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Causality

Our starting point is the difference between an observation and an action.
What we see in passive observation is how individuals follow their routine
behavior, habits, and natural inclination. Passive observation reflects the
state of the world projected to a set of features we chose to highlight. Data
that we collect from passive observation show a snapshot of our world as it
is.

There are many questions we can answer from passive observation alone:
Do 16 year-old drivers have a higher incidence rate of traffic accidents than
18 year-old drivers? Formally, the answer corresponds to a difference of
conditional probabilities. We can calculate the conditional probability of
a traffic accident given that the driver’s age is 16 years and subtract from
it the conditional probability of a traffic accident given the age is 18 years.
Both conditional probabilities can be estimated from a large enough sample
drawn from the distribution, assuming that there are both 16 year old and
18 year old drivers. The answer to the question we asked is solidly in the
realm of observational statistics.

But important questions often are not observational in nature. Would
traffic fatalities decrease if we raised the legal driving age by two years?
Although the question seems similar on the surface, we quickly realize that
it asks for a fundamentally different insight. Rather than asking for the
frequency of an event in our manifested world, this question asks for the
effect of a hypothetical action.

As a result, the answer is not so simple. Even if older drivers have a
lower incidence rate of traffic accidents, this might simply be a consequence
of additional driving experience. There is no obvious reason why an 18 year
old with two months on the road would be any less likely to be involved
in an accident than, say, a 16 year-old with the same experience. We can
try to address this problem by holding the number of months of driving
experience fixed, while comparing individuals of different ages. But we
quickly run into subtleties. What if 18 year-olds with two months of driving
experience correspond to individuals who are exceptionally cautious and
hence—by their natural inclination—not only drive less, but also more
cautiously? What if such individuals predominantly live in regions where
traffic conditions differ significantly from those in areas where people feel a

1



greater need to drive at a younger age?
We can think of numerous other strategies to answer the original ques-

tion of whether raising the legal driving age reduces traffic accidents. We
could compare countries with different legal driving ages, say, the United
States and Germany. But again, these countries differ in many other possibly
relevant ways, such as, the legal drinking age.

At the outset, causal reasoning is a conceptual and technical framework
for addressing questions about the effect of hypothetical actions or interven-
tions. Once we understand what the effect of an action is, we can turn the
question around and ask what action plausibly caused an event. This gives
us a formal language to talk about cause and effect.

The limitations of observation

Before we develop any new formalism, it is important to understand why
we need it in the first place.

To see why we turn to the venerable example of graduate admissions at
the University of California, Berkeley in 1973.1 Historical data show that
12763 applicants were considered for admission to one of 101 departments
and inter-departmental majors. Of the 4321 women who applied roughly 35

percent were admitted, while 44 percent of the 8442 men who applied were
admitted. Standard statistical significance tests suggest that the observed
difference would be highly unlikely to be the outcome of sample fluctuation
if there were no difference in underlying acceptance rates.

A similar pattern exists if we look at the aggregate admission decisions of
the six largest departments. The acceptance rate across all six departments
for men is about 44%, while it is only roughly 30% for women, again, a
significant difference. Recognizing that departments have autonomy over
who to admit, we can look at the gender bias of each department.

Table 1: UC Berkeley admissions data from 1973.

Men Women

Department Applied Admitted (%) Applied Admitted (%)
A 825 62 108 82
B 520 60 25 68
C 325 37 593 34

D 417 33 375 35
E 191 28 393 24

F 373 6 341 7
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What we can see from the table is that four of the six largest departments
show a higher acceptance ratio among women, while two show a higher
acceptance rate for men. However, these two departments cannot account
for the large difference in acceptance rates that we observed in aggregate.
So, it appears that the higher acceptance rate for men that we observed in
aggregate seems to have reversed at the department level.

Such reversals are sometimes called Simpson’s paradox, even though
mathematically they are no surprise. It’s a fact of conditional probability
that there can be events Y (here, acceptance), A (here, female gender taken
to be a binary variable) and a random variable Z (here, department choice)
such that:

1. P[Y | A] < P[Y | ¬A]
2. P[Y | A, Z = z] > P[Y | ¬A, Z = z] for all values z that the random

variable Z assumes.

Simpson’s paradox nonetheless causes discomfort to some, because
intuition suggests that a trend which holds for all subpopulations should
also hold at the population level.

The reason why Simpson’s paradox is relevant to our discussion is
that it’s a consequence of how we tend to misinterpret what information
conditional probabilities encode. Recall that a statement of conditional
probability corresponds to passive observation. What we see here is a
snapshot of the normal behavior of women and men applying to graduate
school at UC Berkeley in 1973.

What is evident from the data is that gender influences department
choice. Women and men appear to have different preferences for different
fields of study. Moreover, different departments have different admission
criteria. Some have lower acceptance rates, some higher. Therefore, one
explanation for the data we see is that women chose to apply to more
competitive departments, hence getting rejected at a higher rate than men.

Indeed, this is the conclusion the original study drew:

The bias in the aggregated data stems not from any pattern of dis-
crimination on the part of admissions committees, which seems quite
fair on the whole, but apparently from prior screening at earlier levels
of the educational system. Women are shunted by their socialization
and education toward fields of graduate study that are generally more
crowded, less productive of completed degrees, and less well funded,
and that frequently offer poorer professional employment prospects.1

In other words, the article concluded that the source of gender bias
in admissions was a pipeline problem: Without any wrongdoing by the
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departments, women were “shunted by their socialization” that happened
at an earlier stage in their lives.

It is difficult to debate this conclusion on the basis of the available data
alone. The question of discrimination, however, is far from resolved. We can
ask why women applied to more competitive departments in the first place.
There are several possible reasons. Perhaps less competitive departments,
such as engineering schools, were unwelcoming of women at the time. This
may have been a general pattern at the time or specific to the university.
Perhaps some departments had a track record of poor treatment of women
that was known to the applicants. Perhaps the department advertised the
program in a manner that discouraged women from applying.

