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Datasets

It’s become commonplace to point out that machine learning models are
only as good as the data they’re trained on. The old slogan “garbage in,
garbage out” no doubt applies to machine learning practice, as does the
related catchphrase “bias in, bias out”. Yet, these aphorisms still understate—
and somewhat misrepresent—the significance of data for machine learning.

It’s not only the output of a learning algorithm that may suffer with
poor input data. A dataset serves many other vital functions in the machine
learning ecosystem. The dataset itself is an integral part of the problem
formulation. It implicitly sorts out and operationalizes what the problem
is that practitioners end up solving. Datasets have also shaped the course
of entire scientific communities in their capacity to measure and bench-
mark progress, support competitions, and interface between researchers in
academia and practitioners in industry.

If so much hinges on data in machine learning, it might come as a
surprise that there is no simple answer to the question of what makes data
good for what purpose. The collection of data for machine learning applica-
tions has not followed any established theoretical framework, certainly not
one that was recognized a priori.

In this chapter, we take a closer look at popular datasets in the field of
machine learning and the benchmarks that they support. We trace out the
history of benchmarks and work out the implicit scientific methodology
behind machine learning benchmarks. We limit the scope of this chapter
in some important ways. Our focus will be largely on publicly available
datasets that support training and testing purposes in machine learning
research and applications. Primarily, we critically examine the train-and-test
paradigm machine learning practitioners take for granted today.

The scientific basis of machine learning benchmarks

Methodologically, much of modern machine learning practice rests on a
variant of trial and error, which we call the train-test paradigm. Practitioners
repeatedly build models using any number of heuristics and test their per-
formance to see what works. Anything goes as far as training is concerned,
subject only to computational constraints, so long as the performance looks
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good in testing. Trial and error is sound so long as the testing protocol
is robust enough to absorb the pressure placed on it. We will examine to
which extent this is the case in machine learning.

From a theoretical perspective, the best way to test the performance of a
predictor f is to collect a sufficiently large fresh dataset S and to compute
the empirical risk RS[ f ]. We already learned that the empirical risk in this
case is an unbiased estimate of the risk of the predictor. For a bounded loss
function and a test set of size n, an appeal to Hoeffding’s inequality proves
the generalization gap to be no worse than O(1/

√
n). We can go a step

further and observe that if we take union bound over k fixed predictors, our
fresh sample will simultaneously provide good estimates for all k predictors
up to a maximum error of O(

√
log(k)/n). In fact, we can apply any of

the mathematical tools we saw in the Generalization chapter so long as the
sample S really is a fresh sample with respect to the set of models we want
to evaluate.

Data collection, however, is a difficult and costly task. In most applica-
tions, practitioners cannot sample fresh data for each model they would like
to try out. A different practice has therefore become the de facto standard.
Practitioners split their dataset into typically two parts, a training set used
for training a model, and a test set used for evaluating its performance.
Sometimes practitioners divide their data into multiple splits, e.g., train-
ing, validation, and test sets. However, for our discussion here that won’t
be necessary. Often the split is determined when the dataset is created.
Datasets used for benchmarks in particular have one fixed split persistent
throughout time. A number of variations on this theme go under the name
holdout method.

Machine learning competitions have adopted the same format. The
company Kaggle, for example, has organized hundreds of competitions
since it was founded. In a competition, a holdout set is kept secret and
is used to rank participants on a public leaderboard as the competition
unfolds. In the end, the final winner is whoever scores highest on a separate
secret test set not used to that point.

In all applications of the holdout method the hope is that the test set will
serve as a fresh sample that provides good risk estimates for all the models.
The central problem is that practitioners don’t just use the test data once
only to retire it immediately thereafter. The test data are used incrementally
for building one model at a time while incorporating feedback received
previously from the test data. This leads to the fear that eventually models
begin to overfit to the test data.

