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Abstract

These are selected problems for the textbook: Patterns, predictions, and actions: Founda-

tions of machine learning. Hardt and Recht. Princeton University Press, 2022.

You can access the textbook at https://mlstory.org.

These exercises primarily come from teaching UC Berkeley’s CS 281a in the Fall of 2019,

2020, and 2021. We are grateful to our graduate student instructors Mihaela Curmei, Sarah

Dean, Frances Ding, Sara Fridovich-Keil, Wenshuo Guo, Chloe Hsu, Meena Jagadeesan, John

Miller, Robert Netzorg, Juan C. Perdomo, and Vickie Ye, for their help in developing this

resource.
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1 Fundamentals of prediction

1.1 Problem

Let Y be a continuous random variable distributed over the closed interval [0,1]. Under the null

hypothesis H0, Y is uniform:

pY |H(Y |H0) =

{
1 0 ≤ y ≤ 1

0 otherwise

Under the alternative hypothesis H1, the conditional pdf of Y is as follows:

pY |H(Y |H1) =

{
2y 0 ≤ y ≤ 1

0 otherwise

The a priori probability that y is uniformly distributed is p.

1. Find the decision rule that minimizes the probability of error.

2. Find the closed form expression for the operating characteristic of the likelihood ratio test

(LRT), i.e., PD as a function of PF for the LRT.

3. Suppose we require PD to be at least (1 + ϵ)PF , where ϵ > 0 is a fixed constant. Find

Pmax
D (ϵ), the maximal value of PD that is achievable under this constraint.
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1.2 Problem

A disease has two varieties: the “0” strain and the “1” strain, with a priori probabilities p0 and p1
respectively.

1. Initially, a rather noisy test was developed which strain is present for patients who are known

to have one of the two varieties. The output of the test is the value y1 of a random variable

Y1. Given that the strain is “0” (H = H0), Y1 = 5 + Z1, and given that the strain is “1”

(H = H1), Y1 = 1+Z1. Here Z1 is a random variable indicating measurement noise which is

independent of H and is Gaussian with Z1 ∼ N (0, σ2). Find the MAP decision rule i.e.,

determine the set of observations y1 for which the decision is Ĥ = H1. Compute the error

probabilities P[Ĥ = H1|H = H0] and P[Ĥ = H0|H = H1].

2. Suppose a new medical procedure is devised with two observation random variables Y1, Y2
with Y1 being the same as in the first part. And Y2 = Y1 + Z2 where Z2 is independent

of both Z1 and H and Z2 ∼ N (0, σ2). Find the MAP decision rule for Ĥ in terms of

the joint observation (y1, y2). Compute the error probabilities P[Ĥ = H1|H = H0] and

P[Ĥ = H0|H = H1]. Did the extra measurement improve the error probabilities? Explain

why or why not?

3. Suppose in the test in the first part with a single observation y1, the random variable Z1

is uniformly distributed between 0 and 1 instead of being Gaussian. Again, find the MAP

decision rule and error probabilities.
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1.3 Problem

In this problem, we consider an automated resume screening tool which is used by a company to

sort candidates based on whether or not they are predicted to be invited for an on site interview

after an initial phone screen. Let the random variable X denote the features of a candidate’s

application and Y denote whether a candidate is invited for an on site interview, where Y = 1

indicates that an individual was invited.

1. Suppose that there are many qualified individuals looking for jobs and that paying recruiters

to call applicants is expensive. As a result, it is comparatively half as costly for the company

to miss a candidate who would have been invited on site than it is to spend time calling an

individual who is not invited for an interview (i.e. for some α > 0, C10 = α, C01 = α
2 , and

other costs are zero). Show that the company’s optimal decision rule for resume

screening has the form

s(x) = E[Y |X = x] ≥ t ,

and find the value of t.

2. Now suppose that unemployment has gone down, and there are no longer many qualified

candidates looking for jobs. As a result, it is instead twice as costly to miss good candidates

than it is to call ones who are not invited for an interview (i.e. for some β > 0, C10 = β,

C01 = 2β, and other costs are zero). How does the optimal decision rule change?

Suppose now that some score function ŝ(x) has been estimated from historical data, and a

threshold rule is applied to assign individuals the screening predictions Ŷ = 1 for those who will be

considered more closely by recruiters and Ŷ = 0 for those who will not. In the United States, it is

illegal to discriminate against job applicants on the basis of religion, and your job is to evaluate this

tool with that in mind. Below is a table which shows the predictions and outcomes for applicants

split by membership in a minority religious group, with A = 1 indicating that an individual is a

member of this group and A = 0 indicating that they are not. We have data from 500 candidates

in the religious group and 5, 000 candidates not in the religious group.

A = 1 A = 0

Y = 0 Y = 1 Y = 0 Y = 1

Ŷ = 0 360 40 400 4050 450 4500

Ŷ = 1 40 60 100 200 300 500

400 100 4250 750

3. With membership in the religious group as the sensitive attribute, does this classifier

satisfy independence? Does it satisfy sufficiency? Justify your answer.

4. For the criteria that the classifier doesn’t satisfy, propose a group-dependent change to

the threshold that results in a classifier that does satisfy the criteria. You do not need

to specify exact quantities, rather comparisons with the current threshold. You should not

propose a trivial threshold that results in 0% or 100% acceptance rates.
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5. Compare and contrast the value of the intervention you suggested in part 4 for the following

two circumstances:

• You learn that the historical data comes from a hiring manager who is a member of

the religious group and has been heard telling fellow members that they have an “in”

regardless of their qualifications.

• You learn that there is a well regarded religious university nearby that sends the resumes

of highly qualified students to the company. Historically, these candidates have highly

relevant skill sets and make up a majority of applications from the religious group.
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1.4 Problem

This question introduces the Hoeffding bound.

1. ϵ is a random variable that is either +1 or -1 with equal probability. We call such random

variables Rademacher random variables. Show that ϵ is sub-Gaussian with parameter σ = 1.

i.e., show ∀λ:
E[exp(λϵ)] ≤ exp(σ2λ2/2)

2. The result from part 1 can be generalized to show that any bounded random variableX ∈ [a, b]

is sub-Gaussian with σ = (b− a)/2. Using this fact, prove that:

P

[
n∑

i=1

(Xi − EXi) ≥ t

]
≤ exp

(
−2t2

n(b− a)2

)
where Xi are independent random variables supported on [a, b]. This result is known as the

Hoeffding bound.
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1.5 Problem

Suppose we are deciding between two hypotheses H ∈ {H0, H1} based on observation y ∈ Y ∈ R+.

The models under the two hypotheses are

H0 : pY |H(y|H0) =

{
e−y if y ≥ 0

0 otherwise,

H1 : pY |H(y|H1) =

{
2e−2y if y ≥ 0

0 otherwise,

The prior beliefs areP(H = H1) = p and P(H = H0) = 1−p. Associated with the possible decisions

are the costs C00 = C11 = 0, and 0 ≤ C01, C10 ≤ ∞, where Cij is the cost of deciding Ĥ(y) = Hi

when the correct hypothesis is H = Hj .

1. The decision rule Ĥ(·) that minimizes the expected cost takes the form:

Ĥ =

{
H0 if y ≥ γ

H1 if y < γ,

Express γ in terms of C10, C01 and p.

2. Express PD as a function of PF . Note that PD and PF are defined as before:

PD = P(Ĥ = H1|H = H1)

PF = P(Ĥ = H1|H = H0)

In the remainder of the problem, consider minimizing expected cost over ”3-way” decision

rules, whereby, in addition to Ĥ(y) = H0 or Ĥ(y) = H1, one can decide Ĥ(y) =‘?’ (“I don’t

know”) for some value(s) of y. Let us denote the corresponding costs using C?0 and C?1

when the underlying hypotheses are H0 and H1, respectively. Assume the costs are chosen

to satisfy 0 = C00 ≤ C?0 ≤ C10 and 0 = C11 ≤ C?1 ≤ C01, so that admitting “I don’t know”

is less costly than making a wrong decision but more costly than making a correct decision.

3. The optimal decision rule Ĥ3−way(·) in this case can be expressed in the form

Ĥ3−way(y)


H0 if r(y) ≤ u and r(y) ≤ v

H1 if r(y) ≥ u and r(y) ≥ w

‘?’ if r(y) ≥ v and r(y) ≤ w

where r(y) = π1(y)
π0(y)

with π0(y) = P(H = H0|Y = y) and π1(y) = P(H = H1|Y = y), and

u, v, w are constants. Express u, v, w in terms of the costs Cij(i ∈ {0, 1, ‘?’} and j ∈ {0, 1}).

4. Determine whether the following (italicized) statement is true or false, and justify your

answer:
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For at least some value(s) of PF , the optimal 3-way decision rule can achieve a greater PD

than that corresponding to the operating characteristic you found in part (b).
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1.6 Problem

In this problem, we continue with the case study from the above criminal justice case study with

conceptual questions regarding the claims made by both companies. In ProPublica’s 2016 investi-

gation, they claim that COMPAS exhibited racial bias against black individuals. Specifically, the

investigation revealed a racial disparity in the error rates of the tool. A higher rate of black than

white defendants designated as “high risk” did not recividate, while a higher rate of white than

black defendants designated as “low risk” did.

Northpointe, the company that sells COMPAS, published a report in response, arguing that

their risk socres are equally accurate and predictive for white and black defendants. In order to

evaluate whether both of their claims are true, we analyze the allegations and response in the

framework of our non-discrimination criteria: independence, separation, and sufficiency.

In this problem, we will view the problem as binary. We let the classifier Ŷ be 1 if a defendant

is “high risk” and 0 if they are “low risk” according to their COMPAS score. Let Y be the true

outcome, 1 if an individual recidivated and 0 otherwise. Finally, let A be the race of the defendant.

We will consider the nondiscrimination criteria of independence, separation, and sufficiency.

1. Interpret the following statements from ProPublica as relations between condi-

tional distributions of the classifier, outcome, and sensitive attribute:

(a) Black defendants who did not recidivate over within two years were nearly twice as likely

to be misclassified than their white counterparts.

(b) White defendants who re-offended within the next two years were mistakenly labeled

“low risk” almost twice as often.

2. Do ProPublica’s statements imply anything about COMPAS with respect to the

nondiscrimination criteria? If so, please explain the way(s) in which they relate

to them.

3. Interpret the following statements from Northpointe as relations between condi-

tional probabilities:

(a) In comparison with white defendants, a similar percentage of black defendants were

labeled “higher risk” but did not re-offend.

(b) A comparable percentage of black as white defendants were labeled “low risk” but did

re-offend.

4. How are NorthPointe’s statements related to the nondiscrimination criteria?

5. Suppose sufficiency is satisfied. We define pa as the proportion of group a predicted to be

“high risk,” TPRa as the true positive rate within group a, FPRa as the false positive rate

within group a, PPV as the positive preditive value, and NPV as the negative predictive

value.

Verify that the following relations are true:
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TPRa =
PPV · pa

PPV · pa + (1−NPV) · (1− pa)
,FPRa =

(1− PPV) · pa
(1− PPV) · pa +NPV · (1− pa)

, (1.1)

for a ∈ {black,white}.

6. Show that if sufficiency is exactly satisfied and recidivism rates differ between

groups, the pblack ̸= pwhite.

Explain why 1.1 implies that the separation and sufficiency criteria cannot be

simultaneously met when rates of recidivism differ among different groups.

7. Conversely, show that for Ŷ with nonzero true and false positive rates, if separa-

tion holds, there must be two groups with different positive predictive values.

8. In light of the above discussion, what can we say about ProPublica’s statements?

Could they have observed anything else?

9. Consider the observation that individual judges can biased. For instance, judges are statisti-

cally more likely to give harsher sentences the week after unexpected football game losses for

the state’s college football team. 1 In light of this fact, give a reason why we should

or should not favor COMPAS as being more objective.

1https://www.nber.org/papers/w22611
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1.7 Problem

This problem is adapted from Chapter 2 of Fairness and Machine Learning: Limitations and

Opportunities (fairmlbook.org).