The data we have also shows no measurement of qualification of an appli-
cant. It’s possible that due to self-selection women applying to engineering
schools in 1973 were over-qualified relative to their peers. In this case, an
equal acceptance rate between men and women might actually be a sign of
discrimination.

There is no way of knowing what was the case from the data we have.
We see that at best the original analysis leads to a number of follow-up
questions.

At this point, we have two choices. One is to design a new study and
collect more data in a manner that might lead to a more conclusive outcome.
The other is to argue over which scenario is more likely based on our beliefs
and plausible assumptions about the world.

Causal inference is helpful in either case. On the one hand, it can be used
as a guide in the design of new studies. It can help us choose which variables
to include, which to exclude, and which to hold constant. On the other hand,
causal models can serve as a mechanism to incorporate scientific domain
knowledge and exchange plausible assumptions for plausible conclusions.

Causal models

We choose structural causal models as the basis of our formal discussion as
they have the advantage of giving a sound foundation for various causal
notions we will encounter. The easiest way to conceptualize a structural
causal model is as a program for generating a distribution from independent
noise variables through a sequence of formal instructions. Imagine instead
of samples from a distribution, somebody gave you a step-by-step computer
program to generate samples on your own starting from a random seed. The
process is not unlike how you would write code. You start from a simple
random seed and build up increasingly more complex constructs. That is
basically what a structural causal model is, except that each assignment

4



uses the language of mathematics rather than any concrete programming
syntax.

A first example

Let’s start with a toy example not intended to capture the real world. Imag-
ine a hypothetical population in which an individual exercises regularly
with probability 1/2. With probability 1/3, the individual has a latent
disposition to develop overweight that manifests in the absence of regular
exercise. Similarly, in the absence of exercise, heart disease occurs with
probability 1/3. Denote by X the indicator variable of regular exercise,
by W that of excessive weight, and by H the indicator of heart disease.
Below is a structural causal model to generate samples from this hypothet-
ical population. Recall a Bernoulli random variable B(p) with bias p is a
biased coin toss that assumes value 1 with probability p and value 0 with
probability 1− p.

1. Sample independent Bernoulli random variables U1 ∼ B(1/2), U2 ∼
B(1/3), U3 ∼ B(1/3).

2. X := U1
3. W := if X = 1 then 0 else U2
4. H := if X = 1 then 0 else U3

Contrast this generative description of the population with a usual
random sample drawn from the population that might look like this:

X W H

0 1 1

1 0 0

1 1 1

1 1 0

0 1 0

. . . . . . . . .

From the program description, we can immediately see that in our
hypothetical population exercise averts both overweight and heart disease, but
in the absence of exercise the two are independent. At the outset, our
program generates a joint distribution over the random variables (X, W, H).
We can calculate probabilities under this distribution. For example, the
probability of heart disease under the distribution specified by our model
is 1/2 · 1/3 = 1/6. We can also calculate the conditional probability of heart
diseases given overweight. From the event W = 1 we can infer that the
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individual does not exercise so that the probability of heart disease given
overweight increases to 1/3 compared with the baseline of 1/6.

Does this mean that overweight causes heart disease in our model? The
answer is no as is intuitive given the program to generate the distribution.
But let’s see how we would go about arguing this point formally. Having a
program to generate a distribution is substantially more powerful than just
having sampling access. One reason is that we can manipulate the program
in whichever way we want, assuming we still end up with a valid program.
We could, for example, set W := 1, resulting in a new distribution. The
resulting program looks like this:

2. X := U1
3. W := 1
4. H := if X = 1 then 0 else U3

This new program specifies a new distribution. We can again calculate
the probability of heart disease under this new distribution. We still get 1/6.
This simple calculation reveals a significant insight. The substitution W := 1
does not correspond to a conditioning on W = 1. One is an action, albeit
inconsequential in this case. The other is an observation from which we
can draw inferences. If we observe that an individual is overweight, we
can infer that they have a higher risk of heart disease (in our toy example).
However, this does not mean that lowering body weight would avoid heart
disease. It wouldn’t in our example. The active substitution W := 1 in
contrast creates a new hypothetical population in which all individuals are
overweight with all that it entails in our model.

Let us belabor this point a bit more by considering another hypothetical
population, specified by the equations:

2. W := U2
3. X := if W = 0 then 0 else U1
4. H := if X = 1 then 0 else U3

In this population exercise habits are driven by body weight. Overweight
individuals choose to exercise with some probability, but that’s the only
reason anyone would exercise. Heart disease develops in the absence of
exercise. The substitution W := 1 in this model leads to an increased
probability of exercise, hence lowering the probability of heart disease. In
this case, the conditioning on W = 1 has the same affect. Both lead to a
probability of 1/6.

What we see is that fixing a variable by substitution may or may not
correspond to a conditional probability. This is a formal rendering of our
earlier point that observation isn’t action. A substitution corresponds to an

6



action we perform. By substituting a value we break the natural course of
action our model captures. This is the reason why the substitution operation
is sometimes called the do-operator, written as do(W := 1).

Structural causal models give us a formal calculus to reason about the
effect of hypothetical actions. We will see how this creates a formal basis
for all the different causal notions that we will encounter in this chapter.

Structural causal models, more formally

Formally, a structural causal model is a sequence of assignments for gen-
erating a joint distribution starting from independent noise variables. By
executing the sequence of assignments we incrementally build a set of
jointly distributed random variables. A structural causal model therefore
not only provides a joint distribution, but also a description of how the joint
distribution can be generated from elementary noise variables. The formal
definition is a bit cumbersome compared with the intuitive notion.

