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Abstract
Machine learning applications to molecule and protein design require models that
provide meaningful uncertainty estimates. For example, Bayesian optimization
for biomolecules searches through the space of viable designs, trading off the
exploration of uncertain regions with the exploitation of high-value areas. We
introduce protein optimization datasets as a benchmarking environment for ML
uncertainty on real-world distribution shifts; investigate scalable models robust to
the distribution shift inherent to large-batch, multi-round BO over protein space;
and show that intra-ensemble diversification improves calibration on multi-round
regression tasks, allowing for more principled biological compound design.

1 Introduction
Applications of machine learning to biological sequence design require well-calibrated models:
models whose uncertainty estimates align with their error rates. For example, protein design leverages
large-scale, batched Bayesian optimization (BO) [21, 4, 13, 26, 25, 14]. A labeled dataset of protein
sequences is iteratively built up by learning a surrogate ML model to predict the desired property,
then optimizing a function (e.g., the upper confidence bound acquisition function [21]) of this
model’s predictions and uncertainty estimates to select the next batch of sequences. Throughout
this optimization process, each new batch of sequences moves further away from the first batches
on which the surrogate model was trained, creating an intrinsic dataset shift to which the surrogate
model must remain robust.

Gaussian processes are the standard surrogate model for predictions and uncertainty estimates for
multi-round optimization. However, modern bio-technology enables wet-labs to evaluate thousands
of sequences in parallel; scaling GPs to such batch sizes require significant effort [23]. Yet, large
batch sizes also open the door to powerful surrogate models such as deep neural networks.

Ensembles of deep nets have been shown to achieve state-of-the-art calibration results under dataset
shift [12]. Recently, BatchEnsembles (BEs) [24] — ensembles of models that share a subset of their
trainable parameters — have been shown to achieve high accuracy and calibration even when trained
on subsets of data smaller than typical deep learning applications. As such, BEs are an appealing
model choice for multiround biological design tasks, where only a few thousand labeled sequences
are available during the first round(s). Furthermore, the performance of BE models is attributed [24]
to the diversity of the ensemble. This motivates our investigatation of how this diversity can be
improved to benefit calibration and predictions on biomolecule optimization tasks.
Related work. ML for protein design. Until recently, machine learning for protein design focused
on the small batch regime in which BO using Gaussian processes (GPs) could be applied [21]; Yang
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et al. [25] explored protein space by choosing exploration constraints. In [4], a GP trained on a small
subset of labeled sequences is used to identify membrane proteins with desirable properties. Recent
work has focused on learning useful protein embeddings [1, 6, 20]. Protein optimization has been
used to evaluate reinforcement learning algorithms [3]; recently, Angermueller et al. [2] investigated
portfolio algorithms for increased method robustness across different biological optimization tasks.

Deep models and uncertainty. To represent aleatoric uncertainty [10], Bishop [5] introduced mixture
density networks, which output means and standard deviations for a mixture of Gaussians. To
represent uncertainty that stems from model choice, Bayesian neural nets employ a distribution
over their parameters. Non-Bayesian methods include post-training temperature scaling [18] [8],
bootstrapping [16], and ensembling [12]. Approximate Bayesian methods for deep nets have been
developed for regression uncertainty, e.g., [9, 7, 13, 27, 15]. In practice, predictive uncertainty can be
estimated by computing a mean and variance from Monte-Carlo samples from the posterior.

In [17], the authors showed that deep ensembles [12] were among the most robust approaches for
uncertainty estimates under distributional shift. Recently, Wen et al. [24] introduced BatchEnsembles
(BEs), which use sets of rank-1 multiplicative factors to modulate the weights of a network, effectively
creating a parameter-efficient ensemble.As protein design typically requires models trained with
limited supervised data, BEs present an appealing choice of models.

2 Uncertainty in protein space
We focus on optimizing fixed-length protein sequences; hence, all protein sequences consist of
sequences of ` tokens belonging to the amino acid vocabulary V (|V| = 20).

