training a learning algorithm), Bayesian optimiza-
tion gives a procedure for selecting a small number of loca-
tions to sample fV : [λ1, . . . , λT ] = λT ∈ Rd×T . Specif-
ically, given a current sample λt, we observe a valida-
tion gain vt such that vt = fV(λt) + αt, where αt ∼
N (0, σ2) is Gaussian noise with possibly non-zero vari-
ance σ2. Then, given vt and previously observed values
v1, . . . , vt−1, Bayesian optimization updates its belief of
fV and samples a new hyper-parameter λt+1. Each step of
the optimization proceeds in this way.

To decide which hyper-parameter to sample next, Bayesian
optimization places a prior distribution over fV and updates
it after every (possibly noisy) function observation. One
popular prior distribution over functions is the Gaussian
process GP

(
µ(·), k(·, ·)

)
(Rasmussen & Williams, 2006),

parameterized by a mean function µ(·) (we set µ = 0,
w.l.o.g.) and a kernel covariance function k(·, ·). Functions
drawn from a Gaussian process have the property that any
finite set of values of the function are normally distributed.
Additionally, given samples λT = [λ1, . . . , λT ] and ob-
servations vT = [v1, . . . , vT ], the GP posterior mean and
variance has a closed form:

µT (λ) = k(λ,λT )(KT + σ2I)−1vT
kT (λ, λ′) = k(λ, λ′)− k(λ,λT )(KT + σ2I)−1k(λT , λ′)

σ2
T (λ) = kT (λ, λ), (2)

where k(λ,λT )∈R1×T is evaluated element-wise on each
of the T columns of λT , and λ ∈ Λ is any hyper-parameter.
As well, KT = k(λT ,λT ) ∈ RT×T is evaluated on all
hyper-parameter pairs from λT . As more samples are ob-
served, the mean function µT (λ) approaches fV(λ).

One well-known method to select hyper-parameters λmax-
imizes the upper-confidence bound (UCB) of the posterior

GP model of fV (Auer et al., 2002; Srinivas et al., 2010):

λt+1 , arg max
λ∈Λ

µt(λ) +
√
βt+1σt(λ), (3)

where βT+1 is a parameter that trades off the exploita-
tion of maximizing µt(λ) and the exploration of maximiz-
ing σt(λ). Srinivas et al. (2010) proved that given cer-
tain assumptions on fV and fixed, non-zero observation
noise (σ2 > 0), selecting hyper-parameters λ to maximize
eq. (3) is a no-regret Bayesian optimization procedure:
limT→∞

1
T

∑T
t=1 fV(λ∗) − fV(λt) = 0, where fV(λ∗) is

the maximizer of eq. (1). For the no-noise setting, de Fre-
itas et al. (2012) give a UCB-based no-regret algorithm.

Contributions. Alongside maximizing fV , we would
like to guarantee that if fV depends on (sensitive) valida-
tion data, we can release information about fV so that the
data V remains private. Specifically, we may wish to re-
lease (a) our best guess λ̂ , arg maxt≤T fV(λt) of the true
(unknown) maximizer λ∗ and (b) our best guess fV(λ̂) of
the true (also unknown) maximum objective fV(λ∗). The
primary question this work aims to answer is: how can we
release private versions of λ̂ and fV(λ̂) that are close to
their true values, or better, the values λ∗ and fV(λ∗)? We
give two answers to these questions. The first will make
a Gaussian process assumption on fV , which we describe
immediately below. The second, described in Section 5,
will utilize Lipschitz and convexity assumptions to guaran-
tee privacy in the event the GP assumption does not hold.

Setting. For our first answer to this question, let us de-
fine a Gaussian process over hyper-parameters λ, λ′ ∈ Λ
and datasets V,V ′ ⊆ X as follows: GP

(
0, k1(V,V ′) ⊗

k2(λ, λ′)
)
. A prior of this form is known as a multi-task

Gaussian process (Bonilla et al., 2008). Many choices for
k1 and k2 are possible. The function k1(V,V ′) defines a
set kernel (e.g., a function of the number of records that
differ between V and V ′). For k2, we focus on either the
squared exponential: k2(λ, λ′) = exp

(
−‖λ− λ′‖22/(2`2)

)
or Matérn kernels: (e.g., for ν = 5/2, k2(λ, λ′) = (1 +√

5r/`+ (5r2)/(3`2)) exp(−
√

5r/`), for r = ‖λ− λ′‖2),
for a fixed `, as they have known bounds on the maximum
information gain (Srinivas et al., 2010). Note that as de-
fined, the kernel k2 is normalized (i.e., k2(λ, λ) = 1).

Assumption 1. We have a problem of type (1), where
all possible dataset functions [f1, . . . , f2|X| ] are GP dis-
tributed GP

(
0, k1(V,V ′) ⊗ k2(λ, λ′)

)
for known kernels

k1, k2, for all V,V ′⊆X and λ, λ′∈Λ, where |Λ|<∞.