Duda and Hart summarize the problem aptly in their 1973 textbook:

In the early work on pattern recognition, when experiments
were often done with very small numbers of samples, the same
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data were often used for designing and testing the classifier.
This mistake is frequently referred to as “testing on the training
data.” A related but less obvious problem arises when a classifier
undergoes a long series of refinements guided by the results of
repeated testing on the same data. This form of “training on the
testing data” often escapes attention until new test samples are
obtained.1

Nearly half a century later, Hastie, Tibshirani, and Friedman still caution
in the 2017 edition of their influential textbook:

Ideally, the test set should be kept in a “vault,” and be brought
out only at the end of the data analysis. Suppose instead that
we use the test-set repeatedly, choosing the model with smallest
test-set error. Then the test set error of the final chosen model
will underestimate the true test error, sometimes substantially.2

Indeed, reuse of test data—on the face of it—invalidates the statistical
guarantees of the holdout method. The predictors created with knowledge
about prior test-set evaluations are no longer independent of the test data.
In other words, the sample isn’t fresh anymore. While the suggestion to
keep the test data in a “vault” is safe, it couldn’t be further from the reality
of modern practice. Popular test datasets often see tens of thousands of
evaluations.

We could try to salvage the situation by relying on uniform convergence.
If all models we try out have sufficiently small complexity in some formal
sense, such as VC-dimension, we could use the tools from the Generalization
chapter to negotiate some sort of a bound. However, the whole point of the
train-test paradigm is not to constrain the complexity of the models a priori,
but rather to let the practitioner experiment freely. Moreover, if we had an
actionable theoretical generalization guarantee to begin with, there would
hardly be any need for the holdout method whose purpose is to provide an
empirical estimate where theoretical guarantees are lacking.

Before we discuss the “training on the testing data” problem any further,
it’s helpful to get a better sense of concrete machine learning benchmarks,
their histories, and their impact within the community.

A tour of datasets in different domains

The creation of datasets in machine learning does not follow a clear the-
oretical framework. Datasets aren’t collected to test a specific scientific
hypothesis. In fact, we will see that there are many different roles data plays
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in machine learning. As a result, it makes sense to start by looking at a few
influential datasets from different domains to get a better feeling for what
they are, what motivated their creation, how they organized communities,
and what impact they had.

TIMIT

Automatic speech recognition is a machine learning problem of significant
commercial interest. Its roots date back to the early 20th century.3

Interestingly, speech recognition also features one of the oldest bench-
marks datasets, the TIMIT (Texas Instruments/Massachusetts Institute for
Technology) data. The creation of the dataset was funded through a 1986

DARPA program on speech recognition. In the mid-eighties, artificial intel-
ligence was in the middle of a “funding winter” where many governmental
and industrial agencies were hesitant to sponsor AI research because it often
promised more than it could deliver. DARPA program manager Charles
Wayne proposed a way around this problem was establishing more rigorous
evaluation methods. Wayne enlisted the National Institute of Standards and
Technology to create and curate shared datasets for speech, and he graded
success in his program based on performance on recognition tasks on these
datasets.

Many now credit Wayne’s program with kick starting a revolution of
progress in speech recognition.4, 5, 6 According to Church,

It enabled funding to start because the project was glamour-and-
deceit-proof, and to continue because funders could measure
progress over time. Wayne’s idea makes it easy to produce
plots which help sell the research program to potential sponsors.
A less obvious benefit of Wayne’s idea is that it enabled hill
climbing. Researchers who had initially objected to being tested
twice a year began to evaluate themselves every hour.5

A first prototype of the TIMIT dataset was released in December of
1988 on a CD-ROM. An improved release followed in October 1990. TIMIT
already featured the training/test split typical for modern machine learning
benchmarks. There’s a fair bit we know about the creation of the data due
to its thorough documentation.7

TIMIT features a total of about 5 hours of speech, composed of 6300

utterances, specifically, 10 sentences spoken by each of 630 speakers. The
sentences were drawn from a corpus of 2342 sentences such as the following.

