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Causal inference in practice

The previous chapter introduced the conceptual foundations of causality,
but there’s a lot more to learn about how these concepts play out in prac-
tice. In fact, there’s a flourishing practice of causal inference in numerous
scientific disciplines. Increasingly, ideas from machine learning show up in
the design of causal estimators. Conversely, ideas from causal inference can
help machine learning practitioners run better experiments.

In this chapter we focus on estimating the average treatment effect, often
abbreviated as ATE, of a binary treatment T on an outcome variable Y:

E[Y | do(T := 1)]−E[Y | do(T := 0)] .

Causal effects are population quantities that involve two hypothetical ac-
tions, one holding the treatment variable constant at the treatment value 1,
the other holding the treatment constant at its baseline value 0.

The central question in causal inference is how we can estimate causal
quantities, such as the average treatment effect, from data.

Confounding between the outcome and treatment variable is the main
impediment to causal inference from observational data. Recall that random
variables Y and T are confounded, if the conditional probability distribution
of Y given T does not equal its interventional counterpart:

P{Y = y | do(T := t)} 6= P{Y = y | T = t}

If these expressions were equal, we could estimate the average treatment
effect in a direct way by estimating the difference E[Y | T = 1]−E[Y | T =
0] from samples. Confounding makes the estimation of treatment effects
more challenging, and sometimes impossible. Note that the main challenge
here is to arrive at an expression for the desired causal effect that is free
of any causal constructs, such as the do-operator. Once we have a plain
probability expression at hand, tools from statistics allow us to relate the
population quantity with a finite sample estimate.

Design and inference

There are two important components to causal inference, one is design, the
other is inference.
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In short, design is about sorting out various substantive questions about
the data generating process. Inference is about the statistical apparatus that
we unleash on the data in order to estimate a desired causal effect.

Design requires us to decide on a population, a set of variables to include,
and a precise question to ask. In this process we need to engage substan-
tively with relevant scientific domain knowledge in order to understand
what assumptions we can make about the data.

Design can only be successful if the assumptions we are able to make
permit the estimation of the causal effect we’re interested in. In partic-
ular, this is where we need to think carefully about potential sources of
confounding and how to cope with them.

There is no way statistical estimators can recover from poor design. If
the design does not permit causal inference, there is simply no way that
a clever statistical trick could remedy the shortcoming. It’s therefore apt
to think of causal insights as consequences of the substantive assumptions
that we can make about the data, rather than as products of sophisticated
statistical ideas.

Hence, we emphasize design issues throughout this chapter and inten-
tionally do not dwell on technical statements about rates of estimation. Such
mathematical statements can be valuable, but design must take precedence.

Experimental and observational designs

Causal inference distinguishes between experimental and observational de-
signs. Experimental designs generally are active in the sense of adminis-
tering some treatment to some set of experimental units. Observational
designs do not actively assign treatment, but rather aim to make it possible
to identify causal effects from collected data without implementing any
interventions.

The most common and well-established experimental design is a random-
ized controlled trial (RCT). The main idea is to assign treatment randomly.
A randomly assigned treatment, by definition, is not influenced by any other
variable. Hence, randomization eliminates any confounding bias between
treatment and outcome.

In a typical implementation of a randomized controlled trial, subjects
are randomly partitioned into a treatment group and a control group. The
treatment group receives the treatment, the control group receives no treat-
ment. It is important that subjects do not know which group they were
assigned to. Otherwise knowledge of their assignment may influence the
outcome. To ensure this, subjects in the control group receive what is called
a placebo, a device or procedure that looks indistinguishable from treatment
to the study subject, but lacks the treatment ingredient whose causal powers
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are in question. Adequate placebos may not exist depending on what the
treatment is, for example, in the case of a surgery.

Randomized controlled trials have a long history with many success
stories. They’ve become an important source of scientific knowledge.

Sometimes randomized controlled trials are difficult, expensive, or im-
possible to administer. Treatment might be physically or legally impossible,
too costly, or too dangerous. Nor are they free of issues and pitfalls.1 In this
chapter, we will see observational alternatives to randomized controlled
trials. However, these are certainly not without their own set of difficulties
and shortcomings.