2.1 Distribution shift in protein space
Protein datasets obtained via multi-round wet-lab experiments typically exhibit a dataset shift reflect-
ing the sequential nature of the design decisions. For example, after a first round of experiments, the
best protein seen so far may act as the seed for the next round of experiments. Figure 1a illustrates
this shift on a protein dataset [19, 22] obtained by applying Error-Prone Polymerase Chain Reaction
(EPPCR) to the wildtype Green Fluorescent Protein (GFP). Rao et al. [19] sliced this dataset into splits
that correspond to increasing number of amino acid mutations away from the wildtype sequence.

Dataset shifts of similar nature occur when sequential experimental decisions are dictated by machine
learning models; then, dataset shift depends upon the generalization ability and biases of the surrogate
regressor. Figure 1b illustrates one such case: when optimizing the likelihood of a protein sequence
under the Hidden Markov Model (HMM) that characterizes a protein family, the average Hamming
distance between proposed sequences and the first batch increases over time.

2.2 Uncertainty in the regression setting
In the regression case, careful design choices are required to obtain a source of uncertainty. We
focus on ensemble methods due to their relative simplicity coupled with strong observed performance
across regression tasks [12] and under distributional shift [17].

Epistemic ensembles. Ensembles capture uncertainty over the parameters of the model, which is
reflected in different predictions on held out data. We take the mean of the ensemble predictions
as the predicted value, ŷ, and their standard deviation, σ̂, reflects the uncertainty. Each member is
trained to minimize the mean squared error between its prediction and the true target value y.

(a) Distribution shift in the GFP dataset [19] (b) Distribution shift in the Pfam dataset

Figure 1: Distribution shift on protein datasets, on (a) the real-world GFP dataset and (b) the synthetic
Pfam dataset obtained by multi-round in-silico optimization.
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Epistemic + aleatoric ensembles. To capture aleatoric uncertainty [10], we ask each ensemble
member to predict a mean and standard deviation for each sequence. Each model in the ensemble is
trained to maximize the log probability of the true regression values under the model’s local normal
distribution. The ensemble prediction ŷ is the mean of all predicted regression values; the standard
deviation σ̂ is aggregated as a mixture of Gaussians: σ̂2 = 1

n

∑n
i=1(σ

2
i + ŷ2i − ŷ2).

We found that ensembles that represent epistemic and aleatoric uncertainty were more robust at
finding high-quality proteins (Table 1) than simple epistemic ensembles. Thus, we focus our BE
analysis on models that also capture aleatoric uncertainty.

2.3 Evaluating model performance in the multi-round setting
The multi-round protein-design setting is defined by sequential experimental decisions made in the
process of proposing new sequences. At round t, we have access to a total of n = t × b protein
sequences s1, . . . , sn ∈ V` with associated rewards r1, . . . rn ∈ R, which are used to train a regressor
f : V` → R. To propose the next batch of sequences, we must solve an inner acquisition problem,
defined by (a) the acquisition function φ : V` → R, which evaluates protein sequences based on the
regressor’s predicted value and uncertainty,1 and by (b) a method to solve the inner-loop problem

argmaxs∈V` φ(s) = argmaxs∈V` φ
(
ŷ(f(s)), σ̂(f(s))

)
. (1)

Problem 1 is typically a combinatorial problem requiring local search approximations. As in [2], we
keep the top b solutions st+1,1, . . . , st+1,b to problem (1) to define a batch; this batch is then sent to
the wet-lab for labeling, taking advantage of the large scale parallelism available in wet-labs.

Batch t + 1, for which we obtain the values from the wet-lab, is the natural choice to evaluate
surrogate model calibration. Crucially, when comparing different surrogate models, we are doing so
on different (t+ 1)-batches, as the current surrogate regressor, which depends on the previous batch,
selects the next batch of sequences.The negative log likelihood (NLL) on the next batch is defined as

− 1
|B(t+1)|

∑
s∈B(t+1)

log Pr(rs|f (t)y (s), f (t)σ (s)),

where f (t) is the regressor trained on batches B1, . . . , Bt, and batch Bt+1 is obtained by (most often
approximately) solving (1) given f (t).