Similar Gaussian process assumptions have been made in
previous work (Srinivas et al., 2010). For a result in the no-
noise observation setting, we will make use of the assump-
tions of de Freitas et al. (2012) for our privacy guarantees,
as described in Section 4.
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2.1. Differential Privacy

One of the most widely accepted frameworks for private
data release is differential privacy (Dwork et al., 2006b),
which has been shown to be robust to a variety of pri-
vacy attacks (Sweeney, 1997; Dinur & Nissim, 2003; Ganta
et al., 2008; Narayanan & Shmatikov, 2008). Given an al-
gorithm A that outputs a value λ when run on dataset V ,
the goal of differential privacy is to ‘hide’ the effect of a
small change in V on the output of A. Equivalently, an at-
tacker should not be able to tell if a single private record
was changed in V just by looking at the output ofA. If two
datasets V,V ′ differ in the value of a single individual, we
will refer to them as neighboring datasets. Note that any
non-trivial algorithm (i.e., an algorithm A that outputs dif-
ferent values on V and V ′ for some pair V,V ′ ⊆ X ) must
include some amount of randomness to guarantee such a
change in V is ‘unobservable’ in the output λ of A (Dwork
& Roth, 2013). The level of privacy we wish to guaran-
tee decides the amount of randomness we need to add to λ
(better privacy requires increased randomness). Formally,
the definition of differential privacy is stated below.
Definition 1. A randomized algorithm A is (ε, δ)-
differentially private for ε, δ ≥ 0 if for all λ ∈ Range(A)
and for all neighboring datasets V,V ′ (i.e., such that V and
V ′ differ in the value of one record) we have that

Pr
[
A(V) = λ

]
≤ eε Pr

[
A(V ′) = λ

]
+ δ. (4)

The parameters ε, δ guarantee how privateA is; the smaller,
the more private. The maximum privacy is ε = δ = 0 in
which case eq. (4) holds with equality. This can be seen by
the fact that V and V ′ can be swapped in the definition, and
thus the inequality holds in both directions. If δ = 0, we
say the algorithm is simply ε-differentially private. For a
survey on differential privacy we refer the interested reader
to Dwork & Roth (2013).

There are two popular methods for making an algorithm ε-
differentially private: (a) the Laplace mechanism (Dwork
et al., 2006b), in which we add random noise to λ and (b)
the exponential mechanism (McSherry & Talwar, 2007),
which draws a random output λ̃ such that λ̃ ≈ λ. For
each mechanism we must define an intermediate quan-
tity called the global sensitivity describing how much A
changes when V changes.
Definition 2. (Laplace mechanism) The global sensitivity
of an algorithmA over all neighboring datasets V,V ′ (i.e.,
V,V ′ differ by the value of one record) is

∆A , max
V,V′⊆X

‖A(V)−A(V ′)‖1.

(Exponential mechanism) The global sensitivity of a func-
tion q :X×Λ→R over all neighboring datasets V,V ′ is

∆q , max
V,V′⊆X
λ∈Λ

‖q(V, λ)− q(V ′, λ)‖1.

The Laplace mechanism hides the output of A by perturb-
ing its output with some amount of random noise.

Definition 3. Given a dataset V and an algorithm A, the
Laplace mechanism returns A(V) + ω, where ω is a noise
variable drawn from Lap(∆A/ε), the Laplace distribution
with scale parameter ∆A/ε (and location parameter 0).

The exponential mechanism draws a slightly different λ̃
that is ‘close’ to λ, the output of A.

Definition 4. Given a dataset V and an algorithm
A(V) = arg maxλ∈Λ q(V, λ), the exponential mecha-
nism returns λ̃, where λ̃ is drawn from the distribution
1
Z exp

(
εq(V, λ)/(2∆q)

)
, and Z is a normalizing constant.

Given Λ, a possible set of hyper-parameters, we derive
methods for privately releasing the best hyper-parameters
and the best function values fV , approximately solving
eq. (1). We first address the setting with observation noise
(σ2 > 0) in eq. (2) and then describe small modifications
for the no-noise setting. For each setting we use the UCB
sampling technique in eq. (3) to derive our private results.

3. With observation noise
In general cases of Bayesian optimization, observation
noise occurs in a variety of real-world modeling settings
such as sensor measurements (Krause et al., 2008). In
hyper-parameter tuning, noise in the validation gain may
be as a result of noisy validation or training features.