Risk assessment is an important component of the criminal justice system. In the United

States, judges set bail and decide pre-trial detention based on their assessment of the risk that a

released defendant would fail to appear at trial or cause harm to the public. While actuarial risk

assessment is not new in this domain, there is increasing support for the use of learned risk scores

to guide human judges in their decisions. Proponents argue that machine learning could lead to

greater efficiency and less biased decisions compared with human judgment. Critical voices raise

the concern that such scores can perpetuate inequalities found in historical data, and systematically

harm historically disadvantaged groups.

In this problem, we’ll begin to scratch at the surface of the complex criminal justice domain.

Our starting point is an investigation carried out by ProPublica2 of a proprietary risk score, called

COMPAS score. These scores are intended to assess the risk that a defendant will re-offend, a

task often called recidivism prediction. Within the academic community, the ProPublica article

drew much attention to the trade-off between separation and sufficiency that we saw earlier in the

chapter.

We’ll use data obtained and released by ProPublica as a result of a public records request in

Broward Country, Florida, concerning the COMPAS recidivism prediction system 3. The data is

available at https://raw.githubusercontent.com/propublica/compas-analysis/master/compas-scores-two-years.

csv. Following ProPublica’s analysis, we’ll filter out rows where days b screening arrest is over

30 or under −30, leaving us with 6, 172 rows (you’ll need to download the data from the link above

and apply this filter).4

1. Sufficiency

(a) Plot the fraction of defendants recidivating within two years (two year recid

== 1) as a function of risk score (decile score), for black defendants (race ==

"African-American") and white defendants (race == "Caucasian").

(b) Based on these plots, does the risk score satisfy sufficiency across racial groups

in this dataset? This is somewhat subjective, since we want to allow for approximate

equality between groups; justify your answer in a sentence or two. Hint: confidence

intervals on your plots may be useful.

2. Separation

2Julia Angwin et al., “Machine Bias,” ProPublica, May 2016, https://www.propublica.org/article/

machine-bias-risk-assessments-in-criminal-sentencing.
3https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
4The pandas python library (https://pandas.pydata.org/) can be very helpful for handling operations on CSV-

like datasets. We suggest you start there, using pandas.read csv() to load in the data. For reporting results, you

might find pandas.DataFrame.to latex() helpful.
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(a) Plot the distribution of scores received by the positive class (recidivists) and

the distribution of scores received by the negative class (non-recidivists) for

black defendants and for white defendants.

(b) Based on these plots, does COMPAS achieve separation between the risk score

and race?

3. From scores to classifiers

Now, we consider using these scores to create a classifier to guess whether an individual will

recidivate. The classifier will take the form of a threshold on the COMPAS score.

(a) Can you find two thresholds (one for black defendants, one for white defen-

dants) such that FPR and FNR are roughly equal for the two groups (say,

within 1% of each other)? This means that your classifier satisfies separation. Note:

trivial thresholds of 0 or 11 don’t count. Hint: it may be helpful to plot ROC curves for

each race.

(b) Does the resulting classifier satisfy sufficiency?

Note: you get to make some design decisions about how you produce your tests and interpret

results in this problem. It’s meant to be open ended, but please state and justify your decisions (e.g.

confidence parameters on any confidence intervals), as well as give ample but concise justifications

for any conclusions you reach from your analysis.
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1.8 Problem

Consider two probability distributions P and Q and two players A and B. The game proceeds as

follows: Player A flips a fair coin and denote the result as C ∈ {Heads, Tails}. Player B doesn’t

know the result and he’s goal is to guess C. If the result is a head, player A draws a sample x

according to the distribution P ; otherwise player A draws it according to the distribution Q. Then

A shows the sample to B.

Show that the probability that player B’s guess is correct under he’s best strategy is 1
2(1 +

P (D) − Q(D)), where D = {x ∈ X : P (x) > Q(x)}. Notice that P (D) − Q(D) is the total

variational distance, and this illustrates an operational interpretation of it.
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2 Supervised learning

2.1 Problem

We have seen an upper bound on the number of mistakes the perceptron algorithm makes on a

dataset that is linearly separable by a margin. In this problem, we will analyze what happens when

the dataset is not perfectly separable.

For a dataset S, D(S) = max(x,y)∈S ||x|| denotes its diameter and γ(S) = max||w||=1 yi⟨w, xi⟩
denotes its margin. Then, we know the perceptron makes at most (2 +D(S)2)/γ(S)2 mistakes on

S.

1. Construct a dataset of size n that has diameter at most D and for which the perceptron

algorithm makes Ω(n) mistakes in expectation.

2. In the previous part, we showed that the perceptron algorithm could make many mistakes

when the linear separability by a margin condition is violated. But if the violation is

small, we may be able to still get a low mistake bound. We can quantify the violation

as the amount by which to move points to achieve separability by a margin.

In the dataset S = ((x1, y1), . . . , (xm, ym)), let u be any vector with ||u|| = 1 and let γ > 0.

Define the deviation of point i as di = max{0, γ−yi⟨ui, xi⟩}. And let ∆(S; γ, u) =
√∑m

i=1 d
2
i .

You will show that then the number of mistakes the perceptron makes on S is at

most (√
2 +D(S)2 +∆(S; γ, u)

)2

γ2
.

We will show this by a reduction of the inseparable case to a separable case in a

higher dimension. Consider a higher dimensional dataset S′ = ((x′1, y1), . . . , (x
′
m, ym)),

where each xi ∈ Rn+m. The first n coordinates of x′i are the same as the first n coordinates

of xi. The n+ ith coordinate of x′i is δ (to be set later) and all other coordinates greater than

n are zero.

Extend u to u′ ∈ Rm+n with the first n coordinates of u′ equal to u/Z (value of Z to be

chosen later) and the n+ ith coordinate is (yidi)/(Zδ).

x′i =



xi
0
...

δ
...

0

 ← (n+ i)th
u′ =



u/Z

(y1d1)/(Zδ)
...

(yidi)/(Zδ)
...

(ymdm)/(Zδ)

 ← (n+ i)th
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(a) Compute an upper bound on the diameter of S′ (max ||x′i||).

(b) Show that S′ is separable by u′ and compute the margin of separation.

(c) Set values of Z, δ to optimize the mistake bound on the extended dataset S′.

(d) Show that the predictions of the perceptron on the extended dataset S′ are the same as

in the original dataset S.
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2.2 Problem

In this problem, we study how gradient descent can be used to solve online learning problems.

Suppose we have a sequence of T examples (x1, y1), . . . , (xT , yT ) with xt ∈ Rd and yt ∈ {−1, 1} for
all t. In contrast to batch learning, the examples arrive one at a time, and we try to predict yt
using models of the form fw(xt) = sign(⟨w, xt⟩) for w ∈ Rd.

We wish to find a sequence of weights w1, w2, . . . , wT that minimizes the number of errors we

make on the sequence, where we make an error at time t if fwt(xt) ̸= yt.

Consider the loss function ℓt(w) = max{0,−yt⟨w, xt⟩}. Suppose w1 = 0, and, after observing

example (xt, yt), we update wt with a gradient step on ℓt:

wt+1 = wt −∇ℓt(wt).

Define the margin γ of a linearly separable sequence (x1, y1), . . . , (xT , yT ) as

γ = max
∥w∥=1

min
t∈{1,...,T}

yt⟨w, xt⟩.. (2.1)

Assume γ > 0. For simplicity, also assume ∥xt∥2 ≤ 1 for all t. Let m denote the number of

errors the sequence {wt} makes on the sequence (x1, y1), . . . , (xT , yT ).

1. Compute a (sub)-gradient of ℓt for t ∈ {1, . . . , T}.

2. Prove ∥wt+1∥22 ≤ ∥wt∥22 + I{fwt(xt) ̸= yt}.

3. Prove ∥wT+1∥22 ≤ m.

4. Let w∗ be a maximizer of (2.1). Prove γI{fwt(xt) ̸= yt} ≤ ⟨w∗, wt+1 − wt⟩ for every t.

5. Summing the bound in part (d) over every t, prove mγ ≤ ⟨w∗, wT+1⟩ ≤
√
m. Hint: Use

telescoping sums and w1 = 0.

6. Argue the number of errors m ≤ 1
γ2 .
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2.3 Problem

Suppose you go to a casino which has n ≥ 2 slot machines, where the payouts from the i-th

slot machine are i.i.d. random variables with normal distribution N (θi, 1), where θi are fixed real

numbers. Assume that one of the slot machines has mean payout θmax, and all other machines have

mean payout θmin < θmax.

For a fixed error probability δ ∈ (0, 1), your goal is to identify the slot machine with the highest

mean payout with probability 1 − δ. You are allowed to do this by pulling each slot machine T

times, guessing the best slot machine based based on the T × n payouts observed. At the end, you

want to ensure that your guess is correct with probability at least 1− δ.

This problem will walk you through steps necessary to determine an upper bound on the number

of pulls T you need to identify the best slot machine.

1. Show that if X is a real valued random variable, you can bound P[X ≥ t] ≤ E[X(X ≥
t)]/t for all t > 0, where (X ≥ t) = 1 if X ≥ t, and 0 otherwise. You may assume X has a

continuous density p(x).

2. Let Z be distributed as N (0, 1). Show that

∀t > 0, P[Z ≥ t] ≤ 1√
2πt

e−t2/2

Use this to bound P[|Z| ≥ t].

3. Let Z1, . . . , Zn be distributed N (0, 1) (not necessarily independent!), and let n ≥ 2. Show

that for any t ≥ 1

P[max
i
|Zi| ≥ t] ≤ n ·

√
2

π
e−t2/2.

4. Suppose n = 2. Show that that, in order to identify the slot machine with the

highest payout with probability 1− δ, it suffices to take

T ≥ max

{
1,

4 log(2/δ)

(θmax − θmin)2

}
samples.

You should use the inequalities developed earlier in the problem.

5. Generalize the above result to n ≥ 2 slot machines. Hint: when δ is a constant (say

δ = 1/2), there should be a log n somewhere in your answer.
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2.4 Problem

In this problem, we will train linear classifiers on census data to predict whether individuals have

annual incomes above a certain level. To download these datasets, run pip install folktables.

For documentation on the datasets and prediction tasks, please see

https://github.com/socialfoundations/folktables

1. Download the data source for 2018 in a one-year time horizon using

data_source = ACSDataSource(survey_year=’2018’, horizon=’1-Year’, survey=’person’)

acs_data = data_source.get_data(download=True)

Use the following code to create a prediction problem which labels individuals based on

whether their income exceeds 50,000:

ACSIncomeNew = folktables.BasicProblem(

features=[

’AGEP’,

’COW’,

’SCHL’,

’MAR’,

’OCCP’,

’POBP’,

’RELP’,

’WKHP’,

’SEX’,

’RAC1P’,

],

target=’PINCP’,

target_transform=lambda x: x > 50000,

group=’RAC1P’,

preprocess=adult_filter,

postprocess=lambda x: np.nan_to_num(x, -1),

)

2. Split the data so that 20% of the data is in the test set, and train a classifier using logistic

regression. (Hint: we recommend that you use the sklearn package.) Report the true positive

rate, the false positive rate, and the accuracy (i.e. the fraction of data labelled correctly).
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3. Now, train classifiers for different income thresholds. That is, change the 50000 in part 2

to 10000, 20000, 75000, and 100000. How do the TPRs and FPRs change as you vary the

classification criterion? Provide a possible explanation.

4. For the task with income threshold 50,000, try to beat the performance of logistic regression.

(That is, try to get a higher accuracy than that achieved in part 2.) You can use any approach

of your choice. Report the true positive rate, the false positive rate, and the accuracy that

your approach achieves. Extra credit: try to beat 80% accuracy. If you achieve X%, you

will receive (X − 80)/2 points of extra credit.