She had your dark suit in greasy wash water all year. (sa1)
Don’t ask me to carry an oily rag like that. (sa2)
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This was easy for us. (sx3)
Jane may earn more money by working hard. (sx4)
She is thinner than I am. (sx5)
Bright sunshine shimmers on the ocean. (sx6)
Nothing is as offensive as innocence. (sx7)

The TIMIT documentation distinguishes between 8 major dialect regions
in the United States:

New England, Northern, North Midland, South Midland, South-
ern, New York City, Western, Army Brat (moved around)

Of the speakers, 70% are male and 30% are female. All native speakers
of American English, the subjects were primarily employees of Texas Instru-
ments at the time. Many of them were new to the Dallas area where they
worked.

Racial information was supplied with the distribution of the data and
coded as “White”, “Black”, “American Indian”, “Spanish-American”, “Ori-
ental”, and “Unknown”. Of the 630 speakers, 578 were identified as White,
26 as Black, 2 as American Indian, 2 as Spanish-American, 3 as Oriental,
and 17 as unknown.

Table 1: Demographic information about the TIMIT
speakers

Male Female Total (%)

White 402 176 578 (91.7%)
Black 15 11 26 (4.1%)
American Indian 2 0 2 (0.3%)
Spanish-American 2 0 2 (0.3%)
Oriental 3 0 3 (0.5%)
Unknown 12 5 17 (2.6%)

The documentation notes:

In addition to these 630 speakers, a small number of speakers
with foreign accents or other extreme speech and/or hearing
abnormalities were recorded as “auxiliary” subjects, but they are
not included on the CD-ROM.

It comes to no surprise that early speech recognition models had signifi-
cant demographic and racial biases in their performance.
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Today, several major companies, including Amazon, Apple, Google, and
Microsoft, all use speech recognition models in a variety of products from
cell phone apps to voice assistants. Today, speech recognition lacks a major
open benchmark that would support the training models competitive with
the industrial counterparts. Industrial speech recognition pipelines are often
complex systems that use proprietary data sources that not a lot is known
about. Nevertheless, even today’s speech recognition systems continue to
have racial biases.8

UCI Machine Learning Repository

The UCI Machine Learning Repository currently hosts more than 500

datasets, mostly for different classification and regression tasks. Most
datasets are relatively small, many of them structured tabular datasets with
few attributes.

The UCI Machine Learning Repository contributed to the adoption of
the train-test paradigm in machine learning in the late 1980s. Langley
recalls:

The experimental movement was aided by another development.
David Aha, then a PhD student at UCI, began to collect datasets
for use in empirical studies of machine learning. This grew
into the UCI Machine Learning Repository (http://archive.
ics.uci.edu/ml/), which he made available to the community
by FTP in 1987. This was rapidly adopted by many researchers
because it was easy to use and because it let them compare their
results to previous findings on the same tasks.9

Aha’s PhD work involved evaluating nearest-neighbor methods, and
he wanted to be able to compare the utility of his algorithms to decision
tree induction algorithms, popularized by Ross Quinlan. Aha describes his
motivation for building the UCI repository as follows.

I was determined to create and share it, both because I wanted
to use the datasets for my own research and because I thought it
was ridiculous that the community hadn’t fielded what should
have been a useful service. I chose to use the simple attribute-
value representation that Ross Quinlan was using so successfully
for distribution with his TDIDT implementations.10

The UCI dataset was wildly successful, and partially responsible for
the renewed interest in pattern recognition methods in machine learning.
However, this success came with some detractors. By the mid 1990s, many
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were worried that evaluation-by-benchmark encouraged chasing state-of-
the-art results and writing incremental papers. Aha reflects:

By ICML-95, the problems “caused” by the repository had be-
come popularly espoused. For example, at that conference
Lorenza Saitta had, in an invited workshop that I co-organized,
passionately decried how it allowed researchers to publish dull
papers that proposed small variations of existing supervised
learning algorithms and reported their small-but-significant in-
cremental performance improvements in comparison studies.

Nonetheless, the UCI repository remains one of the most popular source
for benchmark datasets in machine learning, and many of the early datasets
still are used for benchmarking in machine learning research. The most
popular dataset in the UCI repository is Ronald A. Fisher’s Iris Data Set that
Fisher collected for his 1936 paper on “The use of multiple measurements
in taxonomic problems”.