Algorithm 1 Private Bayesian Opt. (noisy observations)
1: Input: V; Λ ⊆ Rd; T ; (ε, δ); σ2

V,0; γT
2: µV,0 = 0
3: for t = 1 . . . T do
4: βt=2 log(|Λ|t2π2/(3δ))
5: λt , arg maxλ∈Λ µV,t−1(λ) +

√
βtσV,t−1(λ)

6: Observe validation gain vV,t, given λt
7: Update µV,t and σ2

V,t according to (2)
8: end for
9: c=2

√(
1−k(V,V ′)

)
log
(
3|Λ|/δ

)
10: q=σ

√
8 log(3/δ)

11: C1 = 8/ log(1 + σ−2)
12: Draw λ̃ ∈ Λ w.p. Pr[λ] ∝ exp

(
εµV,T (λ)

2(2
√
βT+1+c)

)
13: v∗=maxt≤T vV,t
14: Draw θ ∼Lap

[√
C1βT γT
ε
√
T

+ c
ε + q

ε

]
15: ṽ = v∗ + θ
16: Return: λ̃, ṽ

In the sections that follow, although the quantities f, µ, σ, v
all depend on the validation dataset V , for notational sim-
plicity we will occasionally omit the subscript V . Similarly,
for V ′ we will often write: f ′, µ′, σ′2, v′.
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3.1. Private near-maximum hyper-parameters

In this section we guarantee that releasing λ̃ in Algorithm
1 is private (Theorem 1) and has high utility (Theorem 2).
Our proof strategy is as follows: we will first demonstrate
the global sensitivity of µT (λ) with probability at least 1−
δ. Then we will show that releasing λ̃ via the exponential
mechanism is (ε, δ)-differentially private. Finally, we show
that µT (λ̃) is close to maxλ∈Λ µT (λ).

Global sensitivity. As a first step we bound the global
sensitivity of µT (λ) as follows:

Theorem 1. Given Assumption 1, for any two neighboring
datasets V,V ′ and for all λ ∈ Λ with probability at least
1 − δ there is an upper bound on the global sensitivity (in
the exponential mechanism sense) of µT :

|µ′T (λ)− µT (λ)| ≤ 2
√
βT+1 + σ1

√
2 log (3|Λ|/δ),

for σ1 =
√

2
(
1−k1(V,V ′)

)
, βt=2 log

(
|Λ|t2π2/(3δ)

)
.

Proof. Note that, by applying the triangle inequality twice,
for all λ ∈ Λ,

|µ′T (λ)− µT (λ)| ≤ |µ′T (λ)− f ′(λ)|+ |f ′(λ)− µT (λ)|
≤ |µ′T (λ)− f ′(λ)|+ |f ′(λ)− f(λ)|+ |f(λ)− µT (λ)|.

We can now bound each one of the terms in the summation
on the right hand side (RHS) with probability at least δ

3 .
According to Srinivas et al. (2010), Lemma 5.1, we obtain
|µ′T (λ)−f ′(λ)|≤

√
βT+1σ

′
T (λ). The same can be applied

to |f(λ) − µT (λ)|. As σ′T (λ) ≤ 1, because k(λ, λ) = 1,
we can upper bound both terms by 2

√
βT+1. In order to

bound the remaining (middle) term on the RHS recall that
for a random variable Z∼N (0, 1) we have: Pr

[
|Z|>γ

]
≤

e−γ
2/2. For variables Z1, . . . Zn ∼ N (0, 1), we have, by

the union bound, that Pr
[
∀i, |Zi| ≤ γ

]
≥ 1 − ne−γ2/2 ,

1 − δ
3 . If we set Z = |f(λ)−f ′(λ)|

σ1
and n= |Λ|, we obtain

γ=
√

2 log
(
3|Λ|/δ

)
, which completes the proof. �

We remark that all of the quantities in Theorem 1 are either
given or selected by the modeler (e.g, δ, T ). Given this
upper bound we can apply the exponential mechanism to
release λ̃ privately, as per Definition 1:

Corollary 1. Let A(V) denote Algorithm 1 applied on
dataset V . Given Assumption 1, λ̃ is (ε, δ)-differentially
private, i.e., Pr

[
A(V)= λ̃

]
≤eε Pr

[
A(V ′)= λ̃

]
+δ, for any

pair of neighboring datasets V,V ′.

We leave the proof of Corollary 1 to the supplementary ma-
terial. As described in (Srinivas et al., 2010), lines 3-8
(UCB) of Algorithm 1 is a no-regret Bayesian optimiza-
tion procedure: limT→∞

∑T
t=1(f(λ∗)− f(λt))/T = 0.

Further, with high probability (as given by the Gaussian

tail probability bounds) for selected hyperparameters αi ∈
{α1, . . . , αT } we have that µT (αi) ≈ f(λi). Therefore,
it is reasonable to select λ = arg maxλ∈Λ µT (λ), to opti-
mize (1). McSherry & Talwar (2007) show that exponential
mechanism (line 12) selects a noisy maximum as follows.