20



2.5 Problem

Suppose we have a sequence of n examples (x1, y1), . . . , (xn, yn) with xi ∈ Rd, yi ∈ {−1, 1} for all
i, and ∥xi∥ ≤ 1 for all i. Suppose that this data set is linearly separable with margin γ. That is,

there exists a vector w⋆ with Euclidean norm 1 such that

γ = min
i

yiw
T
⋆ xi

Consider the empirical risk minimization problem with a hinge loss:

minimize 1
n

∑n
i=1 hinge(w

Txi, yi)

where

hinge(z, y) = max(1− zy, 0) .

Suppose we run stochastic gradient descent on this problem with batch size 1 and step size 1.

We say that iterate wt makes a mistake on example (xt, yt) if hinge(wT
t xt, yt) > 0. Assume we

initialize w1 = 0.

1. Compute a subgradient of the hinge loss at wt for example (xt, yt).

2. Suppose (xt, yt) is sampled at iteration t of SGD. Show that if wt does not make a mistake

on (xt, yt), then wt+1 = wt.

3. Suppose (xt, yt) is sampled at iteration t of SGD. Show that if wt does makes a mistake on

(xt, yt), then ∥wt+1∥2 ≤ ∥wt∥2 + 3.

4. Also show that if a mistake is made at iteration t, γ ≤ wT
⋆ (wt+1 − wt).

5. Let m denote the total number of mistakes made up to round T . Show that ∥wT+1∥ ≤
√
3m.

6. Use the previous derivations to prove that the total number of mistakes made by SGD in

the first T iterations is at most 3/γ2.
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3 Representations and features

3.1 Problem

1. Let A be a d× n matrix. For any µ > 0, show that (AAT + µI)−1A = A(ATA+ µI)−1.

2. Let (x1, y1), · · · , (xn, yn) be a sequence of data points. Each yi is a scalar and each xi is a

vector in Rd. Let X = [x1, . . . , xn]
T and Y = [y1, . . . , yn]

T. Consider the regularized least

squares problem:

min
w∈Rd

∥Xw − Y ∥22 + µ∥w∥22

Show that the optimum w∗ is unique and can be written as the linear combination

w∗ =
∑n

i=1 αixi for some scalars α. What are the coefficients αi?

Hint: you may find eigendecomposition useful for representing αi

3. More generally, consider the general regularized empirical risk minimization problem

min
w∈Rd

1

n

n∑
i=1

loss(wTxi, yi) + µ∥w∥22

where the loss function is convex in the first argument. Prove that the optimal solution

has the form w∗ =
∑n

i=1 αixi. If the loss function is not convex, does the optimal solution

have the form w∗ =
∑n

i=1 αixi? Justify your answer.
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4 Optimization

4.1 Problem

Suppose we have an i.i.d. sequence of n examples (x1, y1), . . . , (xn, yn) with xi ∈ Rd, yi ∈ {−1, 1}
for all i, and ∥xi∥ ≤ 1 for all i. Suppose that this data set is linearly separable with margin γ.

That is, there exists a vector w⋆ with Euclidean norm 1 such that

γ < ywT
⋆ x

for any (x, y) that are sampled from the same distribution as (xi, yi).

Consider the empirical risk minimization problem with a hinge loss:

minimize 1
n

∑n
i=1 hinge(w

Txi, yi)

where

hinge(z, y) = max(1− zy, 0) .

On the midterm we analyzed what happens when we run stochastic gradient descent on this

problem with batch size 1 and step size 1. We say that iterate wt makes a mistake on example

(xt, yt) if hinge(w
T
t xt, yt) > 0. Assuming we initialize w1 = 0, we showed that no matter how many

iterations we ran for, the stochastic gradient algorithm made at most 3/γ2 total mistakes.

1. Define the 0-1 loss to be

loss01(z, y) =

{
1 if sign(z) ̸= y

0 otherwise
.

Show that loss01(z, y) ≤ hinge(z, y).

2. Suppose that (x, y) and (xn+1, yn+1) are sampled from the same distribution as (xi, yi) above.

Let wt denote the SGD solution that has been trained until we see no errors on the training

set. Show that

P[sign(wT
t x) ̸= y] = E

[
1

n+ 1

n+1∑
i=1

loss01(w
(i)Txi, yi)

]

where w(i) is the SGD solution arrived at by training on

(x1, y1), . . . , (xi−1, yi−1), (xi+1, yi+1), . . . , (xn+1, yn+1) .

3. Use the above calculations and the mistake bound from the midterm to prove that

P[sign(wT
t x) ̸= y] ≤ 3

(n+ 1)γ2
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4.2 Problem

Consider the prediction problem of mapping some input x ∈ Rd to output y ∈ {−1, 1}. A linear

predictor is governed by a weight vector w ∈ Rd, and we typically wish to choose w to minimize

the cumulative loss over a set of training examples. Three popular loss functions for classification

are defined (on a single example (x, y)) as follows:

[(a)]Squared loss: ℓ(w;x, y) = 1
2(y − w⊤x)2. Hinge loss: ℓ(w;x, y) = max{1 − yw⊤x, 0}.

Logistic loss: ℓ(w;x, y) = log(1 + exp(−yw⊤x)).

In this problem, we study some of the properties of these loss functions. These functions are

ubiquitous in machine learning, and it’s important to get good intuition for them.

1.2.3.1. Show that each of these three loss function is convex. Hint: Where possible, use the

composition rules for convex functions.

2. Compute the (sub)-gradient of each of these three loss functions with respect to

w.

3. Suppose that ∥w∥2 ≤ B and ∥x∥2 ≤ C for some constants B,C <∞. Give bounds on the

ℓ2-norms ∥ · ∥2 of the (sub)-gradients for each of these three losses.
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4.3 Problem

Derive the expression for following questions. Please show your steps.

1. Let x, a ∈ Rn. Compute
∂(xT a)

∂x .

2. Let A ∈ Rn×n, x ∈ Rn. Compute
∂(xTAx)

∂x .

3. Let A,X be n× n matrices. Compute ∂Trace(XA)
∂X .

4. Let g(x) = sup∥z∥2≤1 x
T z. Compute the derivative of g2 where g2(x) = (g(x))2.

Hint: first prove an upper bound on g(x), then propose a choice of z that achieves the bound.
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4.4 Problem

In the high-dimensional problems, there are usually an infinite number of possible models that

perfectly fit the observed data. When a problem has multiple solutions, different optimization

algorithms can find entirely different solutions to the same problem. Even though all of the solutions

perfectly fit the training data, their generalization performance can be vastly different. In this

problem, we explore this phenomenon for two widely used optimization algorithms: gradient descent

and Adam.

Consider a linear, binary classification problem under the squared loss. Let X ∈ Rn×d be an

n × d matrix of features, y ∈ {−1, 1}n be the corresponding vector of labels, and θ ∈ Rd be the

parameter vector. We wish to minimize the empirical risk

RS [θ] =
1

2
∥Xθ − y∥22. (4.1)

Assume that the rows of X are linearly independent and that d > n.

1. Prove that there are infinite many θ ∈ Rd such that RS [θ] = 0.

2. Gradient descent generates a sequence of points
{
θgdk

}
according to:

θgdk+1 = θgdk − αk∇RS [θ
gd
k ] , (4.2)

where αk is a fixed sequence of learning rates. Assume the sequence αk is chosen so that

gradient descent converges to a minimizer of the objective (4.1). (You don’t need to show

how to select αk).

Suppose we initialize θgd0 = 0. Show that gradient descent converges to the minimum

Euclidean norm solution to Xθ = y. This solution is also the maximum margin solution

(though you don’t need to show this).

3. Rather than use a fixed learning rate, Adam attempts to adapt the learning rate for each

parameter using past gradient information. In particular, Adam generates a sequence of

points
{
θadk

}
according to:

θadk+1 = θadk − αkH
−1
k ∇RS

[
θadk

]
+ βkH

−1
k Hk−1(θ

ad
k − θadk−1), (4.3)

where αk and βk are fixed sequences, and Hk is a positive definite, diagonal matrix

Hk = diag

{
k∑

i=1

ηigi ◦ gi

}1/2
 , (4.4)

where ηk is another fixed set of coefficients, gk = ∇RS [θ
ad
k ], and ◦ denotes an entry-wise

product. (You do not need to show Adam can be written in this form). Assume the sequences

αk, βk, ηk are chosen so that Adam converges to a minimizer of the objective (4.1). (You don’t

need to show how to choose these sequences).
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Suppose there exists some scalar c such that Xsign(X⊤y) = cy, and we initialize θad0 , θad−1 = 0.

Prove that Adam converges to the unique solution θad ∝ sign(X⊤y).

Hint: Use induction to show every iterate satisfies θadk = λksign(X
⊤y) for some scalar λk.

4. Fix the labels y ∈ {−1, 1}n, and let X = [y; In×n]. Hence, only the first feature is discrimi-

native, and the others are unrelated to the true label. Compute the solutions found by

running (a) gradient descent and (b) Adam on this problem instance.

5. Compare the relative weight the solutions found in part (d) place on the dis-

criminative feature relative to the remaining features, i.e. compute |θ[1]|
|θ[i]| for both

gradient descent and Adam, where θ[i] denotes the i-th coordinate of θ. Heuristically,

which solution do you expect to generalize better to new data?
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4.5 Problem

Let f : Rd → R be a β-smooth, but possibly non-convex function. Recall a function is β-smooth if

the gradient map ∇f is β-Lipschitz. An ϵ-substationary point is any point x with ∥∇f(x)∥2 ≤ ϵ.

In this problem, we show that gradient descent reaches an ϵ-substationary point in O(1/ϵ2) steps.

For consistency, the gradient descent update is

xt+1 = xt − η∇f(xt) ,

where η is some fixed step-size. For this problem, you may use without proof that if f is β-smooth,

then for all x, y ∈ Rd,

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ β

2
∥y − x∥22 . (4.5)

1. Show that for any η > 0,

f(xt+1) ≤ f(xt)−
(
1− βη

2

)
η∥∇f(xt)∥22.

2. Show, for a careful choice of η,

∥∇f(xt)∥22 ≤ 2β(f(xt)− f(xt+1)).

3. Suppose we run gradient descent for T steps starting from x0, with η choosen as in part (b).

Use the previous inequality to show

T∑
t=0

∥∇f(xt)∥22 ≤ 2β(f(x0)− f(x∗)),

where x∗ ∈ argminf(x).

4. Prove

min
t=0,...,T

∥∇f(xt)∥2 ≤
√

2β

T + 1
(f(x0)− f(x∗)).

5. Suppose f is bounded, so maxx |f(x)| ≤ R. How many steps T are required before one of the

iterates x0, x1, . . . , xT is guaranteed to have ∥∇f(xt)∥2 ≤ ϵ?
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4.6 Problem

We say that a distribution D over examples (xi, yi) ∈ Rd×{−1, 1} is linearly separable if there exists

w ∈ Rd, b ∈ R such that the classifier fw,b(x) = sign(⟨w, x⟩+ b) has zero true risk. More formally,

a classifier has zero true risk if for (xi, yi) ∼ D the event fw,b(xi) = yi occurs with probability 1.

1. Prove or provide a counterexample. If a distribution is linearly separable, then for all

linear subspaces V ⊆ Rd of dimension at least one, the distribution is linearly separable after

the data is projected onto V .

We say that a distribution D is linearly separable after being projected to a linear subspace

V if there exists w ∈ Rd, b ∈ R such that the classifier fw,b(x) = sign(⟨w,Px⟩ + b) has zero

risk where P is the orthogonal projection matrix onto an arbitrary subspace V .

2. Prove or provide a counterexample. If a distribution is linearly separable, then there

exists an orthogonal projection P to a linear subspace V of dimension 1 such that the data

is linearly separable after projection onto V.

3. Prove or provide a counterexample. If there exists an orthogonal projection P onto

a subspace V such that D is linearly separable after the data is projected onto V , where

1 ≤ dim(V ) < d, then there exists parameters w⋆, b⋆ such that D is linearly separable in Rd.
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4.7 Problem

In this problem, we want to find an optimal decision rule for giving loans to individuals. Suppose

that the cost of granting a loan to an individual who defaults is α (i.e., C10 = α) and the “cost”

of granting a loan to an individual who repays is −β since there is some revenue from interest (i.e.