As of writing, the second most popular dataset in the UCI repository
is the Adult dataset. Extracted from the 1994 Census database, the dataset
features nearly 50,000 instances describing individual in the United States,
each having 14 attributes. The goal is to classify whether an individual
earns more than 50,000 US dollars or less.

The Adult dataset became popular in the algorithmic fairness commu-
nity, largely because it is one of the few publicly available datasets that
features demographic information including gender (coded in binary as
male/female), as well as race (coded as Amer-Indian-Eskimo, Asian-Pac-
Islander, Black, Other, and White).

Unfortunately, the data has some idiosyncrasies that make it less than
ideal for understanding biases in machine learning models.11 Due to the
age of the data, and the income cutoff at $50,000, almost all instances labeled
Black are below the cutoff, as are almost all instances labeled female. Indeed,
a standard logistic regression model trained on the data achieves about
85% accuracy overall, while the same model achieves 91% accuracy on
Black instances, and nearly 93% accuracy on female instances. Likewise,
the ROC curves for the latter two groups enclose actually more area than
the ROC curve for male instances. This is a rather untypical situation
since often machine learning models perform more poorly on historically
disadvantaged groups.

Highleyman’s data

The first machine learning benchmark dates back to the late 1950s. Few
used it and even fewer still remembered it by the time benchmarks became
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Figure 1: A look at Highleyman’s data

widely used in machine learning in the late 1980s.
In 1959 at Bell Labs, Bill Highleyman and Louis Kamenstky designed

a scanner to evaluate character recognition techniques.12 Their goal was
“to facilitate a systematic study of character-recognition techniques and an
evaluation of methods prior to actual machine development.” It was not
clear at the time which part of the computations should be done in special
purpose hardware and which parts should be done with more general
computers. Highleyman later patented an optical character recognition
(OCR) scheme that we recognize today as a convolutional neural network
with convolutions optically computed as part of the scanning.13

Highleyman and Kamentsky used their scanner to create a data set of
1800 alphanumeric characters. They gathered the 26 capital letters of the
English alphabet and 10 digits from 50 different writers. Each character in
their corpus was scanned in binary at a resolution of 12 x 12 and stored on
punch cards that were compatible with the IBM 704, the first mass-produced
computer with floating-point arithmetic hardware.

With the data in hand, Highleyman and Kamenstky began studying
various proposed techniques for recognition. In particular, they analyzed
a method of Woody Bledsoe’s and published an analysis claiming to be
unable to reproduce the results.14 Bledsoe found the numbers to be con-
siderably lower than he expected, and asked Highleyman to send him the
data. Highleyman obliged, mailing the package of punch cards across the
country to Sandia Labs. Upon receiving the data, Bledsoe conducted a new
experiment. In what may be the first application of the train-test split, he
divided the characters up, using 40 writers for training and 10 for testing.
By tuning the hyperparameters, Bledsoe was able to achieve approximately
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60% error.15 Bledsoe also suggested that the high error rates were to be
expected as Highleyman’s data was too small. Prophetically, he declared
that 1000 alphabets might be needed for good performance.

By this point, Highleyman had also shared his data with Chao Kong
Chow at the Burroughs Corporation (a precursor to Unisys). A pioneer
of using decision theory for pattern recognition,16 Chow built a pattern
recognition system for characters. Using the same train-test split as Bledsoe,
Chow obtained an error rate of 41.7%.17

Highleyman made at least six additional copies of the data he had sent
to Bledsoe and Chow, and many researchers remained interested. He thus
decided to publicly offer to send a copy to anyone willing to pay for the
duplication and shipping fees.18 Of course, the dataset was sent by US
Postal Service. Electronic transfer didn’t exist at the time, resulting in
sluggish data transfer rates on the order of a few bits per minute.

Highleyman not only created the first machine learning benchmark. He
authored the first formal study of train-test splits19 and proposed empirical
risk minimization for pattern classification20 as part of his 1961 dissertation.
By 1963, however, Highleyman had left his research position at Bell Labs
and abandoned pattern recognition research.