Theorem 2. (McSherry & Talwar, 2007) The exponential
mechanism selects λ̃ that has value µT (λ̃) that is close to
the maximum maxλ∈Λ µT (λ),

maxλ∈Λ µT (λ)− µT (λ̃) ≤ 2∆
ε (log |Λ|+ a), (5)

w.p. ≥ 1− (δ + e−a), where ∆ = 2
√
βT+1 + c (for βT+1

and c defined as in Algorithm 1).

Notice that as T increases, so does ∆ in the above inequal-
ity, as the distribution in line 12 becomes more uniform.
However, because ∆ increases much more slowly than T
(i.e. ∆ is asymptotically O(

√
log(T+1)2)), T should be

selected as large as possible to achieve small average regret.

3.2. Private near-maximum validation gain

In this section we demonstrate releasing the validation gain
ṽ in Algorithm 1 is private (Theorem 3) and that the noise
we add to ensure privacy is bounded with high probabil-
ity (Theorem 4). As in the previous section our approach
will be to first derive the global sensitivity of the maxi-
mum v found by Algorithm 1. Then we show releasing ṽ
is (ε, δ)-differentially private via the Laplace mechanism.
Surprisingly, we can also show that ṽ is close to f(λ∗).

Global sensitivity. We bound the global sensitivity of the
maximum v found with Bayesian optimization and UCB:

Theorem 3. Given Assumption 1, and neighboring V,V ′,
we have the following global sensitivity bound (in the
Laplace mechanism sense) for the maximum v, w.p. ≥1−δ

|max
t≤T

v′t −max
t≤T

vt| ≤
√
C1βT γT√

T
+ c+ q.

(for c, q, βT in Algorithm 1) where the maximum GP infor-
mation gain γT is bounded above for the squared exponen-
tial and Matérn kernels (Srinivas et al., 2010).

Proof. For notational simplicity let us denote the regret
term as Ω ,

√
C1TβT γT . Then from Theorem 1 in Srini-

vas et al. (2010) we have that

Ω
T
≥ f(λ∗)− 1

T

T∑
t=1

f(λt) ≥ f(λ∗)−max
t≤T

f(λt). (6)

This implies f(λ∗) ≤ maxt≤T f(λt) + Ω
T with probability

at least 1− δ
3 (with appropriate choice of βT ).

Recall that in the proof of Theorem 1 we showed that
|f(λ) − f ′(λ)| ≤ c with probability at least 1 − δ

3 (for
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c given in Algorithm 1). This along with the above ex-
pression imply the following two sets of inequalities with
probability greater than 1− 2δ

3 :

f ′(λ∗)− c ≤ f(λ∗) < max
t≤T

f(λt) + Ω
T ;

f(λ∗)− c ≤ f ′(λ∗) < max
t≤T

f ′(λt) + Ω
T .

These, in turn, imply the two sets of inequalities:

max
t≤T

f ′(λt) ≤ f ′(λ∗) < max
t≤T

f(λt) + Ω
T + c;

max
t≤T

f(λt) ≤ f(λ∗) < max
t≤T

f ′(λt) + Ω
T + c.

This implies |maxt≤T f ′(λt) −maxt≤T f(λt)| ≤ Ω
T + c.

That is, the global sensitivity of maxt≤T f(λt) is bounded.
Given the sensitivity of the maximum f , we can readily
derive the sensitivity of maximum v. First note that we can
use the triangle inequality to derive

|max
t≤T

v′t −max
t≤T

vt| ≤ |max
t≤T

vt −max
t≤T

f(λt)|

+ |max
t≤T

v′t −max
t≤T

f ′(λt)|

+ |max
t≤T

f ′(λt)−max
t≤T

f(λt)|.

We can immediately bound the final term on the right
hand side. For the first term, let tv,max = arg maxt≤T vt
be the index of the best observed validation gain. Let
tf,max = arg maxt≤T f(λt) be the index of the best true
validation gain. The first term is upper bounded by |α| ,
max{|αtv,max |, |αtf,max |} (this can be easily seen by enu-
merating the cases: (a) tv,max = tf,max and (b) tv,max 6=
tf,max). Similarly, |α′| upper bounds the second term (de-
fined in the same way). Let α̂=max{α, α′} so we have,

|max
t≤T

v′t −max
t≤T

vt| ≤ Ω
T + c+ |2α̂|.

Although |α̂| can be arbitrarily large, recall that for Z ∼
N (0, 1) we have: Pr[|Z| ≤ γ] ≥ 1 − e−γ2/2 , 1 − δ

3 .
Therefore if we setZ = α̂

σ we have γ =
√

2 log(3/δ). This
implies that |2α̂| ≤ σ

√
8 log(3/δ) = q with probability at

least 1 − δ
3 . Therefore, if Theorem 1 from Srinivas et al.