The machine learning practitioner is likely to encounter randomization
in the form of so-called A/B tests. In an A/B test we randomly assign one of
two treatments to a set of individuals. Such experiments are common in
the tech industry to find out which of two changes to a product leads to a
better outcome.

The observational basics: adjustment and controls

For the remainder of the chapter we focus on observational causal inference
methods. In the previous chapter we saw that there are multiple ways to
cope with confounding between treatment and outcome. One of them is to
adjust (or control) for the parents (i.e., direct causes) of T via the adjustment
formula.

The extra variables that we adjust for are also called controls, and we
take the phrase controlling for to mean the same thing as adjusting for.

We then saw that we could use any set of random variables satisfying
the graphical backdoor criterion. This is helpful in cases where some
direct causes are unobserved so that we cannot use them in the adjustment
formula.

Let’s generalize this idea even further and call a set of variables admissible
if it satisfies the adjustment formula.

Definition 1. We say that a discrete random variable X is admissible if it satisfies
the adjustment formula:

P[Y = y | do(T := t)] = ∑
x

P[Y = y | T = t, X = x]P[X = x]

Here we sum over all values x in the support of X.

The definition directly suggests a basic estimator for the do-intervention.
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Basic adjustment estimator.
1. Collect samples n samples (ti, yi, xi)

n
i=1.

2. Estimate each of the conditional probabilities P[Y = y | T =
t, X = x] from the collected samples.

3. Compute the sum ∑x P[Y = y | T = t, X = x]P[X = x].

This estimator can only work if all slices {T = t, X = x} have nonzero
probability, an assumption often called overlap or positivity in causal infer-
ence.

But the basic estimator also fails when the adjustment variable X can take
on too many possible values. In general, the variable X could correspond
to a tuple of features, such as, age, height, weight, etc. The support of X
grows exponentially with the number of features. This poses an obvious
computational problem, but more importantly a statistical problem as well.
By a counting argument some of the events {T = t, X = x} must have
probability as small as the inverse of size of the support X. To estimate
a probability p > 0 from samples to within small relative error, we need
about O(1/p2) samples.

Much work in causal inference deals with overcoming the statistical in-
efficiency of the basic estimator. Conceptually, however, most sophisticated
estimators work from the same principle. We need to assume that we have
an admissible variable X and that positivity holds. Different estimators
then use this assumption in different ways.

Potential outcomes and ignorability

The average treatment effect often appears in the causal inference literature
equivalently in its potential outcome notation E[Y1−Y0]. This way of going
about it is mathematically equivalent and either way works for us.

When talking about potential outcomes, it’s customary to replace the
assumption that X is admissible with another essentially equivalent as-
sumption called ignorability or unconfoundedness. To recall from the previous
chapter, this assumption requires that the potential outcomes variables are
conditionally independent of treatment given X. Formally, T ⊥ (Y0, Y1) | X.
It’s not hard to show that ignorability implies that X is admissible.

Reductions to model fitting

Adjustment gives a simple and general way to estimate causal effects given
an admissible set of variables. The primary shortcoming that we discussed
is the sample inefficiency of the formula in high-dimensional settings.
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There’s a vast literature of causal estimators that aim to address this
central shortcoming in a range of different settings. While the landscape
of causal estimators might seem daunting to newcomers, almost all causal
inference methods share a fundamental idea. This idea is reduce causal
inference to standard supervised machine learning tasks.

Let’s see how this central idea plays out in a few important cases.

Propensity scores

Propensity scores are one popular way to cope with adjustment variables
that have large support. Let T ∈ {0, 1} be a binary treatment variable. The
quantity

e(x) = E[T | X = x]

is known as the propensity score and gives the likelihood of treatment in the
subpopulation defined by the condition X = x.