We don’t know how many people requested Highleyman’s data, but
the total number of copies may have been less than twenty. Based on
citation surveys, we determined there were at least six additional copies
made after Highleyman’s public offer for duplication, sent to researchers at
UW Madison, CMU, Honeywell, SUNY Stony Brook, Imperial College in
London, and Stanford Research Institute (SRI).

The SRI team of John Munson, Richard Duda, and Peter Hart performed
some of the most extensive experiments with Highleyman’s data.21 A 1-
nearest-neighbors baseline achieved an error rate of 47.5%. With a more
sophisticated approach, they were able to do significantly better. They
used a multi-class, piecewise linear model, trained using Kesler’s multi-
class version of the perceptron algorithm. Their feature vectors were 84

simple pooled edge detectors in different regions of the image at different
orientations. With these features, they were able to get a test error of 31.7%,
10 points better than Chow. When restricted only to digits, this method
recorded 12% error. The authors concluded that they needed more data,
and that the error rates were “still far too high to be practical.” They
concluded that “larger and higher-quality datasets are needed for work
aimed at achieving useful results.” They suggested that such datasets “may
contain hundreds, or even thousands, of samples in each class.”

Munson, Duda, and Hart also performed informal experiments with
humans to gauge the readability of Highleyman’s characters. On the full
set of alphanumeric characters, they found an average error rate of 15.7%,
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Figure 2: A sample of MNIST digits

about 2x better than their pattern recognition machine. But this rate was
still quite high and suggested the data needed to be of higher quality. They
concluded that “an array size of at least 20X20 is needed, with an optimum
size of perhaps 30X30.”

Decades passed until such a dataset, the MNIST digit recognition task,
was created and made widely available.

MNIST

The MNIST dataset contains images of handwritten digits. Its most common
version has 60,000 training images and 10,000 test images, each having 28x28

grayscale pixels.
MNIST was created by researchers Burges, Cortes, and LeCun from data

by the National Institute of Standards and Technology (NIST). The dataset
was introduced in a research paper in 1998 to showcase the use of gradient-
based deep learning methods for document recognition tasks.22 However,
the authors released the dataset to provide a convenient benchmark of
image data, in contrast to UCI’s predominantly tabular data. The MNIST
website states

It is a good database for people who want to try learning tech-
niques and pattern recognition methods on real-world data while
spending minimal efforts on preprocessing and formatting.23
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MNIST became a highly influential benchmark in the machine learning
community. Two decades and over 30,000 citation later, researchers continue
to use the data actively.

The original NIST data had the property that training and test data came
from two different populations. The former featured the handwriting of
two thousand American Census Bureau employees, whereas the latter came
from five hundred American high school students.24 The creators of MNIST
reshuffled these two data sources and split them into training and test set.
Moreover, they scaled and centered the digits. The exact procedure to derive
MNIST from NIST was lost, but recently reconstructed by matching images
from both data sources.25

The original MNIST test set was of the same size as the training set, but
the smaller test set became standard in research use. The 50,000 digits in
the original test set that didn’t make it into the smaller test set were later
identified and dubbed the lost digits.25

From the beginning, MNIST was intended to be a benchmark used to
compare the strengths of different methods. For several years, LeCun main-
tained an informal leaderboard on a personal website that listed the best
accuracy numbers that different learning algorithms achieved on MNIST.

Table 2: A snapshot of the original MNIST leaderboard
from February 2, 1999. Source: Internet Archive (Re-
trieved: December 4, 2020)

Method Test error (%)

linear classifier (1-layer NN) 12.0
linear classifier (1-layer NN) [deskewing] 8.4
pairwise linear classifier 7.6
K-nearest-neighbors, Euclidean 5.0
K-nearest-neighbors, Euclidean, deskewed 2.4
40 PCA + quadratic classifier 3.3
1000 RBF + linear classifier 3.6
K-NN, Tangent Distance, 16x16 1.1
SVM deg 4 polynomial 1.1
Reduced Set SVM deg 5 polynomial 1.0
Virtual SVM deg 9 poly [distortions] 0.8
2-layer NN, 300 hidden units 4.7
2-layer NN, 300 HU, [distortions] 3.6
2-layer NN, 300 HU, [deskewing] 1.6
2-layer NN, 1000 hidden units 4.5
2-layer NN, 1000 HU, [distortions] 3.8
3-layer NN, 300+100 hidden units 3.05
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Method Test error (%)