Definition 1. A structural causal model M is given by a set of variables X1, ..., Xd
and corresponding assignments of the form

Xi := fi(Pi, Ui), i = 1, ..., d .

Here, Pi ⊆ {X1, ..., Xd} is a subset of the variables that we call the parents
of Xi. The random variables U1, ..., Ud are called noise variables, which we require
to be jointly independent.

The directed graph corresponding to the model has one node for each variable Xi,
which has incoming edges from all the parents Pi. We will call such a graph the
causal graph corresponding to the structural causal model.

The noise variables that appear in the definition model exogenous factors
that influence the system. Consider, for example, how the weather influences
the delay on a traffic route you choose. Due to the difficulty of modeling
the influence of weather more precisely, we could take the weather induced
to delay to be an exogenous factor that enters the model as a noise variable.
The choice of exogenous variables and their distribution can have important
consequences for what conclusions we draw from a model.

The parent nodes Pi of node i in a structural causal model are often
called the direct causes of Xi. Similarly, we call Xi the direct effect of its direct
causes Pi. Recall our hypothetical population in which weight gain was
determined by lack of exercise via the assignment W := min{U1, 1− X}.
Here we would say that exercise (or lack thereof) is a direct cause of weight
gain.

Structural causal model are a collection of formal assumptions about how
certain variables interact. Each assignment specifies a response function. We
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can think of nodes as receiving messages from their parents and acting
according to these messages as well as the influence of an exogenous noise
variable.

To which extent a structural causal model conforms to reality is a sepa-
rate and difficult question that we will return to in more detail later. For
now, think of a structural causal model as formalizing and exposing a set of
assumptions about a data generating process. As such different models can
expose different hypothetical scenarios and serve as a basis for discussion.
When we make statements about cause and effect in reference to a model,
we don’t mean to suggest that these relationship necessarily hold in the real
world. Whether they do depends on the scope, purpose, and validity of our
model, which may be difficult to substantiate.

It’s not hard to show that a structural causal model defines a unique
joint distribution over the variables (X1, ..., Xd) such that Xi = fi(Pi, Ui). It’s
convenient to introduce a notion for probabilities under this distribution.
When M denotes a structural causal model, we will write the probability
of an event E under the entailed joint distribution as PM{E}. To gain
familiarity with the notation, let M denote the structural causal model for
the hypothetical population in which both weight gain and heart disease
are directly caused by an absence of exercise. We calculated earlier that the
probability of heart disease in this model is PM{H} = 1/6.

In what follows we will derive from this single definition of a structural
causal model all the different notions and terminology that we’ll need in
this chapter.

Throughout, we restrict our attention to acyclic assignments. Many real-
world systems are naturally described as stateful dynamical system with
feedback loops. For example, often cycles can be broken up by introducing
time dependent variables, such as, investments at time 0 grow the economy
at time 1 which in turn grows investments at time 2, continuing so forth
until some chosen time horizon t. We will return to a deeper dive into
dynamical systems and feedback in later chapters.

Causal graphs

We saw how structural causal models naturally give rise to causal graphs that
represent the assignment structure of the model graphically. We can go the
other way as well by simply looking at directed graphs as placeholders for
an unspecified structural causal model which has the assignment structure
given by the graph. Causal graphs are often called causal diagrams. We’ll
use these terms interchangeably.

Below we see causal graphs for the two hypothetical populations from
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Figure 1: Causal diagrams for the heart disease examples.
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Figure 2: Example of a fork.

our heart disease example.
The scenarios differ in the direction of the link between exercise and

weight gain.
Causal graphs are convenient when the exact assignments in a structural

causal models are of secondary importance, but what matters are the paths
present and absent in the graph. Graphs also let us import the established
language of graph theory to discuss causal notions. We can say, for example,
that an indirect cause of a node is any ancestor of the node in a given causal
graph. In particular, causal graphs allow us to distinguish cause and effect
based on whether a node is an ancestor or descendant of another node.

Let’s take a first glimpse at a few important graph structures.

Forks

A fork is a node Z in a graph that has outgoing edges to two other variables X
and Y. Put differently, the node Z is a common cause of X and Y.

We already saw an example of a fork in our weight and exercise ex-
ample: W ← X → H. Here, exercise X influences both weight and heart
disease. We also learned from the example that Z has a confounding effect:
Ignoring exercise X, we saw that W and H appear to be positively correlated.
However, the correlation is a mere result of confounding. Once we hold
exercise levels constant (via the do-operation), weight has no effect on heart
disease in our example.

Confounding leads to a disagreement between the calculus of conditional
probabilities (observation) and do-interventions (actions).

Real-world examples of confounding are a common threat to the validity
of conclusions drawn from data. For example, in a well known medical
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Figure 4: Example of a collider.

study a suspected beneficial effect of hormone replacement therapy in reducing
cardiovascular disease disappeared after identifying socioeconomic status as
a confounding variable.2

Mediators

The case of a fork is quite different from the situation where Z lies on a
directed path from X to Y:

In this case, the path X → Z → Y contributes to the total effect of X on Y.
It’s a causal path and thus one of the ways in which X causally influences Y.
That’s why Z is not a confounder. We call Z a mediator instead.

We saw a plausible example of a mediator in our UC Berkeley admissions
example. In one plausible causal graph, department choice mediates the
influences of gender on the admissions decision.