C11 = −β). There is no cost or profit associated with denying loans to individuals.

Let the variable Y represent repayment, with Y = 1 indicating that an individual repays,

and Y = 0 indicating that they default. Let the variable X represent the observed data about

individuals. (Note that this notation, particularly the meaning of Y , is slightly different from that

in the WWS notes.)

1. Show that the optimal decision rule for observations x has the form

E[Y |X = x] ≥ t ,

and find an expression for t. Hint: you can pose the decision problem as a hypothesis

testing problem with Hi = {Y = i}.

2. Now we would like to assign each individual a score based on their features, S = s(X). What

score function minimizes the squared error:

EX,Y [(s(X)− Y )2] ?

Propose two distinct methods of estimating s(x) from datapoints {(xi, yi)}?
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5 Generalization

5.1 Problem

Suppose that we want to estimate the mean µ = EX of a random variable X, given samples

X1, . . . , Xn. In particular, we want to have a ε-accurate estimate µ̂ of the true value µ, that is a

value µ̂ such that |µ̂−µ| ≤ ε with high probability. Assume that the random variable has bounded

variance, (X) = σ2.

1. Show that a sample size of n = O(σ2/ε2) is sufficient to compute an ε-accurate estimate

with probability at least 3/4.

2. Show that a sample size of n = O(σ2/ε2 log(1/δ)) is sufficient to compute an ϵ-accurate

estimate with probability at least 1− δ.

Hint: consider the estimator devised by computing the median k means. Y =median(X̄1, . . . , X̄k)

where each X̄i is the mean of a (disjoint) set of n/k points. You may use without proof that

if Y1, . . . , Yk are Bernoulli random variables, P (| 1k
∑k

i=1 Yi − EY | > t) ≤ c1 exp{−c2kt2} for

some universal constants c1, c2.
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5.2 Problem

Let S and S′ be independent sets of n samples (whose elements are zi and z′i, respectively) from the

same data distribution D, and let S(i) denote a hybrid sample set whose elements all come from S

except for the ith sample, which comes from S′. A sample zi consists of a data point xi ∈ Rd and

its label yi ∈ {0, 1}, so we are doing binary classification. A(S) denotes the algorithm A trained

on the samples in S. Assume that the yi’s are drawn according to a Bernoulli distribution with

parameter 1
2 , the distribution D is continuous (over xi’s) ,and the loss ℓ is the 0 - 1 loss.

Consider the following algorithm A(S). A(S) produces a classification function f that memo-

rizes the training data S, such that f(xi) = yi for all xi ∈ S and f(v) = 0 for all v /∈ S.

1. Prove that the empirical risk RS(f) = 0 but E[∆gen(A(S))] = 1
2 , where ∆gen(A(S)) =

R(f)−RS(f) is the generalization gap.

In other words, this classifier achieves perfect (zero) empirical risk, but its expected true risk

is no better than random guessing.

2. Using this algorithm, construct a distribution D such that ∆sup(A) = E[∆gen(A(S))], and

show that your D satisfies this property. (All other components of the problem aside from

the distribution of the xis and yis remain as originally defined.)

Hint: Recall that ∆sup(A) = supS,S′ supi∈[1,n] |ℓ(A(S), z′i) − ℓ(A(S(i), z′i)|, and in general we

have that ∆sup(A) ≥ E[∆gen(A(S))].
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5.3 Problem

In this problem, we review how algorithmic stability implies generalization and demonstrate how the

stochastic gradient method is a stable algorithm. Seeing as how it is one of the most common algo-

rithms to train machine learning models, it’s nice to see that SGM enjoys nice statistical properties.

Given a set of n labeled examples S = (z1, . . . , zn) where each zi ∈ Z = X ×Y is an iid draw from

some distribution D, consider a decomposable objective function fS : Ω → R which we are trying

to minimize:

fS(w) =
1

n

n∑
i=1

f (w; zi)

A randomized algorithm A, is uniformly stable if for all datasets S, S′ that differ in at most one

example.

sup
z

EA

[
f(A(S); z)− f

(
A
(
S′) ; z)] ≤ ϵ

Here, A : S → Ω is a randomized function that takes in datasets S and returns a solution w. Note

that the expectation is taken over the inner randomness of A and that the randomness in A is the

same when run on S and S′.

[(a)]Prove that if an algorithm A is ϵ uniformly stable, its output has ϵ generalization error:∣∣∣∣ES,A

[
fS [A(S)]− Ez∼Df(A(S); z)

]∣∣∣∣ ≤ ϵ

Now, assume that the function f is differentiable, convex, L Lipschitz, and β-smooth. Given a

dataset S, at each time step t, the stochastic gradient method chooses an example zi ∈ S uniformly

at random, i ∼ Uniform([n]), and updates the solution according to the following:

wt+1 ← wt − αt∇f(wt; zi)

[(a)]Prove that for an arbitrary z ∈ Z, |f (wT ; z)− f (w′
T ; z)| ≤ L·δT where δt = ||wT−wT ′ ||.

Let wT = A(S) and w′
T = A(S′), be the outputs of running SGM for T steps on S and S′,

where S and S′ are datasets that differ in at most one data point zi. Likewise, let wt and

w′
t be the intermediate solutions found by SGM when run on S and S′, respectively. Assume

that αt ≤ 2/β. Prove that if at time step t, SGM samples the same example zi when run on

S and S′ then δt+1 ≤ δt. That is:

||w′
t+1 − wt+1|| ≤ ||w′

t − wt||

Why is this statement not true if the examples zi chosen at time t are different? Hint: Try to

write out the difference between w′
t+1 and wt+1 in terms on the stochastic gradient updates.

33



Use the fact that if a function g is β smooth and convex then its gradients satisfy:

⟨∇g(v)−∇g(w), v − w⟩ ≥ 1

β
∥∇g(v)−∇g(w)∥2

Prove that E [δt+1] ≤ E [δt] +
2Lαt
n . Unroll the recursion to conclude that if δ0 = 0 then

E [δT ] ≤
2L

n

T−1∑
t=0

αt

Hint: Analyze the problem by separately considering the cases where the samples chosen by

SGM are the same at time t and when they are not. Using the previous parts, show that the

stochastic gradient method is uniformly stable with parameter:

ϵstab ≤
2L2

n

T−1∑
t=0

αt
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5.4 Problem

1.2.3.4.5.1. Show that for a nonnegative random variable X:

EX =

∫ ∞

0
P (X ≥ t)dt

2. Prove that if a random variable has density uniformly bounded by 1, that is P (X = x) ≤ 1

for all x, then

Ee−tXi ≤ 1/t for all t > 0

3. Using the previous part, to show that if X1, . . . , Xn are iid from this distribution then:

P

( n∑
i=1

Xi ≤ εn

)
≤ (eε)n

Hint: write
∑n

i=1Xi ≤ εn as −1/ε
∑n

i=1Xi ≥ −n and apply a Chernoff bound.

1. For X nonnegative x =
∫ x
0 dt =

∫∞
0 1{t ≤ x}dt, taking expectations on both sides, we get

EX =

∫ ∞

0
P (X ≥ t)dt

2.

Ee−tX =

∫ ∞

0
e−txP (X = x)dx

≤
∫ ∞

0
e−txdx

= 1/t

3. First, we write
∑n

i=1Xi ≤ εn as −1/ε
∑n

i=1Xi ≥ −n and then we proceed by applying

Markov’s inequality.

P (
−1
ε

n∑
i=1

Xi ≥ −n) ≤ P (e−1/ε
∑n

i=1 Xi ≥ e−n)

≤ E[e−1/ε
∑n

i=1 Xi ]

e−n

=

n∏
i=1

E[e−1/εXi ]en

≤ (eε)n
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5.5 Problem

Here, we analyze the relationship between the true risk of a classifier and its empirical risk as a

function of the number of samples. In particular, we consider this for the simple setting of binary

classification.

Assume that you have access to a data set S of m samples S = {(x1, y1), . . . , (xm, ym)} where
x ∈ Rd, y ∈ {0, 1} and each pair (xi, yi) is sampled i.i.d from the true distribution D. Furthermore,

assume that we are going to perform classification by choosing a hypothesis function (classifiers)

from a finite set H =
{
h| h : Rd → {0, 1}

}
, |H| < ∞. Let LS(h) =

1
m

∑m
i=1 ℓ01(h, x, y) denote the

empirical risk of the hypothesis function h under the 0-1 loss.5 Let LD(h) = E(x,y)∼Dℓ01(h, x, y) be

the true risk of the classifier.

1. Prove that if we observe m ≥ log(c|H|/δ)
2ε2

samples from the distribution D, then with

probability 1− δ, |LS(h)− LD(h)| ≤ ε, ∀h ∈ H, where c is some universal constant.

Hint: Think of the empirical risk as a random variable try to show that it cannot be too far

away from its mean.

2. Using the previous statement, prove that if h⋆ ∈ argminh∈HLS(h), LS(h
⋆) ≤ α, and

m ≥ log(c|H|/δ)
2ε2

then with probability 1− δ, LD(h
⋆) ≤ α+ ε.

3. Let H consists of weight vectors w where w ∈ Rd. This is an infinite hypothesis class. Let H̃
denote the discretization of H̃ to 32 bit floats. (e.g each entry of w is now represented as a

32 bit float)

Prove that if m ≥ 1
2ε2

log(c/δ) + 16 log(2)d
ϵ2

then |LS(h) − LD(h)| ≤ ε, ∀h ∈ H̃ with

probability at least 1− δ.

5Remember ℓ01(h, x, y) = 0 if h(x) = y and is 1 otherwise
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5.6 Problem

In this problem, it will be useful to recall the following definitions. Empirical risk is defined as:

RS =
1

n

n∑
i=1

ℓ(A(S), zi) .

Average stability is defined as:

∆(A) = ES,S′

[
1

n

n∑
i=1

(ℓ(A(S), z′i)− ℓ(A(S(i)), z′i))

]
.

where S and S′ are two sample sets of size n, and each point is sampled identically and indepen-

dently. A(S) denotes the function produced by algorithm A on the training set S. For a data

point zi = (xi, yi), ℓ(A(S), zi) denotes the loss incurred by f = A(S) on zi. S(i) denotes a hy-

brid dataset consisting of (z1, z2, ..., zi−1, z
′
i, zi+1, ..., zn) where z′i is the ith element of S′. Finally,

uniform stability is defined as:

∆sup(A) = sup
S,S′

sup
z
|ℓ(A(S), z)− ℓ(A(S(i)), z)| .

Here the supremum is over all data sets S, S′, and data points z, and these need not be sampled

i.i.d.

1. Let (x, y) pairs be sampled such that y ∈ {−1, 1} and Pr[y = 1] = p1 and Pr[y = −1] = p0.

Let A(S) denote the algorithm that always returns the value 1. That is, it returns a predictor

f such that f(x) = 1 for all x. Using the logistic loss:

logistic(f, z) = log(1 + exp(−yf(x))),

Prove that A(S) is uniformly stable (i.e. has uniform stability equal to 0). Prove that

E[RS ] ≥ 1/3 if p1 ≤ 0.95.

2. Let (x, y) pairs be sampled such that y ∈ {−1, 1} is a random coin flip sampled independently

from x. That is, y are random labels. Let A(S) return the function f that memorizes the

training data, so that f(xi) = yi on the training set and f(x) = 0 outside the training set.

Using the hinge loss,

hinge(f, z) = max(1− yf(x), 0),

prove that E[RS ] = 0. Also prove that the average stability of A(S) equals 1.
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5.7 Problem

Thus far in the course, we have considered classification problems where given input x ∈ Rd, we

wish to predict output y ∈ {0, 1}. In this problem, we explore regression, where the output y is

now a real-valued response y ∈ R.
Suppose we have a fixed set of n inputs x1, x2, . . . , xn ∈ Rd and a true underlying parameter

θ∗ ∈ Rd that governs the outputs. For each i = 1, 2, ..., n, we observe:

yi = x⊤i θ
∗ + ϵi i = 1, . . . , n,

where we assume the noise terms ϵi are i.i.d. with mean E[ϵi] = 0 and variance Var(ϵi) = σ2.