(2010) and the bound on |f(λ)− f ′(λ)| hold together with
probability at least 1− 2δ

3 as described above, the theorem
follows directly. �

As in Theorem 1 each quantity in the above bound is given
in Algorithm 1 (β, c, q), given in previous results (Srinivas
et al., 2010) (γT , C1) or specified by the modeler (T , δ).
Now that we have a bound on the sensitivity of the max-
imum v we will use the Laplace mechanism to prove our
privacy guarantee (proof in supplementary material):

Corollary 2. Let A(V) denote Algorithm 1 run on dataset
V . Given Assumption 1, releasing ṽ is (ε, δ)-differentially
private, i.e., Pr[A(V)= ṽ]≤eε Pr[A(V ′)= ṽ]+δ.

Further, as the Laplace distribution has exponential tails,
the noise we add to obtain ṽ is small and shrinks as T in-
creases. In fact, we can show that this noisy validation error
is close to the optimal noise-free validation error.

Theorem 4. Given Assumption 1 we have,

|ṽ − f(λ∗)| ≤ σ
√

8 log(1/δ) + Ω
T + a

(
Ω
εT + c

ε + q
ε

)
,

with probability at least 1−(δ+e−a) for Ω =
√
C1TβT γT .

Proof. Let Z be a Laplace random variable with scale pa-
rameter b and location parameter 0; Z ∼ Lap(b). Then
Pr
[
|Z| ≤ ab

]
= 1 − e−a. Thus, in Algorithm 1,

|ṽ − maxt≤T vt| ≤ ab for b = Ω
εT + c

ε + q
ε with prob-

ability at least 1 − e−a. Let tf,max = arg maxt≤T f(λt).
Further observe,

ab ≥ max
t≤T

vt − ṽ ≥ (max
t≤T

f(λt)− αtf,max)− ṽ

≥ f(λ∗)− Ω
T − αtf,max − ṽ (7)

where the second and third inequality follow from the
proof of Theorem 3 (using the regret bound of Srinivas
et al. (2010): Theorem 1). Note that the third inequal-
ity holds with probability greater than 1 − δ

2 (given βt in
Algorithm 1). The final inequality implies f(λ∗) − ṽ ≤
αtf,max + Ω

T + ab. Let tv,max =arg maxt≤T vt. Also note,

ab ≥ ṽ −max
t≤T

vt ≥ ṽ − (max
t≤T

f(λt) + αtv,max)

≥ ṽ − f(λ∗)− Ω
T − αtv,max (8)

This implies that f(λ∗) − ṽ ≥ −αtv,max − Ω
T − ab. Thus

we have that |ṽ − f(λ∗)| ≤ αtf,max + αtv,max + Ω
T + ab.

Finally, because αtf,max and αtv,max could be arbitrarily
large we give a high probability upper bound on these
quantities. Let α̂ , max{αtf,max , αtv,max}. Again recall
that for Z ∼ N (0, 1), we have the tail probability bound
Pr
[
Z ≤ γ] ≥ 1−(1/2)e−γ

2/2 , 1 − δ
2 . Therefore if we

set Z = α̂
σ we arrive at γ = σ

√
2 log(1/δ). This entails

that 2α̂ ≤ σ
√

8 log(1/δ). Therefore, our proposed bound
in Theorem 4 holds. �

The right side of Theorem 4 becomes smaller as T in-
creases, so T should be set as large as possible. We note
that, because releasing either λ̃ or ṽ is (ε, δ)-differentially
private, by Corollaries 1 and 2, releasing both private quan-
tities in Algorithm 1 guarantees (2ε, 2δ)-differential pri-
vacy for validation dataset V . This is due to the compo-
sition properties of (ε, δ)-differential privacy (Dwork et al.,
2006a) (in fact stronger composition results can be demon-
strated, (Dwork & Roth, 2013)).
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4. Without observation noise
In hyper-parameter tuning it may be reasonable to assume
that we can observe function evaluations exactly: vV,t =
fV(λt). First note that we can use the same algorithm to
report the maximum λ in the no-noise setting. Indeed,
Theorems 1 and 2 still hold. However, we cannot read-
ily report a private maximum f as the information gain
γT in Theorems 3 and 4 approaches infinity as σ2 → 0.
Therefore, we extend results from the previous section to
the exact observation case via the regret bounds of de Fre-
itas et al. (2012). In this setting, the authors show that they
can achieve exponentially-decreasing regret for each sam-
ple: f(λ∗) − f(λt) < O(e−t/ log(t)). Therefore our strat-
egy will be to select the last sample and add enough noise to
cover a change in a validation record. Algorithm 2 demon-
strates this strategy for privatizing the maximum f .