Colliders

Finally, let’s consider another common situation: the case of a collider.
Colliders aren’t confounders. In fact, in the above graph, X and Y are

unconfounded, meaning that we can replace do-statements by conditional
probabilities. However, something interesting happens when we condition
on a collider. The conditioning step can create correlation between X and Y,
a phenomenon called explaining away. A good example of the explaining
away effect, or collider bias, is known as Berkson’s paradox.3 Two indepen-
dent diseases can become negatively correlated when analyzing hospitalized
patients. The reason is that when either disease (X or Y) is sufficient for
admission to the hospital (indicated by variable Z), observing that a patient
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Figure 5: Graph before and after substitution.

has one disease makes the other statistically less likely. Berkson’s paradox
is a cautionary tale for statistical analysis when we’re studying a cohort that
has been subjected to a selection rule.

Interventions and causal effects

Structural causal models give us a way to formalize the effect of hypothetical
actions or interventions on the population within the assumptions of our
model. As we saw earlier all we needed was the ability to do substitutions.

Substitutions and the do-operator

Given a structural causal model M we can take any assignment of the form

X := f (P, U)

and replace it by another assignment. The most common substitution is to
assign X a constant value x:

X := x

We will denote the resulting model by M′ = M[X := x] to indicate the
surgery we performed on the original model M. Under this assignment we
hold X constant by removing the influence of its parent nodes and thereby
any other variables in the model.

Graphically, the operation corresponds to eliminating all incoming edges
to the node X. The children of X in the graph now receive a fixed message x
from X when they query the node’s value.

The assignment operator is also called the do-operator to emphasize
that it corresponds to performing an action or intervention. We already
have notation to compute probabilities after applying the do-operator,
namely, PM[X:=x](E).

11



Another notation is popular and common:

P{E | do(X := x)} = PM[X:=x](E)

This notation analogizes the do-operation with the usual notation for
conditional probabilities, and is often convenient when doing calculations
involving the do-operator. Keep in mind, however, that the do-operator
(action) is fundamentally different from the conditioning operator (observa-
tion).

Causal effects

The causal effect of an action X := x on a variable Y refers to the distribution
of the variable Y in the model M[X := x]. When we speak of the causal
effect of a variable X on another variable Y we refer to all the ways in which
setting X to any possible value x affects the distribution of Y.

Often times X denotes the presence or absence of an intervention or
treatment. In such case, X is a binary variable and are interested in a quantity
such as

EM[X:=1][Y]−EM[X:=0][Y] .

This quantity is called the average treatment effect. It tells us how much
treatment (action X := 1) increases the expectation of Y relative to no
treatment (action X := 0).

Causal effects are population quantities. They refer to effects averaged
over the whole population. Often the effect of treatment varies greatly from
one individual or group of individuals to another. Such treatment effects
are called heterogeneous.

Confounding

Important questions in causality relate to when we can rewrite a do-
operation in terms of conditional probabilities. When this is possible,
we can estimate the effect of the do-operation from conventional conditional
probabilities that we can estimate from data.

The simplest question of this kind asks when a causal effect P{Y =
y | do(X := x)} coincides with the condition probability P{Y = y |
X = x}. In general, this is not true. After all, the difference between
observation (conditional probability) and action (interventional calculus) is
what motivated the development of causality.

The disagreement between interventional statements and conditional
statements is so important that it has a well-known name: confounding. We
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say that X and Y are confounded when the causal effect of action X := x
on Y does not coincide with the corresponding conditional probability.

When X and Y are confounded, we can ask if there is some combination
of conditional probability statements that give us the desired effect of a do-
intervention. This is generally possible given a causal graph by conditioning
on the parent nodes PA of the node X:

P{Y = y | do(X := x)} = ∑
z

P{Y = y | X = x, PA = z}P{PA = z}

This formula is called the adjustment formula. It gives us one way of estimat-
ing the effect of a do-intervention in terms of conditional probabilities.

The adjustment formula is one example of what is often called controlling
for a set of variables: We estimate the effect of X on Y separately in every
slice of the population defined by a condition Z = z for every possible
value of z. We then average these estimated sub-population effects weighted
by the probability of Z = z in the population. To give an example, when
we control for age, we mean that we estimate an effect separately in each
possible age group and then average out the results so that each age group
is weighted by the fraction of the population that falls into the age group.

Controlling for more variables in a study isn’t always the right choice.
It depends on the graph structure. Let’s consider what happens when we
control for the variable Z in the three causal graphs we discussed above.

• Controlling for a confounding variable Z in a fork X ← Z → Y will
deconfound the effect of X on Y.

• Controlling for a mediator Z will eliminate some of the causal influ-
ence of X on Y.

• Controlling for a collider will create correlation between X and Y.
That is the opposite of what controlling for Z accomplishes in the case
of a fork. The same is true if we control for a descendant of a collider.

The backdoor criterion

At this point, we might worry that things get increasingly complicated.
As we introduce more nodes in our graph, we might fear a combinatorial
explosion of possible scenarios to discuss. Fortunately, there are simple
sufficient criteria for choosing a set of deconfounding variables that is safe
to control for.

A well known graph-theoretic notion is the backdoor criterion.4 Two
variables are confounded if there is a so-called backdoor path between them.
A backdoor path from X to Y is any path starting at X with a backward edge
“←” into X such as:

X ← A→ B← C → Y
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Figure 6: Two cases of unobserved confounding.

Intuitively, backdoor paths allow information flow from X to Y in a way that
is not causal. To deconfound a pair of variables we need to select a backdoor
set of variables that “blocks” all backdoor paths between the two nodes. A
backdoor path involving a chain A→ B→ C can be blocked by controlling
for B. Information by default cannot flow through a collider A→ B← C.
So we only have to be careful not to open information flow through a
collider by conditioning on the collider, or descendant of a collider.

Unobserved confounding

The adjustment formula might suggest that we can always eliminate con-
founding bias by conditioning on the parent nodes. However, this is only
true in the absence of unobserved confounding. In practice often there are
variables that are hard to measure, or were simply left unrecorded. We can
still include such unobserved nodes in a graph, typically denoting their
influence with dashed lines, instead of solid lines.