Conceptually, we wish to recover the parameter θ∗ from noisy measurements yi. This setting is

sometimes called fixed-design linear regression because the features x1, . . . , xn are fixed.

To set up notation, let X = [x1, . . . , xn]
⊤ ∈ Rn×d and Y = [y1, . . . , yn]

⊤ ∈ Rn be the data we

observe at training time. Let ϵ = [ϵ1, . . . , ϵn]
⊤ ∈ Rn be the noise, and let Σ = 1

nX
⊤X ∈ Rd×d be

the second moment matrix. Assume Σ ≻ 0.

Our goal is to find an estimate θ̂ of the true parameter θ∗ that predicts output Y well, as

measured by the squared loss. Mathematically, our goal is to minimize the expected risk:

L(θ) =
1

n

n∑
i=1

E
[
(x⊤i θ − yi)

2
]
=

1

n
E ∥Xθ − Y ∥22 .

Note the above expectation is only over Y since X is fixed.

To solve this problem, the least-squares estimator is a very common choice:

θ̂ls = arg min
θ∈Rd

1

n
∥Xθ − Y ∥22

In the subsequent parts, we analyze the least-squares estimator.

1. Give a closed-form expression for θ̂ls.

2. Let’s understand the expected risk L(θ) in more detail. Show that, for any θ ∈ Rd, you

can write

L(θ) = ∥θ − θ∗∥2Σ + σ2,

where ∥ · ∥Σ is a Mahalanobis norm with ∥x∥2Σ = x⊤Σx. Then compute L(θ∗), and use it

to compute the excess risk L(θ)− L(θ∗).

3. For the least-squares estimator, show the excess risk is

L(θ̂ls)− L(θ∗) =
1

n
Tr(Πϵϵ⊤),

where Π is a carefully chosen projection matrix.
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4. Taking expectation over the training data, argue that

E[L(θ̂ls)− L(θ∗)] =
dσ2

n
.

Give intuition about this result. How does the expected excess risk scale as a function

of the dimension d, the noise variance σ2, and the number of samples n? How many samples

n are required to obtain expected excess risk at most δ?
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6 Deep learning

7 Datasets

7.1 Problem

Traditionally in empirical risk estimation, a holdout set is reserved for evaluation. However, if the

holdout set is reused by analysts to adaptively evaluate their models, the statistical guarantees of

the risk estimates using this holdout set degrade. In this problem, we analyze an algorithm that

can mitigate this effect. Let X ∈ Rn be the data domain and Y = {0, 1} the class labels. We

consider a classifier f : X → Y and its performance on a loss function l : Y × Y → [0, 1]. Given a

sample S = {(x1, y1), . . . , (xn, yn)} drawn i.i.d. from an unknown distribution D over X × Y , we

recall the definition of the empirical loss

RS(f) :=
1

n

n∑
i

l(f(xi), yi),

and the true loss

RD(f) := E[l(f(x), y)].

1. We first consider a sequence of classifiers f1, . . . , fk. The fundamental estimation problem is

to compute the risk estimates R1, . . . , Rk such that

P[∃t ∈ [k] : |Rt −RD(ft)| > ε] ≤ δ.

Suppose our functions fi are fixed independently of the sample S. Let us take Ri = RS(fi).

Show that

P[∃t ∈ [k] : |Rt −RD(ft)| > ϵ] ≤ 2ke−2ε2n.

2. In the adaptive setting, however, fi can be chosen as a function of the previous estimates and

classifiers. Because of the dependence of classifiers on past classifiers and risk estimates, our

tain bound from part 1 using empirical risk as our risk estimates no longer holds. Let us then

relax our requirement that each risk estimate be close to the true risk, and instead minimize

the leaderboard error:

L(R1, . . . , Rk) := max
1≤i≤k

| min
1≤j≤i

RD(fi)−Rt|.

Give an intuitive explanation for what minimizing this new error would imply

for the risk estimates.

3. To formalize the adaptivity of the classifiers, we might say that there now exists a mapping

A such that for all t ∈ [k],

ft = A(f1, R1, . . . , ft−1, Rt−1).

We want to reason about the possible {f1, R1, . . . , fk, Rk} that can result from this scheme;

to do so, we define a graph of random variables. Recursively define a tree T of depth t
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of classifiers and risk estimates generated by this scheme. (Hint: The nodes can be

written as sets of (f1, R1, . . . , fk, Rk).)

4. Now consider the following algorithm to minimize L(R1, . . . , Rk): For sample S and step

size η > 0, we initialize R0 = ∞. At each iteration i, we receive the next classifier fi. If

RS(fi) < Ri−1−η, we let Ri = [RS(fi)]η, where [x]η indicates x rounded to the nearest integer

multiple of η. Otherwise we keep our current estimate. Prove that with this algorithm,

the size of the tree T has at most 2B nodes, where B = (1/η + 2) log(4t/η). (Hint:

show how to uniquely encode each node in the tree using B bits of information.)

5. Now show that for all t ≤ k and ε > 0,

P[| min
1≤i≤t

RD(fi)−Rt| > ε+ η] ≤ exp(−2ε2n+B + 1).
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7.2 Problem

The holdout method is a common technique in machine learning to perform model selection. The

method holds out a set S of n examples (xi, yi) sampled i.i.d. from a distribution D and uses this

set to evaluate the performance of a proposed model. Concretely, for a classifier f , one uses the

empirical risk RS [f ] on the holdout set S as a proxy for the true model risk R[f ]. Throughout,

assume we have binary labels yi ∈ {0, 1}, and we measure performance using the 0− 1 loss.

(a) Fix a classifier f . Show if n ≥ log(2/δ)
2ε2

, then with probability 1− δ, |RS [f ]−R[f ]| ≤ ε.

Hint: Hoeffding’s inequality.

(b) The popular ImageNet ILSVRC and Cifar10 datasets have, respectively, n = 50, 000 and

n = 10, 000 images in the validation set. If we set δ = 0.05 (corresponding to a 95% confidence

interval), evaluate the bound from part (a) for both ImageNet and Cifar10.

Most machine learning workflows, however, do not evaluate a single classifier on the holdout set

and then stop. Instead, after looking at the validation loss, you try to improve it by, for instance,

changing the feature set, adding more layers, tweaking the optimization algorithm, etc. and then

reevaluate the new model on the same validation set. In the remainder of this problem, we explore

the potential pitfalls of adaptively interacting with the holdout set.

Henceforth, suppose our features are binary x ∈ {0, 1}d, and suppose examples (x, y) are drawn

from the uniform distribution on {0, 1}d × {0, 1}. Consider the following procedure:

(c) Compute RS for single-feature classifiers hi(x) = xi for i = 1, . . . , d.

(d) Say a feature i is informative if RS [hi] ≤ 1
2−

1√
n
. Let I denote the set of informative classifiers

hi.

(e) Construct a classifier f̃ consisting of a majority vote of the informative classifiers

f̃(x) =

{
1

∑
i∈I hi(x) ≥

|I|
2

0 otherwise.

This is a fairly natural procedure: we first attempt to predict y using a single feature, and then

ensemble the classifiers that seem to give predictive power. However, we will show the estimated

risk RS [f̃ ] can be arbitrarily far from the true risk R[f̃ ] when d is large.

(f) First, prove R[f̃ ] = 1
2 . This means f̃ is no better than random guessing on new examples.

Hint: You can in fact prove that R[f ] = 1
2 for any arbitrary classifier f .

(g) (Bonus) Show the expected empirical risk of f̃ shrinks exponentially fast with the number

of informative features |I|. Prove ES [RS [f̃ ] | |I| = k] ≤ exp
(−2k

n

)
.

Even if you don’t solve the bonus exercise, we’ll use the conclusion in the subsequent parts.
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Hint: Use the fact that the coordinates are independent, so 1 [xi = y] and 1 [xj = y] are inde-

pendent for i ̸= j, along with the observation f̃(x) ̸= y iff
∑

i∈I 1 [xi = y] < |I|
2 .

The remainder of the problem is devoted to showing |I| is large with high probability.

(h) Prove each coordinate i is informative with constant probability, i.e. show P {i ∈ I} ≥ c for

some constant c > 0

Hint: First, argue Rs[hi] follows a rescaled binomial distribution, and i ∈ I if the binomial

deviates from it’s mean by 2 standard deviations. Then, show this event occurs with constant

probability by approximating the binomial to a normal distribution. You don’t need to be fully

rigorous with the approximation.

(i) Prove E [|I|] ≥ cd.

(j) Prove with probability 1− δ, the number of informative features |I| ≥ cd
2 for d ≥ 2 log(1/δ)

c2
.

Hint: Use each coordinate is independent, so 1 [xi ̸= y] and 1 [xj ̸= y] are independent for

i ̸= j, and then apply Hoeffding’s inequality.

(k) Put parts (c)-(g) together to prove the following: there exists a constant α, such that

if d ≥ αn, then with probability at least 3
4 ,∣∣∣RS [f̃ ]−R[f̃ ]

∣∣∣ ≥ 0.49.
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8 Causality

8.1 Problem

1. Consider the following example of studying the effect of drug X on the recovery rate. The

recovery rates of 600 patients were recorded, and the patients were given access to the drug.

A total of 300 patients chose to take the drug and 300 patients did not.

Table 1: Study into a new drug, with gender being taken into account

Drug No drug

Female 69/75 (92%) 200/231 (87%)

Male 164/225 (73%) 27/69 (68%)

Overall 233/300 (78%) 247/300 (82%)

(a) Let R be a random variable that denotes the recovery (e.g. R = 1 is the event of

recovery). Let X be a random variable that denotes taking the drug (e.g. X = 1 is the

event of taking the drug). Let G be a random variable that denotes the gender, which

takes values in {male, female}. Use this notation to write down the observation

about overall recovery rates, and the observation about recovery rates by gender

as inequalities of probabilities respectively.

(b) Write P (Y = 1|X = 1) in terms of P (Y = 1|X = 1, G = i) for i ∈ {male, female}.
Using the above equations, explain why the effect of the drug for the overall population

seems at odds with the pattern in individual gender.

(c) Suppose you knew an additional fact: Estrogen has a negative effect on recovery, so

women are less likely to recover than men, regardless of the drug. In addition, as we can

see from the data, women are significantly more likely to take the drug than men are.

Using the given information, draw the causal graph between the variables X,Y,G.

Using the causal graph, explain why the effect of the drug for the overall population

seems at odds with the pattern in individual gender.

(d) Using the causal graph, explain why a policy maker should recommend the drug

or not.

2. Consider the same table, where instead of recording participants’ gender, patients’ post-

treatment blood pressure were recorded. In this case, we know that the drug affects recovery

by lowering the blood pressure of those who take it. But it also has a toxic effect.

(a) Using the given information, draw the causal graph between the variables X,Y, Z,

where Z ∈ {high, low} denotes the post-treatment blood pressure. Using the causal

graph, explain why the effect of the drug for the overall population seems at odds

with the pattern in individual subgroups with different blood pressure levels.
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Table 2: Study into a new drug, with post-treatment blood pressure being taken into account

Drug No drug

Low BP 69/75 (92%) 200/231 (87%)

High BP 164/225 (73%) 27/69 (68%)

Overall 233/300 (78%) 247/300 (82%)

(b) Using the causal graph, explain why a policy maker should recommend the drug

or not.

3. Suppose apart from the record of the patients’ post-treatment blood pressure, the pre-

treatment blood pressure was also recorded, and the usage of the drug takes the pre-treatment

blood pressure into account.

Table 3: Study into a new drug, with post-treatment blood pressure being taken into account

Drug No drug

High pre-BP, Low post-BP 60/65 195/200

Low pre-BP, Low post-BP 9/10 5/31

High pre-BP, High post-BP 140/150 7/9

Low pre-BP, High post-BP 24/75 40/60

Overall 233/300 (78%) 247/300 (82%)

(a) Using the given information, draw the causal graph between the variablesX,Y, Z1, Z2,

where Z1 ∈ {high, low}, Z2 ∈ {high, low} denote the pre-treatment and post-treatment

blood pressures respectively.