Algorithm 2 Private Bayesian Opt. (noise free obs.)
1: Input: V; Λ ⊆ Rd; T ; (ε, δ); A, τ ; assumptions on fV

in de Freitas et al. (2012)
2: Observe noise-free samples: fV(λ1), . . . , fV(λT ) us-

ing method of de Freitas et al. (2012)

3: c = 2
√(

1− k(V,V ′)
)

log(2|Λ|/δ)

4: Draw θ ∼ Lap
[
A
ε e
− Tτ

(log T )d/4 + c
ε

]
5: Return: f̃ = fV(λT ) + θ

4.1. Private near-maximum validation gain

We demonstrate that releasing f̃ in Algorithm 2 is private
(Corollary 3) and that a small amount of noise is added
to make f̃ private (Theorem 6). To do so, we derive the
global sensitivity of fV(λT ) in Algorithm 2 independent
of the maximum information gain γT via de Freitas et al.
(2012). Then we prove releasing f̃ is (ε, δ)-differentially
private and that f̃ is close to the optimal f(λ∗).

Global sensitivity. The following Theorem gives a
bound on the global sensitivity of the maximum f .

Theorem 5. Given Assumption 1 and the assumptions
in Theorem 2 of de Freitas et al. (2012), for neighbor-
ing datasets V,V ′ we have the following global sensitivity
bound (in the Laplace mechanism sense),

|f ′(λT )− f(λT )| ≤ Ae−
Tτ

(log T )d/4 + c

w.p. at least 1 − δ for c = 2
√(

1−k(V,V ′)
)

log(2|Λ|/δ),
given constants A and τ in de Freitas et al. (2012).

We leave the proof to the supplementary material.

Given this sensitivity, we may apply the Laplace mecha-
nism to release f̃ .

Corollary 3. Let A(V) denote Algorithm 2 run on dataset
V . Given Assumption 1 and that f satisfies the assumptions
of de Freitas et al. (2012), f̃ is (ε, δ)-differentially private,
with respect to any neighboring dataset V ′, i.e.,

Pr
[
A(V) = f̃

]
≤ eε Pr

[
A(V ′) = f̃

]
+ δ.

Even though we must add noise to the maximum f we show
that f̃ is still close to the optimal f(λ∗).
Theorem 6. Given the assumptions of Corollary 3, we
have the utility guarantee for Algorithm 2:

|f̃ − f(λ∗)| ≤ Ω + a
(

Ω
ε + c

ε

)
w.p. at least 1−(δ + e−a) for Ω=Ae

− Tτ

(log T )d/4 .

We prove Corollary 3 and Theorem 6 in the supplementary
material. As in the noisy setting, selecting T as large as
possible is the best strategy, as this reduces the right side of
Theorem 6 (less Laplacian noise is required). We have thus
shown that in noisy and noise-free settings it is possible to
release private, high-quality hyper-parameter settings λ̃ as
well as private, near-optimal function evaluations ṽ, f̃ .

5. Without the GP assumption
Even if our our true validation score f is not drawn from
a Gaussian process (Assumption 1), we can still guarantee
differential privacy for releasing its value after Bayesian
optimization fBO = maxt≤T f(λt). In this section we
describe a different functional assumption on f that also
yields differentially private Bayesian optimization for the
case of machine learning hyper-parameter tuning.

Assume we have a (nonsensitive) training set T =
{(xi, yi)}ni=1, which, given a hyperparameter λ produces
a model w(λ) from the following optimization,

wλ = arg min
w

Oλ(w)︷ ︸︸ ︷
λ

2
‖w‖22 +

1
n

n∑
i=1

`(w,xi, yi), (9)

The function ` is a training loss function (e.g., logistic
loss, hinge loss). Given a (sensitive) validation set V =
{(xi, yi)}mi=1 ⊆ X we would like to use Bayesian opti-
mization to maximize a validation score fV .
Assumption 2. Our true validation score fV is

fV(wλ) = − 1
m

m∑
i=1

g(wλ,xi, yi),

where g(·) is a validation loss function that is L-Lipschitz
in wλ (e.g., ramp loss, normalized sigmoid (Huang et al.,
2014)). Additionally, the training model wλ is the mini-
mizer of eq. (9) for a training loss `(·) that is 1-Lipschitz in
wλ and convex (e.g., logistic loss, hinge loss).
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Algorithm 3 describes a procedure for privately releasing
the best validation accuracy fBO given Assumption 2. Dif-
ferent from previous algorithms, we may run Bayesian op-
timization in Algorithm 3 with any acquisition function
(e.g., expected improvement (Mockus et al., 1978), UCB)
and privacy is still guaranteed.