The above figure shows two cases of unobserved confounding. In the
first example, the causal effect of X on Y is unidentifiable. In the second
case, we can block the confounding backdoor path X ← Z → W → Y by
controlling for W even though Z is not observed. The backdoor criterion
lets us work around unobserved confounders in some cases where the
adjustment formula alone wouldn’t suffice.

Unobserved confounding nonetheless remains a major obstacle in prac-
tice. The issue is not just lack of measurement, but often lack of anticipation
or awareness of a confounding variable. We can try to combat unobserved
confounding by increasing the number of variables under consideration.
But as we introduce more variables into our study, we also increase the
burden of coming up with a valid causal model for all variables under con-
sideration. In practice, it is not uncommon to control for as many variables
as possible in a hope to disable confounding bias. However, as we saw,
controlling for mediators or colliders can be harmful.
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Randomization and the backdoor criterion

The backdoor criterion gives a non-experimental way of eliminating con-
founding bias given a causal model and a sufficient amount of observational
data from the joint distribution of the variables. An alternative experimental
method of eliminating confounding bias randomization.

The idea is simple. If a treatment variable T is an unbiased coin toss,
nothing but mere chance influenced it assignment. In particular, there
cannot be a confounding variable exercising influence on both the treatment
variable and a desired outcome variable.

A different way to think about is that randomization breaks natural
inclination. Rather than letting treatment take on its natural value, we
assign it randomly. Thinking in terms of causal models, what this means
is that we eliminate all incoming edges into the treatment variable. In
particular, this closes all backdoor paths and hence avoids confounding bias.
Because randomization is such an important part of causal inference, we
now turn to it in greater detail.

Experimentation, randomization, potential outcomes

Let’s think about experimentation from first principles. Suppose we have
a population of individuals and we have devised some treatment that can
be applied to each individual. We would like to know the effect of this
treatment on some measurable quantity.

As a simple example, and one which has had great utility, consider
the development of a vaccine for a disease. How can we tell if a vaccine
prevents disease? If we give everyone the vaccine, we’d never be able to
disentangle whether the treatment caused the associated change in disease
we observe or not. The common and widely accepted solution in medicine
is to restrict our attention to a subset of the population, and leverage
randomized assignment to isolate the effect of the treatment.

The simplest mathematical formulation underlying randomized experi-
ment design is as follows. We assume a group of n individuals i = 1, . . . , n.
Suppose for an individual, if we apply a treatment, the quantity of interest
is equal to a value Y1(i). If we don’t apply the treatment, the quantity
of interest is equal to Y0(i). We define an outcome Y(i) which is equal
to Y1(i) if the treatment is applied and equal to Y0(i) if the treatment is
not applied. In our vaccine example, Y1(i) indicates whether a person
contracts the disease in a specified time period following a vaccination
and Y0(i) indicates whether a person contracts the disease in the same time
period absent vaccination. Now, obviously, one person can only take one
of these paths. Nonetheless, we can imagine two potential outcomes: one
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potential outcome Y1(i) if the treatment is applied and another potential
outcome Y0(i) if the treatment is not applied. Throughout this section, we
assume that the potential outcomes are fixed deterministic values.

We can write the relationship between observed outcome and potential
outcomes as a mathematical equation by introducing the boolean treatment
indicator T(i) which is equal to 1 if subject i receives the treatment and 0
otherwise. In this case, the outcome for individual i equals

Y(i) = T(i)Y1(i) + (1− T(i))Y0(i) .

That is, if the treatment is applied, we observe Y1(i) and if the treatment is
not applied we observe Y0(i). While this potential outcomes formulation is
tautological, it lets us apply the same techniques we use for estimating the
mean to the problem of estimating treatment effects.

The individual treatment effect is a relation between the quantities Y1(i)
and Y0(i), commonly just the difference Y1(i)− Y0(i). If the difference is
positive, we see that applying the treatment increases the outcome variable
for this individual. But, as we’ve discussed, our main issue is that we can
never simultaneously observe Y1(i) and Y0(i). Once we choose whether to
apply the treatment or not, we can only measure the corresponding treated
or untreated condition.

While it may be daunting to predict the treatment effect at the level of
each individual, statistical algorithms can be applied to estimate average
treatment effects across the population. There are many ways to define
a measure of the effect of a treatment on a population. For example, we
earlier define the notion of an average treatment effect. Let Ȳ1 and Ȳ0 denote
the means of Y1(i) and Y0(i), respectively, averaged over i = 1, . . . , n. We
can write

Average Treatment Effect = Ȳ1 − Ȳ0

In the vaccine example, this would be the difference in the probability of
contracting the illness if one was vaccinated vs if one was not vaccinated.

The odds that an individual catches the disease is the number of people
who catch the disease divided by the number who do not. The odds ratio
for a treatment is the odds when every person receives the vaccine divided
by the odds when no one receives the vaccine. We can write this out as a
formula in terms of our quantities Ȳ1 and Ȳ0. When the potential outcomes
take on values 0 or 1, the average Ȳ1 is the number of individuals for
which Y1(i) = 1 divided by the total number of individuals. Hence, we can
write the odds ratio as

Odds Ratio =
Ȳ1

1− Ȳ1
· 1− Ȳ0

Ȳ0
.
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This measures the decrease (or increase!) of the odds of a bad event
happening when the treatment is applied. When the odds ratio is less than
1, the odds of a bad event are lower if the treatment is applied. When
the odds ratio is greater than 1, the odds of a bad event are higher if the
treatment is applied.