(b) Explain in this case, why should the drug be recommended or not.
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8.2 Problem

In an attempt to estimate the effectiveness of a new drug, a randomized experiment is conducted.

In all, 50% of the patients are assigned to receive the new drug and 50% to receive a placebo. A

day before the actual experiment, a nurse hands out lollipops to some patients who show signs of

depression, mostly among those who have been assigned to treatment the next day (i.e., the nurse’s

round happened to take her through the treatment-bound ward). Strangely, the experimental data

revealed a Simpson’s reversal: Although the drug proved beneficial to the population as a whole,

drug takers were less likely to recover than nontakers, among both lollipop receivers and lollipop

nonreceivers. Assuming that lollipop sucking in itself has no effect whatsoever on recovery, answer

the following questions:

1. Draw a graph that captures the story. Explain the edges in you graph.

Hint: Use the fact that receiving a lollipop indicates a greater likelihood of being assigned

to drug treatment, as well as depression, which is a symptom of risk factors that lower the

likelihood of recovery.

2. Determine which variables must be adjusted for in order to determine the effect of the drug

on recovery.

3. What are the adjustment formulas for the effect of the drug on recovery?

4. Repeat the previous parts assuming that the nurse gave lollipops a day after the study,

still preferring patients who received treatment over those who received placebo. You may

assume that depression is a long-term condition.
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8.3 Problem

In this problem we analyze the stability of causal inference with respect to small errors in the

problem parameters. In general, we can think of causal inference from observational data as an

identification map, ID that given a graph G and a joint distribution P over a set V = {X1, . . . , Xn}
of n variables, returns the distribution of a target variable Y after we intervene on a set of variables

X.

ID(G,V,X, Y ) := P (Y |do(X = x))

In practice, we never have access to the true distribution P over the variables in our system.

Instead, we have access to some noise version of P̃ that we estimate by samples. Assuming that

out estimates of the distribution have some error in them, how far can our estimated causal effects

be? We show that if we can identify causal effects via the backdoor criterion, then the blowup in

error from observational to interventional distribution is small.

Define two distributions P, P̃ to be ϵ-close if for all outcomes ω ∈ Ω:

−ϵ ≤ log
P (ω)

P̃ (ω)
≤ ϵ

1. Prove that if two joint distributions P and P̃ are ϵ-close then all conditional

distributions P (A = a | B = b), P̃ (A = a | B = b) are 2ϵ close for all disjoint subsets

A,B ⊂ V .

2. Assume there exists a subset Z ⊂ V, Z ∩ Y = Z ∩ X = ∅ such that the interventional

distribution P (Y | do(X = x)) can be identified via the backdoor criterion by adjusting for

Z. Prove that if two joint distributions P and P̃ are ϵ-close then all interventional

distributions P (Y = y | do(X = x)), P̃ (Y = y | do(X = x)) are 3ϵ close.
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8.4 Problem

In this problem, we consider hypothetical lending scenarios. The label Y ∈ {−1, 1} indicates

whether or not the applicant repays their loan, and the bank is interested in predicting this quantity.

At the same time, the bank must ensure that the predictions do not encode unfair discrimination

with respect to national origin, as required by the Equal Credit Opportunity Act. In a vast

simplification, let natural origin be denoted by A ∈ {0, 1, . . . ,K}.
We consider the following two scenarios:

1. Scenario 1: The institution builds a model using two features: the languages spoken at the

applicant’s home, L, and a measure of applicant’s financial history H. We assume that these

random variables are generated by the following structural equation model:

• A := U1, where U1 ∼ Unif{0, 1, . . . ,K}.
• L := A

• Y := 2U2 − 1, where U2 ∼ B(σ(A)) is a Bernoulli random variable and the sigmoid

function is defined as σ(x) = 1
1+e−x .

• H := Y + U3 with U3 ∼ N (0, 2) is a normal random variable.

2. Scenario 2: The institution builds a model using a single feature: the applicant’s annual

income I. Assume I depends on the sensitive attribute, and the label Y in turn depends on

I. Formally, suppose:

• A := U4, where U4 ∼ Unif{0, 1, . . . ,K}.
• I := A+ U5N (1, 2) + (1− U5)N (−1, 2), where U5 ∼ B(σ(A)).

• Y := 2U6 − 1, where U6 ∼ B(σ(I)).

In what follows, we will consider a general notion of Bayes-optimal predictors. This general

notion includes is any function of the features that, when thresholded, results in optimal decisions

for any cost function. Another way to state this is that Bayes-optimal predictors are any monotonic

transformation of Bayes-optimal scores, r(x) = E[Y |X = x].

1. In this problem, we consider a variety of possible predictors. For Scenario 1, define

R⋆
1 = L+H, R̃1 = H .

For Scenario 2, define

R⋆
2 = I, R̃2 = I −A .

Draw the causal graphs for (A,L,H, Y,R⋆
1, R̃1) in Scenario 1 and (A, I, Y,R⋆

2, R̃2) in Sce-

nario 2.

2. Show that R⋆
1 and R⋆

2 are Bayes-optimal predictors for the respective scenarios.

Hint: In Scenario 1, the joint distribution can be factorized in the following manner:

P(Y = y,A = a,H = h) = P(A = a)P(Y = y | A = a)P(H = h | Y = y)
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3. Prove that the joint distributions of optimal scores, protected attributes, and outcomes are

equal in both scenarios, i.e. prove (R∗
1, A, Y )

d
= (R∗

2, A, Y ).

Hint: the joint distributions can be factorized as P(R∗
i , A, Y ) = P(A)P(R⋆

i | A)P(Y | R⋆
i , A),

and equality can be verified for each term individually.

4. Prove that alternate predictors R̃1 and R̃2 satisfy separation in each scenario, respectively.

Hint: You may want to use the result of part 3.

5. In 1-2 sentences, explain why this example poses difficulties for using observational

fairness criteria to audit decisions.
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8.5 Problem

One of the main dilemmas in causal inference is that causal effects are in general not identifiable

from observational data. Surprisingly, (or perhaps unsurprisingly) this problem persists even if we

assume that the underlying causal relationships between different variables are linear!

Linear Gaussian models are one of the most often used class of causal models, especially in the

social sciences like Economics and Psychology. In a Linear Gaussian model, the set of variables

V = {X1, . . . , Xn} are jointly Gaussian, that is V ∼ N (µ,Σ), and all the functional relationships

between variables are linear. In particular, if we denote by Pa(Xi) the set of parents of a variableXi

in a linear, Gaussian causal model G, the functional form for all variables Xi ∈ V is the following,

where αj are coefficients in R :

Xi =
∑

Zj∈Pa(Xi)

αjZj + Ui, Ui ∼ N (µi, σ
2
i )

Here, Uz is an exogenous noise variable. Let I(G) denote the set of independence statements im-

plied by a causal model G. We say that two causal models G and G′ are observationally equivalent

if I(G) = I(G′). Since independence relationships for Gaussians are captured by the covariance

structure, in the case of linear Gaussian models, we say that two causal models G and G′ are ob-

servationally equivalent if they are covariance equivalent, that is the respective covariance matrices

Σ and Σ′ are equal.

Let G1 be the following linear Gaussian model, where UX , UY , UZ are i.i.d N (0, 1)

X = Ux

Y = X + Uy

Z = Y + Uz

Similarly, let G2 be a model over the same set of variables with different functional relationships.

X =
1

2
Y + Ux, Ux ∼ N (0,

1

2
)

Y = Uy, Uy ∼ N (0, 2)

Z = Y + Uz Uz ∼ N (0, 1)

1. Write down the causal graphs for G1, G2. This tool makes it easy to produce graphs for

latex.

2. Suppose we are interested in the causal effect of X on Y , in particular define the treatment

effect TE := E[Y | do(X = 1)] − E[Y | do(X = 0)]. What is the treatment effect of X

on Y in G1? How about in G2? Do they have the same sign?

3. Using the graphs from part 1, prove that I(G1) = I(G2).
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4. Prove G1 and G2 are covariance equivalent. Observe that this implies that G1 and G2

are observationally equivalent.
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8.6 Problem

At the beginning of the year, a boarding school offers its students a choice between two meal

plans for the year: Plan A and Plan B. The students’ weights are recorded at the beginning and

the end of the year. To determine how each plan affects students’ weight gain, the school hired

two statisticians who, oddly, reached different conclusions. The first statistician calculated the

difference between each student’s weight in June (WF ) and in September (WI) and found that the

average weight gain in each plan was zero.

The second statistician divided the students into several subgroups, one for each initial weight,

WI . They found that for each initial weight, the final weight for Plan B is higher than the final

weight for Plan A.

So, the first statistician concluded that there was no effect of diet on weight gain and the second

concluded there was.

lord_fig1.png

Figure 1: Scatter plot with students’ initial weights on the x-axis and final weights on the y-axis.

The vertical line indicates students whose initial weights are the same, and whose final weights are

higher (on average) for Plan B compared with Plan A.

Figure 1 illustrates data sets that can cause the two statisticians to reach conflicting conclusions.

Statistician 1 examined the weight gain WF −WI , which, for each student, is represented by the

shortest distance to the 45◦ line. Indeed, the average gain for each diet plan is zero: the two groups

are each situated symmetrically relative to the zero-gain line, WF = WI . Statistician 2, on the

other hand, compared the final weights of Plan A students to those of Plan B students who entered

school with the same initial weight W0 and, as the vertical line in the figure indicates, Plan B

students are situated above Plan A students along this vertical line. The same will be the case for

any other vertical line, regardless of W0.

1. Draw a causal graph representing the situation.

2. Determine which statistician is correct. Explain why.
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3. How is this example related to Simpson’s paradox?
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8.7 Problem

Consider the following (very) over-simplified model of a student. Let A represent the student’s

interest in the material (0 for lack of interest and 1 for interest), let B represent the student’s

understanding of the material (0 for confusion and 1 for understanding), and let C represent the

student’s attendance at office hours (0 for absence and 1 for attendance).

We might model these variables using the following generative model, in which Zi are indepen-

dent Bernoulli random variables (taking value 0 or 1 with equal probability).

• A := Z1

• B := Z2Z3

• C := if B = 0 then Z4, else if A = 1 then Z4Z5, else 0

This model might be helpful if, say, we’d like to study the effect of a student’s interest in the

material (A) on their understanding of the material (B), and it’s easiest to survey students who

attend office hours (C).

1. (a) Imagine we could survey the entire student body to answer our question. Compute

P[B] and P[B|A]. What can you conclude about the relationship between A and B in

this model?

(b) Imagine instead that we can only survey students who attend office hours. Compute

P[B|C] and P[B|A,C]. Is this what you expected?

2. (a) Draw a graph representing the causal relationships between A, B, and C.

(b) Does your graph contain a mediator? If so, state which variable mediates between

which other variables, and why.

(c) Does your graph contain a collider? If so, state which variable is a collider and why.

(d) In light of your causal graph, interpret the probabilities you computed in part 1. Can

your graph explain why you observed what you did?

The phenomenon you observed is referred to as Berkson’s paradox.
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8.8 Problem

Although structural causal models and potential outcomes are sometimes cast as at odds, there is

no tension between the two formalisms, and it is useful to have familiarity with both approaches.

In this problem, we explore the connection between both frameworks and show how common

estimators can be derived in both frameworks.

Suppose we have a structural causal model for variables (Z, T, Y ), where Z is a set of background

variables, T ∈ {0, 1} is a binary treatment, and Y ∈ R is the outcome of interest. We wish to

estimate the average treatment effect (ATE) of treatment T on outcome Y .

Throughout this problem, suppose X ⊂ Z is a set of variables that satisfies the backdoor

criterion relative to the pair (T, Y ). Let Y0(U) and Y1(U) denote the potential outcomes defined

in terms of the structural causal model, where U denotes the exogenous variables.

1. In the language of structural causal models, the average treatment effect is

ATEscm ≜ E[Y | Do(T = 1)]− E[Y | Do(T = 0)].