Algorithm 3 Private Bayesian Opt. (Lipschitz and convex)
1: Input: T size n; V size m; Λ; λmin; λmax; ε; T ; L; d
2: Run Bayesian optimization for T timesteps, observing:
fV(wλ1), . . . , fV(wλT ) for {λ1, . . . , λT }=ΛV,T ⊆Λ

3: fBO = maxt≤T fV(wλt)
4: g∗ = max(x,y)∈X ,w∈Rp g(w,x, y)

5: Draw θ ∼ Lap
[

1
ε min{ g

∗

m ,
L

mλmin
}+ (λmax−λmin)L

ελmaxλmin

]
6: Return: f̃L = fBO + θ

Similar to Algorithms 1 and 2 we use the Laplace mech-
anism to mask the possible change in validation accuracy
when a single record is changed in V . Different from the re-
lated work of Chaudhuri & Vinterbo (2013) changing V to
neighboring dataset V ′ may also lead to Bayesian optimiza-
tion searching different hyper-parameters, ΛV,T vs. ΛV′,T .
Therefore, we must bound the total global sensitivity of f
with respect to V and λ,
Definition 5. The total global sensitivity of f over all
neighboring datasets V,V ′ is

∆f , max
V,V′⊆X
λ,λ′∈Λ

|fV(wλ)− fV′(wλ′)|.

In the following theorem we demonstrate that we can
bound the change in f for arbitrary λ < λ′ (w.l.o.g.).
Theorem 7. Given Assumption 2, for neighboring V,V ′
and arbitrary λ < λ′ we have that,

|fV(wλ)−fV′(wλ′)| ≤ (λ′−λ)L
λ′λ + min

{
g∗

m ,
L

mλmin

}
where L is the Lipschitz constant of f , m is the size of V ,
and g∗=max(x,y)∈X ,w∈Rp g(w,x, y).

Proof. Applying the triangle inequality yields

|fV(wλ)− fV′(wλ′)| ≤ |fV(wλ)− fV(wλ′)|
+ |fV(wλ′)− fV′(wλ′)|.

This second term is bounded by Chaudhuri & Vinterbo
(2013) in the proof of Theorem 4. The only difference is,
as we are not adding random noise to wλ′ we have that
|fV(wλ′)− fV′(wλ′)| ≤ min{g∗/m,L/(mλmin) }.

To bound the first term, let Oλ(w) be the value of the ob-
jective in eq. (9) for a particular λ. Note that Oλ(w) and
Oλ′(w) are λ and λ′-strongly convex. Define

h(w) = Oλ′(w)−Oλ(w) = λ′−λ
2 ‖w‖

2
2. (10)

Further, define the minimizers wλ=arg minw Oλ(w) and
wλ′=arg minw[Oλ(w) + h(w)]. This implies that

∇Oλ(wλ) = ∇Oλ(wλ′) +∇h(wλ′) = 0. (11)

Given that Oλ is λ-strongly convex (Shalev-Shwartz,
2007), and by the Cauchy-Schwartz inequality,

λ ‖wλ−wλ′‖22 ≤
[
∇Oλ(wλ)−∇Oλ(wλ′)

]>[
wλ−wλ′

]
≤ ∇h(wλ′)>

[
wλ−wλ′

]
≤ ‖∇h(wλ′)‖2‖wλ−wλ′‖2.

Rearranging,

1
λ
‖∇h(wλ′)‖2 =

∥∥∥λ′−λ
2
∇‖wλ′‖22

∥∥∥
2
≥ ‖wλ−wλ′‖2

(12)

Now as wλ′ is the minimizer of Oλ′ we have,

∇‖wλ′‖22 = 2
λ′

[
− 1

n

∑n
i=1∇`(wλ′ ,xi, yi)

]
.

Substituting this value of wλ′ into eq. (12) and noting that
we can pull the positive constant term (λ′−λ)/2 out of the
norm and drop the negative sign in the norm gives us

1
λ‖∇h(wλ′)‖2 = λ′−λ

λλ′

∥∥∥ 1
n

∑n
i=1∇`(wλ′ ,xi, yi)

∥∥∥
2

= λ′−λ
λλ′ .

The last equality follows from the fact that the loss ` is
1-Lipschitz by Assumption 2 and the triangle inequality.
Thus, along with eq. (12), we have

‖wλ−wλ′‖2 ≤ 1
λ‖∇h(wλ′)‖2 ≤ λ′−λ

λλ′ .

Finally, as f is L-Lipschitz in w,

|fV(wλ)− fV(wλ′)| ≤ L‖wλ −wλ′‖2 ≤ Lλ
′−λ
λλ′

Combining the result of Chaudhuri & Vinterbo (2013) with
the above expression completes the proof. �

Given a finite set of hyperparameters Λ, in order to bound
the total global sensitivity of f note that, by Theorem 7,

∆f ≤ (λmax−λmin)L
λmaxλmin

+ min
{
g∗

m ,
L

mλmin

}
,

as (λ′−λ)/(λ′λ) is strictly increasing in λ′ and is strictly
decreasing in λ. Given the total global sensitivity of f we
can use the Laplace mechanism to ‘hide’ the validation set.