3-layer NN, 300+100 HU [distortions] 2.5
3-layer NN, 500+150 hidden units 2.95

3-layer NN, 500+150 HU [distortions] 2.45

LeNet-1 [with 16x16 input] 1.7
LeNet-4 1.1
LeNet-4 with K-NN instead of last layer 1.1
LeNet-4 with local learning instead of ll 1.1
LeNet-5, [no distortions] 0.95

LeNet-5, [huge distortions] 0.85

LeNet-5, [distortions] 0.8
Boosted LeNet-4, [distortions] 0.7

In its capacity as a benchmark, it became a showcase for the emerging ker-
nel methods of the early 2000s that temporarily achieved top performance
on MNIST.26 Today, it is not difficult to achieve less than 0.5% classification
error with a wide range of convolutional neural network architectures. The
best models classify all but a few pathological test instances correctly. As a
result, MNIST is widely considered too easy for today’s research tasks.

MNIST wasn’t the first dataset of handwritten digits in use for machine
learning research. Earlier, the US Postal Service (USPS) had released a
dataset of 9298 images (7291 for training, and 2007 for testing). The USPS
data was actually a fair bit harder to classify than MNIST. A non-negligible
fraction of the USPS digits look unrecognizable to humans,27 whereas
humans recognize essentially all digits in MNIST.

ImageNet

ImageNet is a large repository of labeled images that has been highly
influential in computer vision research over the last decade. The image
labels correspond to nouns from the WordNet lexical database of the English
language. WordNet groups nouns into cognitive synonyms, called synsets.
The words car and automobile, for example, would fall into the same synset.
On top of these categories, WordNet provides a hierarchical structure
according to a super-subordinate relationship between synsets. The synset
for chair, for example, is a child of the synset for furniture in the wordnet
hierarchy. WordNet existed before ImageNet and in part inspired the
creation of ImageNet.

The initial release of ImageNet included about 5000 image categories
each corresponding to a synset in WordNet. These ImageNet categories
averaged about 600 images per category.28 ImageNet grew over time and
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its Fall 2011 release had reached about 32,000 categories.
The construction of ImageNet required two essential steps:

1. The first was the retrieval of candidate images for each synset.
2. The second step in the creation process was the labeling of images.

Scale was an important consideration due to the target size of the image
repository.

This first step utilized available image databases with a search interface,
specifically, Flickr. Candidate images were taken from the image search
results associated with the synset nouns for each category.

For the second labeling step, the creators of ImageNet turned to Ama-
zon’s Mechanical Turk platform (MTurk). MTurk is an online labor market
that allows individuals and corporations to hire on-demand workers to
perform simple tasks. In this case, MTurk workers were presented with
candidate images and had to decide whether or not the candidate image
was indeed an image corresponding to the category that it was putatively
associated with.

It is important to distinguish between this ImageNet database and a
popular machine learning benchmark and competition, called ImageNet
Large Scale Visual Recognition Challenge (ILSVRC), that was derived from
it.29 The competition was organized yearly from 2010 until 2017 to “measure
the progress of computer vision for large scale image indexing for retrieval
and annotation.” In 2012, ILSVRC reached significant notoriety in both
industry and academia when a deep neural network trained by Krizhevsky,
Sutskever, and Hinton outperformed all other models by a significant
margin.30 This result—yet again an evaluation in a train-test paradigm—
helped usher in the latest era of exuberant interest in machine learning and
neural network models under the rebranding as deep learning.31

When machine learning practitioners say “ImageNet” they typically
refer to the data used for the image classification task in the 2012 ILSVRC
benchmark. The competition included other tasks, such as object recog-
nition, but image classification has become the most popular task for the
dataset. Expressions such as “a model trained on ImageNet” typically refer
to training an image classification model on the benchmark dataset from
2012.