Similarly, the risk that an individual catches the disease is the ratio of the
number of people who catch the disease to the total population size. Risk
and odds are similar quantities, but some disciplines prefer one to the other
by convention. The risk ratio is the fraction of bad events when a treatment
is applied divided by the fraction of bad events when not applied:

Risk Ratio =
Ȳ1

Ȳ0

The risk ratio measures the increase or decrease of relative risk of a bad
event when the treatment is applied. In the recent context of vaccines, this
ratio is popularly reported differently. The effectiveness of a treatment is one
minus the risk ratio. This is precisely the number used when people say
a vaccine is 95% effective. It is equivalent to saying that the proportion of
those treated who fell ill was 20 times less than the proportion of those not
treated who fell ill. Importantly, it does not mean that one has a 5% chance
of contracting the disease.

Estimating treatment effects using randomization

Let’s now analyze how to estimate these effects using a randomized proce-
dure. In a randomized controlled trial a group of n subjects is randomly
partitioned into a control group and a treatment group. We assume partic-
ipants do not know which group they were assigned to and neither do
the staff administering the trial. The treatment group receives an actual
treatment, such as a drug that is being tested for efficacy, while the control
group receives a placebo identical in appearance. An outcome variable is
measured for all subjects.

Formally, this means each T(i) is an unbiased coin toss. Because we
randomly assign treatments we have

E[Y(i) | T(i) = 1] = Y1(i) and E[Y(i) | T(i) = 0] = Y0(i) .

Therefore, for treatment value t ∈ {0, 1},

E

[
1
n

n

∑
i=1

Y(i) | T(i) = t

]
= Ȳt .
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In other words, to get an unbiased estimate of Ȳt we just have to average
out all outcomes for subjects with treatment assignment t. This in turn
gives us various causal effects we discussed previously. We can also apply
more statistics to this estimate to get confidence bounds and large deviation
bounds. Various things we know for estimating the mean of a population
carry over. For example, we need the outcome variables to have bounded
range in order for our estimates to have low variance. Similarly, if we are
trying to detect a tiny causal effect, we must choose n sufficiently large.

Typically in a randomized control trial, the n subjects are supposed to a
uniformly random sample from a larger target population of N individuals.
The group average Ȳt is therefore itself only an estimate of the population
mean. Here, too, conventional statistics applies in reasoning about how
close Ȳt is to the population average.

Uniform sampling from a population is an idealization that is hard
to achieve in experimental practice. It is not only hard to independently
sample individuals in a large population, but we also need to be able to set
up identical scenarios to test interventions. For medical treatments, what if
there is variance between the treatment effect at 9AM in the Mayo Clinic
on a Tuesday and at 11PM in the Alta Bates Medical Center on a Saturday?
If there are temporal or spatial or other variabilities, the effective size of
the population and the corresponding variance grow. Accounting for such
variability is a daunting challenge of modern medical and social research
that can be at the root of many failures of replication.

The formulation here also assumes that the potential outcomes Yt(i) do
not vary over time. The framework could be generalized to account for
temporal variation, but such a generalization will not illuminate the basic
issues of statistical methods and modeling. We return to the practice of
causal inference and its challenges in the next chapter. But before we do so,
we will relate what we just learned to the structural causal models that we
saw earlier.

Counterfactuals

Fully specified structural causal models allow us to ask causal questions
that are more delicate than the mere effect of an action. Specifically, we can
ask counterfactual questions such as: Would I have avoided the traffic jam
had I taken a different route this morning?

Formally, counterfactuals are random variables that generalize the po-
tential outcome variables we saw previously. Counterfactuals derive from a
structural causal model, which gives as another useful way to think about
potential outcomes. The procedure for extracting counterfactuals from a
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Figure 7: Causal diagram for our traffic scenario.

structural causal model is algorithmic, but it can look a bit subtle at first. It
helps to start with a simple example.

A simple counterfactual

Assume every morning we need to decide between two routes T = 0
and T = 1. On bad traffic days, indicated by U = 1, both routes are bad.
On good days, indicated by U = 0, the traffic on either route is good unless
there was an accident on the route.

Let’s say that U ∼ B(1/2) follows the distribution of an unbiased coin
toss. Accidents occur independently on either route with probability 1/2.
So, choose two Bernoulli random variables U0, U1 ∼ B(1/2) that tell us if
there is an accident on route 0 and route 1, respectively. We reject all external
route guidance and instead decide on which route to take uniformly at
random. That is, T := UT ∼ B(1/2) is also an unbiased coin toss.

Introduce a variable Y ∈ {0, 1} that tells us whether the traffic on the
chosen route is good (Y = 0) or bad (Y = 1). Reflecting our discussion
above, we can express Y as

Y := T ·max{U, U1}+ (1− T)max{U, U0} .

In words, when T = 0 the first term disappears and so traffic is determined
by the larger of the two values U and U0. Similarly, when T = 1 traffic is
determined by the larger of U and U1.

Now, suppose one morning we have T = 1 and we observe bad traf-
fic Y = 1. Would we have been better off taking the alternative route this
morning?

A natural attempt to answer this question is to compute the likeli-
hood of Y = 0 after the do-operation T := 0, that is, PM[T:=0](Y = 0). A
quick calculation reveals that this probability is 1

2 ·
1
2 = 1/4. Indeed, given

the substitution T := 0 in our model, for the traffic to be good we need
that max{U, U0} = 0. This can only happen when both U = 0 (probabil-
ity 1/2) and U0 = 0 (probability 1/2).

But this isn’t the correct answer to our question. The reason is that we
took route T = 1 and observed that Y = 1. From this observation, we can
deduce that certain background conditions did not manifest for they are
inconsistent with the observed outcome. Formally, this means that certain
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settings of the noise variables (U, U0, U1) are no longer feasible given the
observed event {Y = 1, T = 1}. Specifically, if U and U1 had both been
zero, we would have seen no bad traffic on route T = 1, but this is contrary
to our observation. In fact, the available evidence {Y = 1, T = 1} leaves
only the following settings for U and U1:

Table 3: Possible noise settings after observing evidence.
We leave out U0 from the table, since its distribution is
unaffected by our observation.