Corollary 4. Let A(V) denote Algorithm 3 applied on
dataset V . Given Assumption 2, f̃L is ε-differentially pri-
vate, i.e., Pr

[
A(V) = f̃L

]
≤ eε Pr

[
A(V ′) = f̃L

]
We leave the proof to the supplementary material. Further,
by the exponential tails of the Laplace mechanism we have
the following utility guarantee,
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Theorem 8. Given the assumptions of Theorem 7, we have
the following utility guarantee for f̃L w.r.t. fBO,

|f̃L − fBO| ≤ a
[

1
εm min{g∗, L

λmin
}+ (λmax−λmin)L

ελmaxλmin

]
with probability at least 1− e−a.

Proof. This follows exactly from the tail bound on Laplace
random variables, given in the proof of Theorem 6. �

One should set T as large as possible as Bayesian optimiza-
tion may only possibly find better parameter settings when
T is increased, and the noise added is independent of T .

6. Related work
There has been much work towards differentially pri-
vate convex optimization (Chaudhuri et al., 2011; Kifer
et al., 2012; Duchi et al., 2013; Song et al., 2013; Jain &
Thakurta, 2014; Bassily et al., 2014). The work of Bass-
ily et al. (2014) established upper and lower bounds for
the excess empirical risk of ε and (ε, δ)-differentially pri-
vate algorithms for many settings including convex and
strongly convex risk functions that may or may not be
smooth. There is also related work towards private high-
dimensional regression, where the dimensions outnum-
ber the number of instances (Kifer et al., 2012; Smith &
Thakurta, 2013a). In such cases the Hessian becomes sin-
gular and so the loss is nonconvex. However, it is possible
to use the restricted strong convexity of the loss in the re-
gression case to guarantee privacy.

Differential privacy has been shown to be achievable in
online and interactive kernel learning settings (Jain et al.,
2012; Smith & Thakurta, 2013b; Jain & Thakurta, 2013;
Mishra & Thakurta, 2014). In general, non-private online
algorithms are closest in spirit to the methods of Bayesian
optimization. However, all of the previous work in dif-
ferentially private online learning represents a dataset as
a sequence of bandit arm pulls (the equivalent notion in
Bayesian optimization is function evaluations f(λt)). In-
stead, we consider functions in which changing a single
dataset entry possibly affects all future function evalua-
tions. Closest to our work is that of Chaudhuri & Vin-
terbo (2013), who show that given a fixed set of hyper-
parameters which are always evaluated for any validation
set, they can return a private version of the index of the
best hyper-parameter, as well as a private model trained
with that hyper-parameter. In one sense, their setting is
more difficult as they guarantee privacy for the training and
validation sets (we assume the training set is fixed). On the
other hand, our selection strategy is more general in that,
if the validation set changes, Bayesian optimization could
search completely different hyper-parameters.

Bayesian optimization, largely due to its principled han-

dling of the exploration/exploitation trade-off of global,
black-box function optimization, is quickly becoming
the global optimization paradigm of choice. Alongside
promising empirical results there is a wealth of recent work
on convergence guarantees for Bayesian optimization, sim-
ilar to those used in this work (Srinivas et al., 2010; de Fre-
itas et al., 2012). Vazquez & Bect (2010) and Bull (2011)
give regret bounds for optimization with the expected im-
provement acquisition function. BayesGap (Hoffman et al.,
2014) gives a convergence guarantee for Bayesian opti-
mization with budget constraints. Bayesian optimization
has also been extended to multi-task optimization (Bar-
denet et al., 2013; Swersky et al., 2013), the parallel ex-
periment setting (Azimi et al., 2012; Snoek et al., 2012),
and to constrained optimization (Gardner et al., 2014).

7. Conclusion
We have introduced methods for privately releasing the
best hyper-parameters and validation accuracies in the case
of exact and noisy observations. Our work makes use
of the differential privacy framework, which has become
commonplace in private machine learning (Dwork & Roth,
2013). We believe we are the first to demonstrate differen-
tially private quantities in the setting of global optimization
of expensive (possibly nonconvex) functions, through the
lens of Bayesian optimization.

One key future direction is to design techniques to release
each sampled hyper-parameter and validation accuracy pri-
vately (during the run of Bayesian optimization). This
requires analyzing how the maximum upper-confidence
bound changes as the validation dataset changes. Another
interesting direction is extending our guarantees in Sections
3 and 4 to other acquisition functions.

For the case of machine learning hyper-parameter tuning
our results are designed to guarantee privacy of the valida-
tion set only (it is equivalent to guarantee that the training
set is never allowed to change). To simultaneously protect
the privacy of the training set it may be possible to use tech-
niques similar to the training stability results of Chaudhuri
& Vinterbo (2013). Training stability could be guaranteed,
for example, by assuming an additional training set kernel
that bounds the effect of altering the training set on f . We
leave developing these guarantees for future work.
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