Another common practice involving the ILSVRC data is pre-training.
Often a practitioner has a specific classification problem in mind whose label
set differs from the 1000 classes present in the data. It’s possible nonetheless
to use the data to create useful features that can then be used in the target
classification problem. Where ILSVRC enters real-world applications it’s
often to support pre-training.
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This colloquial use of the word ImageNet can lead to some confusion, not
least because the ILSVRC-2012 dataset differs significantly from the broader
database. It only includes a subset of 1000 categories. Moreover, these
categories are a rather skewed subset of the broader ImageNet hierarchy.
For example, of these 1000 categories only three are in the person branch of
the WordNet hierarchy, specifically, groom, baseball player, and scuba diver.
Yet, more than 100 of the 1000 categories correspond to different dog breeds.
The number is 118, to be exact, not counting wolves, foxes, and wild dogs
that are also present among the 1000 categories.

What motivated the exact choice of these 1000 categories is not entirely
clear. The apparent canine inclination, however, isn’t just a quirk either.
At the time, there was an interest in the computer vision community in
making progress on prediction with many classes, some of which are very
similar. This reflects a broader pattern in the machine learning community.
The creation of datasets is often driven by an intuitive sense of what the
technical challenges are for the field. In the case of ImageNet, scale, both in
terms of the number of data points as well as the number of classes, was an
important motivation.

The large scale annotation and labeling of datasets, such as we saw in
the case of ImageNet, fall into a category of labor that anthropologist Gray
and computer scientist Suri coined Ghost Work in their book of the same
name.32 They point out:

MTurk workers are the AI revolution’s unsung heroes.

Indeed, ImageNet was labeled by about 49,000 MTurk workers from 167

countries over the course of multiple years.

Longevity of benchmarks

The holdout method is central to the scientific and industrial activities of
the machine learning community. Thousands of research papers have been
written that report numbers on popular benchmark data, such as MNIST,
CIFAR-10, or ImageNet. Often extensive tuning and hyperparameter opti-
mization went into each such research project to arrive at the final accuracy
numbers reported in the paper.

Does this extensive reuse of test sets not amount to what Duda and Hart
call the “training on the testing data” problem? If so, how much of the
progress that has been made is real, and how much amounts of overfitting
to the test data?

To answer these questions we will develop some more theory that will
help us interpret the outcome of empirical meta studies into the longevity
of machine learning benchmarks.
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Figure 3: The adaptive analyst model.

The problem of adaptivity

Model building is an iterative process where the performance of a model
informs subsequent design choices. This iterative process creates a closed
feedback loop between the practitioner and the test set. In particular, the
models the practitioner chooses are not independent of the test set, but
rather adaptive.

Adaptivity can be interpreted as a form of overparameterization. In
an adaptively chosen sequence of predictors f1, . . . , fk, the k-th predictor
had the ability to incorporate at least k− 1 bits of information about the
performance of previously chosen predictors. This suggests that as k ≥ n,
the statistical guarantees of the holdout method become vacuous. This
intuition is formally correct, as we will see.

To reason about adaptivity, it is helpful to frame the problem as an
interaction between two parties. One party holds the dataset S. Think of
this party as implementing the holdout method. The other party, we call
analyst, can query the dataset by requesting the empirical risk RS[ f ] of a
given predictor f on the dataset S. The parties interact for some number k of
rounds, thus creating a sequence of adaptively chosen predictors f1, . . . , fk.
Keep in mind that this sequence depends on the dataset! In particular,
when S is drawn at random, f2, . . . , fk become random variables, too, that
are in general not independent of each other.

In general, the estimate Rt returned by the holdout mechanism at step t
need not be equal to RS[ ft]. We can often do better than the standard
holdout mechanism by limiting the information revealed by each response.
Throughout this chapter, we restrict our attention to the case of the zero-one
loss and binary prediction, although the theory extends to other settings.

As it turns out, the guarantee of the standard holdout mechanism in
the adaptive case is exponentially worse in k compared with the non-
adaptive case. Indeed, there is a fairly natural sequence of k adaptively
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chosen predictors, resembling the practice of ensembling, on which the
empirical risk is off by at least Ω(

√
k/n). This is a lower bound on the gap

between risk and empirical risk in the adaptive setting. Contrast this with
the O(

√
log(k)/n) upper bound that we observed for the standard holdout

mechanism in the non-adaptive case. We present the idea for the zero-one
loss in a binary prediction problem.