U U1

0 1

1 1

1 0

Each of these three cases is equally likely, which in particular means that
the event U = 1 now has probability 2/3. In the absence of any additional
evidence, recall, U = 1 had probability 1/2. What this means is that the
observed evidence {Y = 1, T = 1} has biased the distribution of the noise
variable U toward 1. Let’s use the letter U′ to refer to this biased version of U.
Formally, U′ is distributed according to the distribution of U conditional on
the event {Y = 1, T = 1}.

Working with this biased noise variable, we can again entertain the
effect of the action T := 0 on the outcome Y. For Y = 0 we need
that max{U′, U0} = 0. This means that U′ = 0, an event that now has
probability 1/3, and U0 = 0 (probability 1/2 as before). Hence, we get
the probability 1/6 = 1/2 · 1/3 for the event that Y = 0 under our do-
operation T := 0, and after updating the noise variables to account for the
observation {Y = 1, T = 1}.

To summarize, incorporating available evidence into our calculation
decreased the probability of no traffic (Y = 0) when choosing route 0
from 1/4 to 1/6. The intuitive reason is that the evidence made it more
likely that it was generally a bad traffic day, and even the alternative route
would’ve been clogged. More formally, the event that we observed biases
the distribution of exogenous noise variables.

We think of the result we just calculated as the counterfactual of choosing
the alternative route given the route we chose had bad traffic.

The general recipe

We can generalize our discussion of computing counterfactuals from the
previous example to a general procedure. There were three essential steps.
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First, we incorporated available observational evidence by biasing the ex-
ogenous noise variables through a conditioning operation. Second, we
performed a do-operation in the structural causal model after we substi-
tuted the biased noise variables. Third, we computed the distribution of a
target variable.

These three steps are typically called abduction, action, and prediction, as
can be described as follows.

Definition 2. Given a structural causal model M, an observed event E, an
action T := t and target variable Y, we define the counterfactual YT:=t(E) by the
following three step procedure:

1. Abduction: Adjust noise variables to be consistent with the observed event.
Formally, condition the joint distribution of U = (U1, ..., Ud) on the event
E. This results in a biased distribution U′.

2. Action: Perform do-intervention T := t in the structural causal model M
resulting in the model M′ = M[T := t].

3. Prediction: Compute target counterfactual YT:=t(E) by using U′ as the
random seed in M′.

It’s important to realize that this procedure defines what a counterfactual
is in a structural causal model. The notation YT:=t(E) denotes the outcome
of the procedure and is part of the definition. We haven’t encountered this
notation before.

Put in words, we interpret the formal counterfactual YT:=t(E) as the
value Y would’ve taken had the variable T been set to value t in the
circumstances described by the event E.

In general, the counterfactual YT:=t(E) is a random variable that varies
with U′. But counterfactuals can also be deterministic. When the event E
narrows down the distribution of U to a single point mass, called unit,
the variable U′ is constant and hence the counterfactual YT:=t(E) reduces
to a single number. In this case, it’s common to use the shorthand nota-
tion Yt(u) = YT:=t({U = u}), where we make the variable t implicit, and
let u refer to a single unit. The counterfactual random variable Yt refers
to Yt(u) for a random draw of the noise variables u.

The motivation for the name unit derives from the common situation
where the structural causal model describes a population of entities that
form the atomic units of our study. It’s common for a unit to be an
individual (or the description of a single individual). However, depending
on application, the choice of units can vary. In our traffic example, the noise
variables dictate which route we take and what the road conditions are.

Answers to counterfactual questions strongly depend on the specifics
of the structural causal model, including the precise model of how the
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exogenous noise variables come into play. It’s possible to construct two
models that have identical graph structures, and behave identically under
interventions, yet give different answers to counterfactual queries.5

Potential outcomes

Let’s return to the potential outcomes framework that we introduced when
discussing randomized experiments. Rather than deriving potential out-
comes from a structural causal model, we assume their existence as ordinary
random variables, albeit some unobserved. Specifically, we assume that for
every unit u there exist random variables Yt(u) for every possible value of
the assignment t. This potential outcome turns out to equal the correspond-
ing counterfactual derived from the structural equation model:

potential outcome Yt(u) = YT:=t({u}) structural counterfactual

In particular, there is no harm in using our potential outcome notation Yt(u)
as a shorthand for the corresponding counterfactual notation.

In the potential outcomes model, it’s customary to think of a binary
treatment variable T that assumes only two values, 0 for untreated, and 1 for
treated. This gives us two potential outcome variables Y0(u) and Y1(u) for
each unit u. There is some potential for notational confusion here. Readers
already familiar with the potential outcomes model may be used to the
notation “Yi(0), Yi(1)” for the two potential outcomes corresponding to
unit i. In our notation the unit (or, more generally, set of units) appears
in the parentheses and the subscript denotes the substituted value for the
variable we intervene on.

The key point about the potential outcomes model is that we only ob-
serve the potential outcome Y1(u) for units that were treated. For untreated
units we observe Y0(u). In other words, we can never simultaneously
observe both, although they’re both assumed to exist in a formal sense.
Formally, the outcome Y(u) for unit u that we observe depends on the
binary treatment T(u) and is given by the expression:

Y(u) = Y0(u) · (1− T(u)) + Y1(u) · T(u)

We can revisit our traffic example in this framework. The next table
summarizes what information is observable in the potential outcomes model.
We think of the route we choose as the treatment variable, and the observed
traffic as reflecting one of the two potential outcomes.
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Table 4: Traffic example in the potential outcomes
model

Route T Outcome Y0 Outcome Y1 Probability

0 0 ? 1/8

0 1 ? 3/8

1 ? 0 1/8

1 ? 1 3/8

Often this information comes in the form of samples. For example, we
might observe the traffic on different days. With sufficiently many samples,
we can estimate the above frequencies with arbitrary accuracy.