In the language of potential outcomes, the average treatment effect is

ATEpo ≜ E[Y1(U)− Y0(U)].

Show these quantities are equivalent, i.e. prove ATEscm = ATEpo.

A classic estimator for estimating average treatment effects is inverse-propensity (IP) weight-

ing. Concretely, given n i.i.d. samples (Xi, T i, Y i), the estimator is

ÂTEip =
1

n

n∑
i=1

T iY i

e(Xi)
− (1− T i)Y i

1− e(Xi)
,

where e(x) is the propensity score, e(x) = P(T = 1 | X = x). (Normally, the propensity scores

are also estimated from data, but for this problem we assume they are known for simplicity.)

Assume the propensity scores e(X) ∈ (0, 1) almost surely. This is sometimes called positivity.

In the next two parts, we show ÂTEip is an unbiased estimate of the average treatment effect

using both potential outcomes and structural causal models.

2. If X satisfies the backdoor criterion relative to (T, Y ), then the potential outcomes satisfy an

assumption called ignorability, namely {Y0(U), Y1(U)} ⊥⊥ T | X. (You do not need to show

this).

Using ignorability, show

E
[
TY

e(X)

]
= E[Y1],

and, similarly, show

E
[
(1− T )Y

1− e(X)

]
= E[Y0].

Consequently, E[ÂTEip] = ATEpo.
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3. Using the backdoor-criterion, show

E
[
TY

e(X)

]
= E[Y | Do(T = 1)],

and similarly, show

E
[
(1− T )Y

1− e(X)

]
= E[Y | Do(T = 0)].

Consequently, E[ÂTEip] = ATEscm.
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8.9 Problem

1. Prove that the number of causal graphs over a set of n variables is greater than

2Ω(n2)

2. Consider a causal model G over V = {X,Y, Z1, . . . Zn} where there is no unobserved confound-

ing. More formally, assume that the causal graph is Markovian and that every exogenous

noise variable U has outdegree 1.

Prove that the number of distinct values for P (Y = y | do(X = x)) is at most 2n.

Observe how this implies that the number of causal effects is much (much) smaller than the

number of causal graphs.
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9 Causal inference in practice

10 Sequential decision making and dynamic programming

10.1 Problem

Recall the model of strategic classification, where an institution designs a classifier x 7→ f(x) which

maps features x of individuals to labels f(x) ∈ {0, 1}. Associated with each individual is their true

features x and label y. In the static learning problem, the goal is simply to find a classifier that

predicts the correct label, i.e. f(x) = y.

In the strategic learning problem, the individual additionally has a cost function c(x, x′). Indi-

viduals change their features to x′ to maximize their expected gain f(x′) − c(x, x′). The goal of

the institution is instead to design a classifier such that even after manipulation, the correct label

is chosen, i.e. f(x′) = y.

In this problem, we consider linear classifiers of the form

fw,b(x) =

{
1 w⊤x ≥ b

0 w⊤x < b

We can also write the classifier as an indicator function, fw,b(x) = 1{w⊤x ≥ b}. We consider

quadratic costs to individuals,

c(x, x′) = (x− x′)⊤Q(x− x′) ,

for a symmetric and positive definite matrix Q.

1. The optimal response of an individual, x′⋆, is the value which maximizes their expected gain.

Show that for a fixed classifier, the optimal response can be written as the minimizer of

a constrained optimization problem with some additional logic, i.e.

x′⋆ =

{
argminx′∈C g(x

′) minx′∈C g(x
′) ≤ d

x minx′∈C g(x
′) > d

.

What is the form of the objective g(x′), the constraint set C, and the parameter d?

2. What is the optimal response of the individual? Simplify the expression derived in the

previous part by solving the constrained minimization problem.

3. Show that if parameters w⋆, b⋆ achieve the best possible for the static learning problem,

then w⋆, b
′ achieve the best accuracy for the strategic learning problem. What is the value

of b′?
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10.2 Problem

Consider a hidden process that at each time step has a binary state xi ∈ {0, 1}. Each state xi
depends on the previous states x1, . . . xi−1 through the states before it. We observe the current

state xi via noisy binary yi. These sequence models are known as hidden Markov models; our goal

is to predict the next state and observation given the past observations. At every time step, xi
evolves to xi+1 according to probability matrix P:

P =

[
p0|0 p0|1
p1|0 p1|1

]
=

[
f̃p•|0 f̃p•|1

]
where pj|k = P (xi+1 = j|xi = k).

Suppose that at every time step, our observations are binary, and we observe yi given xi ac-

cording to probability matrix Q:

Q =

[
q0|0 q0|1
q1|0 q1|1

]
=

[
f̃ q⊤0|•
f̃ q⊤1|•

]
,

where qj|k = P (yi = j|xi = k).

At iteration i, we would like to derive the posterior distribution over the hidden state xi, given

all measurements, P (xi|y1, . . . , yi).

1. In this case, we can derive an explicit expression for the posterior distribution. First, write

the joint distribution at iteration i, P (xi, y1, . . . , yi) in terms of the joint distribution

at iteration i − 1, P (xi−1, y1, . . . , yi−1) and P and Q. Henceforth, we refer to this joint

distribution at iteration i as a vector f̃m(i) with f̃m
(i)
j = P (xi = j, y1, . . . , yi).

2. Use this relation to write the posterior distributions P (xi|y1, . . . , yi) and P (yi +

1|y1, . . . , yi) at iteration i.

3. Use the above expressions to derive the Bayes optimal estimator ŷi+1(y1, . . . , yi)

under the squared loss. Please express your solution in terms of f̃m and f̃h, where f̃h is

defined as f̃h := f̃ q⊤1|•f̃P . f̃h0 is the probability of observing yk = 1 given that the previous

state xk−1 = 0; f̃h1 is the probability of observing yk = 1 given that the previous state

xk−1 = 1.
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10.3 Problem

Consider a discrete-time linear dynamical system:

xk+1 = Akxk +Bkuk

where xk is the state vector and uk is a control input vector. Assume that Ak and Bk are known.

The system runs for k = 0, 1, . . . , N − 1. At each time step k, assume that we get to observe the

state vector xk.

We want to choose uk at each time step k in order to minimize a quadratic running cost:

xTNQNxN +

N−1∑
k=0

(xTkQkxk + uTkRkuk)

where Qk and Rk are known positive definite matrices. Throughout this question, if you need to

invert a matrix you may assume it is invertible.

It may be helpful to define the optimal cost-to-go (or value function) from a state xk:

Jk(xk) = min
uj ,j≥k

[
xTNQNxN +

N−1∑
i=k

(xTi Qixi + uTi Riui)

]

which is the cost incurred by an optimal controller starting at xk.

1. Prove (by induction) that the optimal uk in this case is a linear feedback on the state xk, i.e.

uk = −Kkxk, and solve for the gain matrix Kk. Hint: Show that the Jk(xk) is a quadratic

form.

Now imagine that our system is modified as follows:

xk+1 = Akxk +Bkuk + wk

where wk is a noise vector. Assume that wk is zero-mean, independent, and finite-variance.

Also, instead of observing the full state vector xk, we observe an output zk, defined as:

zk = hk(xk) + vk

where hk is a known function and vk is another zero-mean, independent, finite-variance noise vector.

(wi is independent of vj for all i, j.) Our cost (to minimize) is now:

E

[
xTNQNxN +

N−1∑
k=0

(xTkQkxk + uTkRkuk)

]

At every time step, the controller has access to all previous outputs and control inputs. We denote

this available information in a vector Ik = [z0, ..., zk, u0, ..., uk−1]. Our goal is to choose uk (based

on our information Ik) to minimize the expected cost.
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2. Prove (by induction) that the optimal uk in this case is a linear feedback on the expected

state (given our available information), i.e. uk = −LkE[xk|Ik]. How does Lk compare to Kk

from the previous part? Hint: Follow a similar procedure as in the previous part, but at each

step take into account the available information Ik.

This is the separation principle; you can separately solve for an optimal state estimate and

an optimal controller (as if there were no measurement error), and this combined controller

is optimal.

3. If wk and vk were Gaussian, and hk were linear, how would you compute E[xk|Ik] efficiently?
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11 Reinforcement learning

11.1 Problem

Let E be an arbitrary set of bandits. Suppose you are given a policy A designed for E that accepts

the horizon T as a parameter and has a regret guarantee of

RT ≤ fT (ν), ∀ν ∈ E ,

where fT : E → [0,∞) is a sequence of functions. The purpose of this exercise is to analyze a meta-

algorithm based on the so-called doubling trick that converts a policy depending on the horizon

to a policy with similar guarantees that does not. Let T1 < T2 < T3 < . . . be a fixed sequence of

integers and consider the policy that runs A with horizon T1 until round t = min{T, T1}. Then

restarts the algorithm with horizon T2 until t = min{T, T1+T2}. Then restarts again with horizon

T3 until t = min{T, T1 + T2 + T3} and so-on. Note that t is the real time counter and is not reset

on each restart.

1. Let ℓmax = min{ℓ :
∑ℓ

i=1 Ti ≥ T}. Prove that the regret of the meta-algorithm is at

most

RT ≤
ℓmax∑
ℓ=1

fTℓ
(ν).

2. Suppose that fT (ν) ≤
√
T . Show that if Tℓ = 2ℓ−1, then the regret of the meta-algorithm

is at most RT ≤ C
√
T , where C > 0 is a carefully chosen universal constant.

3. Suppose that fT (ν) = g(ν) log(T ) for some function g : E → [0,∞). What is the regret

of the meta-algorithm if Tℓ = 2ℓ−1? Can you find a better choice of (Tℓ)ℓ?

4. In lecture, we discussed the explore then commit strategy for two armed bandits, and showed

that it can achieve logarithmic regret for a fixed horizon T and correctly chosen exploration

horizon m ≤ T . Extend this strategy using the doubling trick so that it no longer

depends on the horizon, and bound the resulting regret.
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11.2 Problem

Consider the following multi-armed bandit setting:

• arms {1, 2, . . . , k}

• arm i gives reward that is sub-Gaussian with parameter σ = 1 and mean µi

• without loss of generality, assume that arm 1 is optimal, with µ1 = 0

• ∆i = −µi, the optimality gap for arm i

We get to proceed for a fixed horizon n, where in each step we choose one arm i to pull, and we

receive a reward drawn i.i.d. from the distribution for that arm. Let aj ∈ {1, . . . , k} be the arm we

decide to pull in step j = 1, . . . , n. We want to minimize our expected regret, which is
∑n

j=1∆aj .

Consider the following successive elimination algorithm:

Algorithm 1 Successive Elimination

SuccessiveEliminationk, n A1 ← {1, 2, . . . , k} phase ℓ = 1, 2, 3, . . . (continue as long as∑
ℓmℓ|Aℓ| ≤ n) Choose each arm i ∈ Aℓ exactly mℓ times µ̂i,ℓ ← the average reward for arm i

from phase ℓ only Aℓ+1 ←
{
i : µ̂i,ℓ + 2−ℓ ≥ maxj∈Aℓ

µ̂j,ℓ

}
The algorithm proceeds in phases ℓ and maintains an active set Aℓ of arms, with the intention

that arm 1 (an optimal arm) is always in the active set. At each phase, all active arms are sampled

equally, average rewards are estimated, and the least promising arms are eliminated from the active

set for the next phase.

1. Show that for any ℓ ≥ 1,

P[1 /∈ Aℓ+1, 1 ∈ Aℓ] ≤ k exp

(
−mℓ2

−2ℓ

4

)
Since P[A,B] ≤ P[A|B], it suffices to show the statement with the left hand side replaced by

P[1 /∈ Aℓ+1|1 ∈ Aℓ]: i.e. assuming that arm 1 was in Aℓ, we want to bound the probability

that arm 1 is rejected and not placed in Aℓ+1. The intent here is to make sure that with high

probability, we do not reject the optimal arm.