Theorem 1. Suppose that X is admissible, and the propensity scores are posi-
tive e(x) 6= 0 for all X. Then,

E[Y | do(T := 1)] = E

[
YT

e(X)

]
Proof. Applying the adjustment formula for a fixed y, we have

P[Y = y | do(T := 1)] = ∑
x

P[Y = y | T = 1, X = x]P[X = x]

= ∑
x

P[Y = y | T = 1, X = x]P[X = x]P[T = 1 | X = x]
P[T = 1 | X = x]

= ∑
x

P[Y = y, T = 1, X = x]
P[T = 1 | X = x]

= ∑
x,t∈{0,1}

t P[Y = y, T = t, X = x]
P[T = 1 | X = x]

.

Here, we used that e(x) = P[T = 1 | X = x] 6= 0. Completing the proof,

E[Y | do(T := 1)] = ∑
y

y P[Y = y | do(T := 1)]

= ∑
y,x,t∈{0,1}

yt P[Y = y, T = t, X = x]
P[T = 1 | X = x]

= E

[
YT

e(X)

]
.

The same theorem also shows that

E[Y | do(T := 0)] = E

[
Y(1− T)
1− e(X)

]
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and thus the average treatment effect of X on Y is given by

E[Y | do(T := 1)]−E[Y | do(T := 0)] = E

[
Y
(

T
e(X)

− 1− T
1− e(X)

)]
.

This formula for the average treatment effect is called inverse propensity score
weighting. Let’s understand what it buys us compared with the adjustment
formula when working with a finite sample.

One way to approximate the expectation given the theorem above is to
collect many samples from which we estimate the propensity score e(x)
separately for each possible setting X. However, this way of going about it
runs into the very same issues as the basic estimator. Practitioners therefore
choose a different route.

In a first step, we fit a model ê to the propensity scores hoping that our
model ê approximates the propensity score function e uniformly well. We
approach this step as we would any other machine learning problem. We
create a dataset of observations (xi, ei) where ei is an empirical estimate
of e(xi) that we compute from our sample. We then fit a model to these
data points using our favorite statistical technique, be it logistic regression
or something more sophisticated.

In a second step, we then use our model’s estimated propensity scores
in our sample estimate instead of the true propensity scores:

1
n

n

∑
i=1

tiyi

ê(xi)
.

The appeal of this idea is that we can use the entire repertoire of model
fitting to get a good function approximation of the propensity scores. De-
pending on what the features are we could use logistic regression, kernel
methods, random forests, or even deep models. Effectively we’re reducing
the problem of causal inference to that of model fitting, which we know
how to do.

Double machine learning

Our previous reduction to model fitting has a notable shortcoming. The
propensity score estimate ê(xi) appears in the denominator of our estimator.
This has two consequences. First, unbiased estimates of propensity scores
do not imply an unbiased estimate of the causal effect. Second, when
propensity scores are small and samples aren’t too plentiful, this can lead
to substantial variance.

There’s a popular way to cope, called double machine learning, that works
in a partially linear structural causal model:

Y = τT + g(X) + U , T = f (X) + V
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In this model, the variable X is an observed confounder between treatment
and outcome. We allow the functions g and f to be arbitrary, but note
that g only depends on X but not on T as it could in general. The random
variables U, V are independent exogenous noise variables with mean 0.
In this model, the effect of treatment on the outcome is linear and the
coefficient τ is the desired average treatment effect.

The trick behind double machine learning is to subtract E[Y | X] from
each side of the first equation and to use the fact that E[Y | X] = τ E[T |
X] + g(X). We therefore get the equation

Y−E[Y | X] = τ(T −E[T | X]) + U .

Denoting Ỹ = Y − E[Y | X] and T̃ = T − E[T | X] we can see that the
causal effect τ is the solution to the regression problem Ỹ = τT̃ + U.

The idea now is to solve two regression problems to find good function
approximations of the conditional expectations E[Y | X] and E[T | X],
respectively. We can do this using data drawn from the joint distribution
of (X, T, Y) by solving two subsequent model fitting problems, hence the
name double machine learning.

Suppose then that we find two function approximations q(X, Y) ≈ E[Y |
X] and r(X, T) ≈ E[T | X]. We can define the random variables Ŷ =
Y − q(X, Y) and T̂ = T − r(X, T). The final step is to solve the regression
problem Ŷ = τ̂T̂ + U for the parameter τ̂.