Table 5: Traffic data in the potential outcomes model

Day Route T Outcome Y0 Outcome Y1

1 0 1 ?
2 0 0 ?
3 1 ? 1

4 0 1 ?
5 1 ? 0

. . . . . . . . . . . .

In our original traffic example, there were 16 units corresponding to
the background conditions given by the four binary variables U, U0, U1, UT.
When the units in the potential outcome model agree with those of a
structural causal model, then causal effects computed in the potential
outcomes model agree with those computed in the structural equation
model. The two formal frameworks are perfectly consistent with each other.

As is intuitive from the table above, causal inference in the potential
outcomes framework can be thought of as filling in the missing entries (“?”)
in the table above. This is sometimes called missing data imputation and there
are numerous statistical methods for this task. If we could reveal what’s
behind the question marks, many quantities would be readily computable.
For instance, estimating the average treatment effect would be as easy as
counting rows.

When we were able to directly randomize the treatment variable, we
showed that treatment effects could be imputed from samples. When we
are working with observational data, there is a set of established conditions
under which causal inference becomes possible:

1. Stable Unit Treatment Value Assumption (SUTVA): The treatment
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that one unit receives does not change the effect of treatment for any
other unit.

2. Consistency: Formally, Y(u) = Y0(u)(1− T(u)) + Y1(u)T(u). That is,
Y(u) = Y0(u) if T(u) = 0 and Y(u) = Y1(u) if T(u) = 1. In words,
the outcome Y(u) agrees with the potential outcome corresponding to
the treatment indicator.

3. Ignorability: The potential outcomes are independent of treatment
given some deconfounding variables Z, i.e., T ⊥ (Y0, Y1) | Z. In words,
the potential outcomes are conditionally independent of treatment
given some set of deconfounding variables.

The first two assumptions automatically hold for counterfactual variables
derived from structural causal models according to the procedure described
above. This assumes that the units in the potential outcomes framework
correspond to the atomic values of the background variables in the structural
causal model.

The third assumption is a major one. The assumption on its own cannot
be verified or falsified, since we never have access to samples with both
potential outcomes manifested. However, we can verify if the assumption is
consistent with a given structural causal model, for example, by checking if
the set Z blocks all backdoor paths from treatment T to outcome Y.

There’s no tension between structural causal models and potential out-
comes and there’s no harm in having familiarity with both. It nonetheless
makes sense to say a few words about the differences of the two approaches.

We can derive potential outcomes from a structural causal model as we
did above, but we cannot derive a structural causal model from potential
outcomes alone. A structural causal model in general encodes more assump-
tions about the relationships of the variables. This has several consequences.
On the one hand, a structural causal model gives us a broader set of formal
concepts (causal graphs, mediating paths, counterfactuals for every variable,
and so on). On the other hand, coming up with a plausibly valid structural
causal model is often a daunting task that might require knowledge that is
simply not available. Difficulty to come up with a plausible causal model
often exposes unsettled substantive questions that require resolution first.

The potential outcomes model, in contrast, is generally easier to apply.
There’s a broad set of statistical estimators of causal effects that can be
readily applied to observational data. But the ease of application can also
lead to abuse. The assumptions underpinning the validity of such estimators
are experimentally unverifiable. Our next chapter dives deeper into the
practice of causal inference and some of its limitations.
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Chapter notes

This chapter was developed and first published by Barocas, Hardt, and
Narayanan in the textbook Fairness and Machine Learning: Limitations and
Opportunities.6 With permission from the authors, we include a large part
of the original text here with only slight modifications. We removed a
significant amount of material on discrimination and fairness and added an
extended discussion on randomized experiments.

There are several excellent introductory textbooks on the topic of causal-
ity. For an introduction to causality with an emphasis on causal graphs
and structural equation models turn to Pearl’s primer,7 or the more com-
prehensive textbook.4 Our exposition of Simpson’s paradox and the UC
Berkeley data was influenced by Pearl’s discussion, updated for a new pop-
ular audience book.8 The example has been heavily discussed in various
other writings, such as Pearl’s recent discussion.8 We retrieved the Berkeley
data from http://www.randomservices.org/random/data/Berkeley.html.
There is some discrepancy with the data available on the Wikipedia page
for Simpson’s paradox that we retrieved on Dec 27, 2018.

For further discussion regarding the popular interpretation of Simpson’s
original article,9 see the article by Hernán, Clayton, and Keiding,10 as well
as Pearl’s text.4

The technically-minded reader will enjoy complementing Pearl’s book
with the recent open access text by Peters, Janzing, and Schölkopf5 that
is available online. The text emphasizes two variable causal models and
applications to machine learning. See Spirtes, Glymour and Scheines11 for
a general introduction based on causal graphs with an emphasis on graph
discovery, i.e., inferring causal graphs from observational data. An article by
Schölkopf provides additional context about the development of causality
in machine learning.12

The classic formulation of randomized experiment design due to Jerzy
Neyman is now subsumed by and commonly referred to as the framework
of potential outcomes.13, 14 Imbens and Rubin15 give a comprehensive in-
troduction to the technical repertoire of causal inference in the potential
outcomes model. Angrist and Pischke16 focus on causal inference and poten-
tial outcomes in econometrics. Hernán and Robins17 give another detailed
introduction to causal inference that draws on the authors’ experience in
epidemiology. Morgan and Winship18 focus on applications in the social
sciences.
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