2. Show that if i ∈ [k] and ℓ ≥ 1 are such that ∆i ≥ 2−ℓ, then

P[i ∈ Aℓ+1, 1 ∈ Aℓ, i ∈ Aℓ] ≤ exp

(
−mℓ(∆i − 2−ℓ)2

4

)
Since P[A,B] ≤ P [A|B], it suffices to show the statement with the left hand side replaced

by P[i ∈ Aℓ+1|1 ∈ Aℓ, i ∈ Aℓ]: i.e. assuming that arm 1 and arm i were both in Aℓ, and i

is sufficiently suboptimal, we want to bound the probability that arm i makes it into Aℓ+1.

The intent here is to make sure that with high probability, we reject arms that are sufficiently

suboptimal.
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3. Let ℓi = min{ℓ ≥ 1 : 2−ℓ ≤ ∆i/2} Choose mℓ in such a way that P(exists ℓ : 1 /∈ Aℓ) ≤ 1/n

and P(i ∈ Aℓi+1) ≤ 1/n

4. Show that the algorithm has regret at most

Rn ≤ C
∑

i:∆i>0

(∆i +
1

∆i
log n)
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11.3 Problem

For this problem, we consider a setting where there are K actions u1, . . . , uK . When we perform

action uk we get reward xk which has mean µk and is bounded between 0 and 1.

1. First assume that µk∗ = maxi∈[K] µi satisfies µk∗ − µj ≥ ∆ for all j ̸= k∗. Design an

algorithm and prove that it identifies k∗ with probability 1 − δ after taking 2K
∆2 log(

K
δ )

many actions.

2. Now assume that we want to optimize reward adaptively. Fix a horizon T . Let Rt be the

random reward realized at time t ∈ [T ]. Define the expected regret of an algorithm A to be

Regret(A) = Tµi∗ −
T∑
t=1

E[Rt]

Design an algorithm A and prove that Regret(A) ≤ O( K
∆2 log T ).

3. Assume that the horizon T is unknown. Provide pseudocode which extends the algorithm

above to this setting.
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12 Other Problems

12.1 Problem

Let {x1, x2, . . . , xn, . . .} be a sequence of independent random variables with identical means E[xi] =
m and variances var(xi) = σ2. Define the sample mean and sample mean-square of the first N of

the xi’s as

sample mean: mN =
1

N

N∑
i=1

xi

sample mean-square: s2N =
1

N

N∑
i=1

x2i

1. Find the mean and variance of the sample mean. Show that

lim
N→∞

E[(mN −m)2] = 0

and use this result to deduce that

lim
N→∞

P[|mN −m| ≥ ϵ] = 0

for any ϵ > 0.

2. Suppose the xi are zero-mean Gaussian random variables. Find the mean and variance of the

sample mean-square. Show that

lim
N→∞

E[(s2N − σ2)2] = 0

3. Suppose that the xis are independent, zero-mean, Gaussian random variables. Are mN and

s2N Gaussian random variables? Explain your reasoning.
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12.2 Problem

Let X and Y be independent random variables with probability density functions

pX(x) =
1

2
δ(x+ 1) +

1

2
δ(x− 1),

pY (y) =
1√
2π

exp

(
−1

2
y2
)
.

Let Z = X + Y and W = XY .

1. Find pZ(z), the probability density function of Z.

2. Find the conditional probability density functions pZ|X(z|x = −1) and pZ|X(z|x = 1).

3. Are Y and W uncorrelated (i.e. E[YW ] = 0)? Are they independent (i.e. pW |Y (w|y) =
pW (w))?
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12.3 Problem

1. For p ∈ (0,∞), let ∥x∥p = (
∑d

i=1 |xi|p)1/p, and let ∥x∥∞ = maxi |xi|. Please prove the

following:

(a) Show that ∥x∥2, ∥x∥1, and ∥x∥∞ are norms.

(b) Show that ∥x∥∞ ≤ ∥x∥2 ≤ ∥x∥1.

(c) Show that ∥x∥22 ≤ ∥x∥1∥x∥∞.

(d) Show that ∥x∥1 ≤
√
d∥x∥2 and ∥x∥2 ≤

√
d∥x∥∞.

2. For each the following functions f(x) : Rd → R, state if f is always, sometimes, or

never a norm. Provide a proof or counterexample, and if the answer is ‘sometimes,’ give a

necessary and sufficient condition for f to be a norm.

(a) f(x) = log sinh ∥x∥2.

(b) f(x) =
∑d

i=1 x
2
i .

(c) f(x) = ∥Ax∥, where ∥x∥ is a norm on Rd, and A ∈ Rd×d.

(d) f(x) =
√
x⊤Σx where Σ is symmetric and has strictly positive eigenvalues.

(e) f(x) =
√
x⊤Σx, where Σ =

[
0 A

A⊤ 0

]
, and A ∈ Rn×m where m+ n = d.

(f) f(x) =
∑

i αi|xi|, αi ∈ R.

3. Consider a function f(x) = supw∈C⟨w, x⟩, where C ⊂ Rd with the following properties:

• x ∈ C if and only if −x ∈ C.

• C is bounded; that is supx∈C ∥x∥ <∞.

• There exists an orthonormal basis {e1, e2, . . . , ed} ⊂ C.

Is f(x) a norm? Provide a proof.
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12.4 Problem

1. Let the vector space V be a general inner product space (i.e. not necessarily Rn) and let x, y

be elements of V. Suppose we want to approximate x as a multiple of y, that is, let x̂ = ay

for a ∈ R so that x̂ is, in some sense, as close as possible for x.

(a) Let e = x− x̂ = x− ay. Show that

J = ∥e∥ =
√
⟨e, e⟩

is minimized over all possible values of a when

⟨e, y⟩ = 0 .

Hint: you may want to use the orthogonal decomposition theorem.

(b) Find an explicit formula for a in terms of inner products involving x and y.

(c) Give explicit formulas for a in the following two cases:

i. V = Rn and ⟨u, v⟩ = u⊤v.

ii. V is defined over scalar random variables, with ⟨U, V ⟩ = E[UV ]

2. Let X,Y, Z be zero-mean, unit-variance random variables which satisfy

Var(X + Y + Z) = 0 .

Find the covariance matrix of X,Y, Z, i.e. find the matrixE[X2] E[XY ] E[XZ]

E[Y X] E[Y 2] E[Y Z]

E[ZX] E[ZY ] E[Z2]


Hint: you may want to use vector space ideas.
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12.5 Problem

1. Assume that M,N are symmetric positive semidefinite matrices of the same dimensions. For

each of the following statements, either prove that it is true, or give a counterex-

ample.

(a) B⊤MB is positive semidefinite for any matrix B with consistent dimensions.

(b) If M − N is positive semidefinite, then λmax(M) ≥ λmax(N) where λmax denotes the

largest eigenvalue.

(c) Tr(MN) = 0 if and only if MN = 0.

(d) Let ◦ denote the Hadamard product. M ◦N is positive semidefinite.

(e) Suppose thatM,N are also invertible. IfM−N is positive semidefinite, then N−1−M−1

is positive semidefinite.

2. A is symmetric in all parts.

(a) Let A be a positive definite matrix. Prove that all eigenvalues of A are greater than

zero.

(b) Let A be a positive definite matrix. Prove that A is invertible. (Hint: Use the previous

part.)

(c) Let A be a positive semidefinite matrix. Find all γ ∈ R such that A + γI is positive

definite.

(d) Let A be a positive definite matrix. Prove that there exist n linearly independent vectors

x1, x2, ..., xn such that Aij = x⊤i xj . (Hint: Use the spectral theorem to find a matrix B

such that A = B⊤B.)

(e) Show that for symmetric matrix A, cosh(A) = eA+e−A

2 is positive definite. Recall that

eA =
∑∞

k=0
Ak

k! .

3. Suppose A is an m× n matrix and A = UΣV T is a singular value decomposition.

(a) What is the singular value decomposition of AT?

(b) If m = n and A is nonsingular, what is the singular value decomposition of A−1?

(c) If m = n and A is skew-symmetric (i.e., A = −AT ), show that the nonzero singular

values of A come in pairs.

4. Let p be a probability distribution on the interval [0, 1]. Let the kth moment of p be the

expected value

µk = E[xk] =
∫ 1

0
xkp(x)dx .

Prove that the n× n matrix H with entries Hij = µi+j is positive semidefinite.
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12.6 Problem

This problem exercises your knowledge of basic probability in the context of understanding why

lots of training data helps improve the accuracy of learning things.

For each θ in the interval (1/4, 3/4), define fθ : [0, 1]→ {0, 1}, such that

fθ(x) =

{
1 if x > θ

0 otherwise.

We draw samples X1, X2, . . . , Xn uniformly at random and i.i.d. from the interval [0, 1]. Our goal

is to learn an estimate for θ from n random samples (X1, fθ(X1)), (X2, fθ(X2)), . . . , (Xn, fθ(Xn)).

We let

Tmin = max

({
1

4

}
∪ {Xi|fθ(Xi) = 0}

)
,

Tmax = min

({
3

4

}
∪ {Xi|fθ(Xi) = 1}

)
.

We know that the true θ must be larger than Tmin and smaller than Tmax. Both Tmin and Tmax

are random variables, and the gap between them represents the uncertainty we will have about the

true θ given the training data that we have received.

1. Suppose that you would like to have an estimate for θ that has an accuracy of 2ϵ, with

probability at least 1 − δ. How large must the number of samples n be? Hint: you

may want to compute the probabilities P(Tmax − θ > ϵ) and P(θ − Tmin > ϵ) as a function of

ϵ.

2. Instead of getting random samples (Xi, f(Xi)), suppose we were allowed to choose where to

sample the function, but you have to choose all the sampling locations in advance. Propose

a method to estimate θ. How many samples suffice to achieve an estimate that is

within an interval of size 2ϵ? Hint: You need not use a randomized strategy.

3. Now suppose that you can pick where to sample the function adaptively – choosing where

to sample the function in response to the previously observed values. Propose a method to

estimate θ. How many samples suffice to achieve an estimate that is within an

interval of size 2ϵ?

4. Compare the scaling of n with ϵ and δ in the three sampling approaches above: random,

deterministic, and adaptive.
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12.7 Problem

1. Consider the random variables X,Y whose joint density is given by

pX,Y (x, y) =

{
2 x, y ≥ 0 and x+ y ≤ 1

0 otherwise

It may be helpful to sketch the density over x and y.

(a) Compute the covariance matrix

Λ =

[
λXX λXY

λY X λY Y

]

(b) Knowledge about Y generally gives us information about the random variable X, and

vice versa. Suppose we want to estimate X based on knowledge of Y . In particular, we

want to estimate X as an affine function of Y :

X̂(Y ) = aY + b,

where a, b are constants. Select a and b such that

E[(X̂ −X)2],

the expected mean squared error between X and its estimate X̂(Y ), is mini-

mized.

2. Consider the random variables X,Y whose joint density is given by

pX,Y (x, y) =

{
1 0 ≤ x, y ≤ 1

0 otherwise

Repeat the above steps in the previous problem part.
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12.8 Problem

Assume that X1, . . . , Xn are nonnegative, independent (but not identically distributed) random

variables and have density bounded by 1. That is P (Xi = x) ≤ 1 for all x and Xi. Prove that

the following inequality holds:

P

( n∑
i=1

Xi ≤ εn

)
≤ (eε)n
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12.9 Problem

This question introduces the Chernoff bound.

1. Let X be a random variable with EXk <∞ ∀k = 1, 2, .... Prove that

P [X − EX ≥ t] ≤ inf
λ>0

E[exp(λ(X − EX))] exp(−λt)

This inequality is known as the Chernoff bound. It is a very general tool that often comes in

handy.

2. A random variable X is called sub-Gaussian with parameter σ if its moment generating

function decays at least as fast as that of a Gaussian, i.e.:

E[exp(λ(X − EX))] ≤ exp(σ2λ2/2)

holds for any λ.

Use the result of part 1 to show that if a random variable X is sub-Gaussian with parameter

σ, it satisfies the tail bound:

P [X − EX ≥ t] ≤ exp(
−t2

2σ2
)
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