Compared with inverse propensity score weighting, we can see that finite
sample errors in estimating the conditional expectations have a more benign
effect on the causal effect estimate τ̂. In particular, unbiased estimates of the
conditional expectations lead to an unbiased estimate of the causal effect.

Heterogeneous treatment effects

In many applications, treatment effects can vary by subpopulation. In such
cases we may be interested in the conditional average treatment effect (CATE)
in the subpopulation defined by X = x:

τ(x) = E[Y | do(T := 1), X = x]−E[Y | do(T := 0), X = x] .

We’re in luck, because the same proof we saw earlier shows that we can
estimate these so-called heterogeneous treatment effects with the propensity
score formula:

τ(x) = E

[
Y
(

T
e(X)

− 1− T
1− e(X)

)
| X = x

]
We can also extend double machine learning easily to the heterogeneous

case by replacing the coefficient τ in the first structural equation with a
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function τ(X) that depends on X. The argument remains the same except
that in the end we need to solve the problem Ŷ = τ̂(X)T̂ + Y, which
amounts to optimizing over a function τ̂ in some model family rather than
a constant τ̂.

Both inverse propensity score weighting and the double machine learn-
ing can, in principle, estimate heterogeneous treatment effects. These aren’t
the only reductions to model fitting, however. Another popular method,
called causal forests, constructs decision trees whose leaves correspond co-
variate settings that deconfound treatment and outcome.2

Quasi-experiments

The idea behind quasi-experimental designs is that sometimes processes in
nature or society are structured in a way that enables causal inference. The
three most widely used quasi-experimental designs are regression discontinu-
ities, instrumental variables, and differences in differences. We will review the
first two briefly to see where machine learning comes in.

Regression discontinuity

Many consequential interventions in society trigger when a certain score R
exceeds a threshold value t. The idea behind a regression discontinuity
design is that units that fall just below the threshold are indistinguishable
from units just above threshold. In other words, whether or not a unit is
just above or just below the threshold is a matter of pure chance. We can
then hope to identify a causal effect of an intervention by comparing units
just below and just above the threshold.

To illustrate the idea, consider an intervention in a hospital setting that
is assigned to newborn children just below a birth weight of 1500g. We can
ask if the intervention has a causal effect on wellbeing of the child at a later
age as reflected in an outcome variable, such as, mortality or cumulative
hospital cost in their first year. We expect various factors to influence both
birth weight and outcome variable. But we hope that these confounding
factors are essentially held constant right around the threshold weight of
1500g. Regression discontinuity designs have indeed been used to answer
such questions for a number of different outcome variables.3, 4

Once we have identified the setup for a regression discontinuity, the
idea is to perform two regressions. One fits a model to the data below the
threshold. The other fits the model to data above the threshold. We then
take the difference of the values that the two models predict at the threshold
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Figure 1: Illustration of an idealized regression discontinuity. Real examples
are rarely this clear cut.

as our estimate of the causal effect. As usual, the idea works out nicely in
an idealized linear setting and can be generalized in various ways.

There are numerous subtle and not so subtle ways a regression dis-
continuity design can fail. One subtle failure mode is when intervention
incentivizes people to strategically make efforts to fall just below or above
the threshold. Manipulation or gaming of the running variable is a well-
known issue for instance when it comes to social program eligibility.5 But
there are other less obvious cases. For example, school class sizes in data
from Chile exhibit irregularities that void regression discontinuity designs.6

In turn, researchers have come up with tests designed to catch such prob-
lems.

Instrumental variables

Instrumental variables are a popular quasi-experimental method for causal
inference. The starting point is confounding between a treatment T and
our outcome of interest Y. We are in a situation where we’re unable to
resolve confounding via the adjustment formula. However, what we have is
the existence of a special variable Z called an instrument that will help us
estimate the treatment effect.

What makes Z a valid instrument is nicely illustrated with the following
causal graph.