2.4 Diversifying BatchEnsembles with log determinants
The calibration of an ensemble is correlated with the diversity of models in the ensemble; this diversity
is typically measured based on similarities between logit-space predictions from different ensemble
members [24]. Achieving model diversity within parameterization space is an appealing alternative,
raising the possibility of diverse models that are not forced to disagree on training data.

We propose to apply weight diversification to BatchEnsemble (BE) models. Recall that BE models
consist of n models which also share a common weight matrix W ; each model applies a local, rank-1
perturbation W ′ = r · s> to the shared weight matrix W to introduce variations between ensemble
members. Vectors r and s are commonly referred to as fast weights.

To increase BE weight diversity, we add a regularization term that penalizes fast weights that are
linear combinations of each other; this can easily be done by way of the determinant of the linear
kernel over weights. Specifically, given fast weights vectors r1, . . . , rn corresponding to the same
layer in n different members of the BatchEnsemble, we add as a training penalty the following term:

R(r1, . . . , rn) = −α log det
[
K
(
ri/‖ri‖2, rj/‖rj‖2

)
i,j

]
, (2)

where K is any kernel function applied to the fast weights, α the regularization coefficient, and the
negative sign encourages larger determinants when minimizing the training loss. The fast weights are
normalized before applying the kernel, as the regularization only aims to increase model diversity;
without the normalization, penalizing the diagonal term would amount to negative weight decay.

To avoid harming the initial training phase, we chose to reweight this regularization by an exponential
growth over the number of epochs, so that the importance given to diverse weights increases overtime.
With a linear kernel K, regularization (2) guarantees that — within a layer — no fast weight can be
written as a linear combination of fast weights of other ensemble members. Experimentally, linear
kernels outperformed exponentiated quadratic kernels, and so we only report results on linear kernels.

1We use the upper confidence bound (UCB) acquisition function [11] with parameter β = 1.
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3 Experimental results
To evaluate estimates of uncertainty in the multi-round protein design setting, we consider black-box
optimization problems that simulate machine learning-aided protein design tasks.

Solver PdbIsing Pfam Distance

Aleat. BE MLP - 0.1 10 7 9
Aleat. BE MLP 7 8 7
Aleat. BE MLP - 0.001 9 9 6
Aleat. BE MLP - 1.0 8 6 8
AutoTuned 11 5 11
Aleat. MLP ensemble 5 10 10
Epis. MLP ensemble 4 11 5
SingleMutant 3 3 3
GP 2 4 4
Evolution 6 2 2
Random 1 1 1

Table 1: Average rank of each regressor based on the best
discovered protein (higher is better); BE models are robust,
and diversity regularization slightly improves robustness.

These problems fall into three categories: (a)
maximizing the energy of protein contact Ising
model; (b) maximizing the likelihood of a pro-
tein under an HMM characterizing a specific
protein class; (c) maximizing cosine similarity
to an unknown protein in embedding space.
Each class contains problem instances corre-
sponding to different protein targets. These
problems were introduced in [3, 2], which in-
clude a more detailed problem description.

Given the amount of problem types and in-
stances, we report results by ranking differ-
ent regressors, based on their average perfor-
mance across tasks.2 We set the batch size to
500, in order to still be able to benchmark GP
performance. We consider the following regressors:

– EPIS. ENSEMBLE: BO + ensemble regressor; ensemble agreement acts as std. deviation.
– ALEAT. ENSEMBLE: BO + ensemble regressor; members predict means and std. deviations.
– ALEAT. BE: BO + BE regressor; ensemble members predict means and standard deviations.
– GP: BO + GP with RBF kernel over one-hot encodings and lengthscale set to the sequence length.
– AUTOTUNED [3]: BO + Bayesian ridge, lasso, and random forest regressors. At each step, each

regressor is tuned with cross-validation. The best regressor(s) predict the next batch.
– SINGLEMUTANT: An algorithm that explores mutations near high-reward sequences [2].
– EVOLUTION: A genetic algorithm that combines high-reward sequences [3].
– RANDOM: Proposes sequences randomly.
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(a) Regressor ranking based on correlation between
true reward and predicted reward, averaged over all
rounds and problems (higher is better).
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(b) Ranking based on the regressor’s negative log-
likelihood on the next batch, averaged over all
rounds and problems (lower is better).

Figure 2: Ranking of methods to predict protein function and uncertainty estimates on protein optimization
tasks. Diversity penalties on BE models improve predictive ability throughout the entire optimization process,
increasing both BE’s ability to identify good sequences (a) and their calibration on the next batch (b).
Results are averaged over 5 trials; inner-loop problems are solved by SINGLEMUTANT for 10 steps;
at each step all single mutants of the previous best sequence are explored. Ensembles are of size 10.
Detailed optimization curves per-problem are provided in Appendix B (Figures 5 and 6).

Table 1 summarizes the performance of each regressor, based on the highest-reward sequence that
BO is able to identify using the regressor as a surrogate model of protein fitness. BE regressors

2For consistency with [2], larger ranks correspond to metrics with higher values: a large rank (e.g., 10) for
sequence reward indicates good performance, and a low rank (e.g., 1) indicates good performance for NLL.
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are the most robust across different problem types; log-determinant penalties significantly improve
the model’s ability identify high-quality sequences. Figure 2 shows the ranking of each regressor
according to their ability to rank the proposed sequences correctly as well as their calibration on
the next batch. Adding a diversification penalty to BatchEnsembles significantly improves their
calibration on the next batch (Fig. 2b), as well as their ability to detect high-quality sequences
(Fig. 2a). This is partially due to improved accuracy on the next sequences (Fig. 3 in Appendix B),
but not only — the epistemic ensemble achieves better MSE on the next batch, but worse calibration.
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A Hyperparameter ranges and implementation details

Model Architecture

MLP 2 layers of 256 neurons
CNN Conv1D(kernel=32, filter=10)→Conv1D(kernel = 64, filter = 10)

Table 2: Model architecture used in experiments.

For multiround experiments, we used ensembles of size 10. BE models used a random sign initialization of
-0.25, a decay rate of 1.01 over 25 epochs. All models were trained using Adam default hyperparameters, a batch
size of 50, over 25 epochs.

– When comparing to the GP baseline, we used a GP RBF kernel on one-hot encodings, with a
lengthscale set to sequence length.

– Aleatoric uncertainty, when predicted, was predicted using 0.05 + sigmoid(previous layer).

– To avoid numerical unstability, log determinants were computed with an additional diagonal term
0.001 · I .
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Figure 3: Multiround performance of regressors, based on their mean squared error on the next batch.
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(a) Methods ranked by their impact on the highest
sequence found during multiround optimization.
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(b) Regularization methods ranked by the highest
sequence found during multiround optimization.

Figure 4: Multiround performance of BE regressors with different diversification penalties.
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Figure 5: Multiround performance of BE regressors with different diversification penalties, on a
protein target where diversification improves the search through protein space.
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Figure 6: Multiround performance of BE regressors with different diversification penalties, on a
protein target where diversification did not improve the search through protein space.
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B.1 tSNE Visualization of proposed batches

Figure 7: tSNE visualization of proposed batches: non-ensembling baselines (Rows 1 - 3) vs
deep ensemble (Row 4). All figures are representative outcomes of applying the denoted solver to
multiround optimization of the cosine similarity problem (Multiround protein task c.) tSNE for all
sequences proposed by respective solver are shown on left, tSNE for only the subset of successful
proposed sequences with reward >= 0.8 max reward are shown on right. Successive proposed batches
are colorized ordinally according to round, as indicated by color bar.
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Figure 8: tSNE visualization of proposed batches: No diversity enforcement (top row) vs. diversity
enforcement (bottom row). All figures are representative outcomes of applying the denoted solver to
multiround optimization of the cosine similarity problem (Multiround protein task c.) tSNE for all
sequences proposed by respective solver are shown on left, tSNE for only the subset of successful
proposed sequences with reward >= 0.8 max reward are shown on right. Successive proposed batches
are colorized ordinally according to round, as indicated by color bar.
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