The graph structure encodes two key assumptions:

1. The instrument Z and the outcome Y are unconfounded.
2. The instrument Z has no direct effect on the outcome Y.
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Figure 2: Typical graphical model for an instrumental variable setup

Let’s walk through how this works out in the one-dimensional linear
structural equation for the outcome:

Y = α + βT + γW + N

Here, N is an independent noise term. For convenience, we denote the error
term U = γW + N. What we’re interested in is the coefficient β since we
can easily verify that it corresponds to the average treatment effect:

β = E[Y | do(T := 1)]−E[Y | do(T := 0)]

To find the coefficient β, we cannot directly solve the regression problem Y =
α + βT + U, because the error term U is not independent of T due to the
confounding influence of W.

However, there’s a way forward after we make a few additional assump-
tions:

1. The error term is zero mean: E[U] = 0
2. The instrument is uncorrelated with the error term: Cov(Z, U) = 0
3. Instrument and treatment have nonzero correlation: Cov(Z, T) 6= 0

The first two assumptions directly imply

E[Y− α− βT] = 0 and E[Z(Y− α− βT)] = 0 .

This leaves us with two linear equations in α and β so that we can solve for
both parameters. Indeed, α = E[Y]− β E[T]. Plugging this into the second
equation, we have

E[Z((Y−E[Y])− β(T −E[T]))] = 0,

which implies, via our third assumption Cov(T, Z) 6= 0,

β =
Cov(Z, Y)
Cov(T, Z)

.

There’s a different intuitive way to derive this solution by solving a two step
least squares procedure:
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1. Predict the treatment from the instrument via least squares regression,
resulting in the predictor T̂ = cZ.

2. Predict the outcome from the predicted treatment using least squares
regression, resulting in the predictor Ŷ = β′T̂.

A calculation reveals that indeed β′ = β, the desired treatment effect. To
see this note that

c =
Cov(Z, T)

Var(Z)

and hence

β′ =
Cov(Y, T̂)

Var(T̂)
=

Cov(Y, Z)
c Var(Z)

=
Cov(Z, Y)
Cov(T, Z)

= β .

This solution directly generalizes to the multi-dimensional linear case. The
two stage regression approach is in fact the way instrumental variables is
often introduced operationally. We see that again instrumental variables is
a clever way of reducing causal inference to prediction.

One impediment to instrumental variables is a poor correlation between
the instrument and the treatment. Such instruments are called weak instru-
ments. In this case, the denominator Cov(T, Z) in our expression for β is
small and the estimation problem is ill-conditioned. The other impediment
is that the causal graph corresponding to instrumental variables is not
necessarily easy to come by in applications. What’s delicate about the graph
is that we want the instrument to have a significant causal effect on the
treatment, but at the same time have no other causal powers that might
influence the outcome in a way that’s not mediated by the treatment.

Nonetheless, researchers have found several intriguing applications
of instrumental variables. One famous example goes by the name judge
instruments. The idea is that within the United States, at least in certain
jurisdictions and courts, defendants may be assigned randomly to judges.
Different judges then assign different sentences, some perhaps more lenient,
others harsher. The treatment here could be the sentence length and the
outcome may indicate whether or not the defendant went on to commit
another crime upon serving the prison sentence. A perfectly random
assignment of judges implies that the judge assignment and the outcome
are unconfounded. Moreover, the assignment of a judge has a causal effect
on the treatment, but plausibly no direct causal effect on the outcome.
The assignment of judges then serves as an instrumental variable. The
observation that judge assignments may be random has been the basis of
much causal inference about the criminal justice system. However, the
assumption of randomness in judge assignments has also been challenged.7
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Limitations of causal inference in practice

It’s worth making a distinction between causal modeling broadly speaking
and the practice of causal inference today. The previous chapter covered
the concepts of causal modeling. Structural causal models make it painfully
clear that the model necessarily specifies strong assumptions about the
data generating process. In contrast, the practice of causal inference we
covered in this chapter seems almost model-free in how it reduces to pattern
classification via technical assumptions. This appears to free the practitioner
from difficult modeling choices.

The assumptions that make this all work, however, are not verifiable
from data. Some papers seek assurance in statistical robustness checks,
but these too are sample-based estimates. Traditional robustness checks,
such as resampling methods or leave-one-out estimates, may get at issues
of generalization, but cannot speak to the validity of causal assumptions.

As a result, a certain pragmatic attitude has taken hold. If we cannot
verify the assumption from data anyway, we might as well make it in
order to move forward. But this is a problematic position. Qualitative
and theoretical ways of establishing substantive knowledge remain relevant
where the limitations of data set in. The validity of a causal claim cannot
be established solely based on a sample. Other sources of substantive
knowledge are required.

Validity of observational methods

The empirical evidence regarding the validity of observational causal infer-
ence studies is mixed and depends on the domain of application.

A well known article compared observational studies in the medical
domain between 1985 and 1998 to the results of randomized controlled
trials.8 The conclusion was good news for observational methods:

We found little evidence that estimates of treatment effects in
observational studies reported after 1984 are either consistently
larger than or qualitatively different from those obtained in
randomized, controlled trials.

Another study around the same time came to a similar conclusion:

The results of well-designed observational studies (with either a
cohort or a case–control design) do not systematically overesti-
mate the magnitude of the effects of treatment as compared with
those in randomized, controlled trials on the same topic.9
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One explanation, however, is that medical researchers may create obser-
vational designs with great care on the basis of extensive domain knowledge
and prior investigation.

Freedman’s paper Statistical Models and Shoe Leather illustrates this point
through the famous example of Jon Snow’s discovery from the 1850s that
cholera is a waterborne disease.10 Many associate Snow with an early use
of quantitative methods. But the application of those followed years of
substantive investigation and theoretical considerations that formed the
basis of the quantitative analysis.

In other domains, observational methods have been much less successful.
Online advertising, for example, generates hundreds of billions of dollars in
yearly global revenue, but the causal effects of targeted advertising remain
a subject of debate.11 Randomized controlled trials in this domain are
rare for technical and cultural reasons. Advertising platforms are highly
optimized toward a particular way of serving ads that can make true
randomization difficult to implement. As a result, practitioners rely on a
range of observational methods to determine the causal effect of showing an
ad. However, these methods tend to perform poorly as a recent large-scale
study reveals:

The observational methods often fail to produce the same ef-
fects as the randomized experiments, even after conditioning
on extensive demographic and behavioral variables. We also
characterize the incremental explanatory power our data would
require to enable observational methods to successfully measure
advertising effects. Our findings suggest that commonly used
observational approaches based on the data usually available in
the industry often fail to accurately measure the true effect of
advertising.12

Interference, interaction, and spillovers

Confounding is not the only threat to the validity of causal studies. In a
medical setting, it’s often relatively easy to ensure that treatment of one
subject does not influence the treatment assignment or outcome of any other
unit. We called this the Stable Unit Treatment Value Assumption (SUTVA)
in the previous chapter and noted that it holds by default for the units in a
structural causal models. Failures of SUTVA, however, are common and go
by many names, such as, interference, interaction, and spill-over effects.

Take the example of an online social network. Interaction between
units is the default in all online platforms, whose entire purpose is that
people interact. Administering treatment to a subset of the platform’s users
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typically has some influence on the control group. For example, if our
treatment exposes a group of users to more content of a certain kind, those
users might share the content with others outside the treatment group. In
other words, treatment spills over to the control group. In certain cases, this
problem can be mitigated by assigning treatment to a cluster in the social
network that has a boundary with few outgoing edges thus limiting bias
from interaction.13

Interference is also common in the economic development context. To
borrow an example from economist John Roemer,14 suppose we want to
know if better fishing nets would improve the yield of fishermen in a town.
We design a field experiment in which we give better fishing nets to a
random sample of fishermen. The results show a significantly improved
yield for the treated fishermen. However, if we scale the intervention to
the entire population of fishermen, we might cause overfishing and hence
reduced yield for everyone.

Chapter notes

Aside from the introductory texts from the previous chapter, there are a few
more particularly relevant in the context of this chapter.

The textbook by Angrist and Pischke15 covers causal inference with an
emphasis on regression analysis an applications in econometrics. See Athey
and Imbens16 for a more recent survey of the state of causal inference in
econometrics.

Marinescu et al.17 give a short introduction to quasi-experiments and
their applications to neuroscience with a focus on regression discontinuity
design, instrumental variables, and differences in differences.
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