Overfitting by ensembling:
1. Choose k of random binary predictors f1, . . . , fk.
2. Compute the set I = {i ∈ [k] : RS[ fi] < 1/2}.
3. Output the predictor f = majority{ fi : i ∈ I} that takes a

majority vote over all the predictors computed in the second
step.

The key idea of the algorithm is to select all the predictors that have
accuracy strictly better than random guessing. This selection step creates a
bias that gives each selected predictor an advantage over random guessing.
The majority vote in the third step amplifies this initial advantage into a
larger advantage that grows with k. The next proposition confirms that
indeed this strategy finds a predictor whose empirical risk is bounded away
from 1/2 (random guessing) by a margin of Ω(

√
k/n). Since the predictor

does nothing but taking a majority vote over random functions, its risk is of
course no better than 1/2.

Proposition 1. For sufficiently large k ≤ n, overfitting by ensembling returns a
predictor f whose classification error satisfies with probability 1/3,

RS[ f ] ≤ 1
2
−Ω(

√
k/n) .

In particular, ∆gen( f ) ≥ Ω(
√

k/n).

We also have a nearly matching upper bound that essentially follows
from a Hoeffding’s concentration inequality just as the cardinality bound
in the previous chapter. However, in order to apply Hoeffding’s inequality
we first need to understand a useful idea about how we can analyze the
adaptive setting.

The idea is that we can think of the interaction between a fixed analyst A
and the dataset as a tree. The root node is labeled by f1 = A(∅), i.e., the first
function that the analyst queries without any input. The response RS[ f1]
takes on n + 1 possible values. This is because we consider the zero-one
loss, which can only take the values {0, 1/n, 2/n, . . . , 1}. Each possible
response value a1 creates a new child node in the tree corresponding to the
function f2 = A(a1) that the analyst queries upon receiving answer a1 to
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Figure 4: Constructing a tree of depth k and degree n + 1 given an adaptive
analyst. Each node corresponds to the predictor the analyst chooses based
on the responses seen so far.

the first query f1. We recursively continue the process until we built up a
tree of depth k and degree n + 1 at each node.

Note that this tree only depends on the analyst and how it responds to
possible query answers, but it does not depend on the actual query answers
we get out of the sample S. The tree is therefore data-independent. This
argument is useful in proving the following proposition.

Proposition 2. For any sequence of k adaptively chosen predictors f1, . . . , fk, the
holdout method satisfies with probability 2/3,

max
1≤t≤k

∆gen( ft) ≤ O
(√

k log(n + 1)/n
)

.

Proof. The adaptive analyst defines a tree of depth k and degree n + 1. Let F
be the set of functions appearing at any of the nodes in the tree. Note
that |F| ≤ (n + 1)k.

Since this set of functions is data independent, we can apply the car-
dinality bound from the previous chapter to argue that the maximum
generalization gap for any function in F is bounded by O(

√
log |F|/n) with

any constant probability. But the functions f1, . . . , fk are contained in F by
construction. Hence, the claim follows.

These propositions show that the principal concern of “training on the
testing data” is not unfounded. In the worst case, holdout data can lose its
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Figure 5: Model accuracy on the original test sets vs. new test sets for
CIFAR-10 and ImageNet. Each data point corresponds to one model in a
test bed of representative models.

guarantees rather quickly. If this pessimistic bound manifested in practice,
popular benchmark datasets would quickly become useless. But does it?

Replication efforts

In recent replication efforts, researchers carefully recreated new test sets for
the CIFAR-10 and ImageNet classification benchmarks, created according
to the very same procedure as the original test sets. The researchers then
took a large collection of representative models proposed over the years and
evaluated all of them on the new test sets. In the case of MNIST, researchers
used the lost digits as a new test set, since these digits hadn’t been used in
almost all of the research on MNIST.

The results of these studies teach us a couple of important lessons that
we will discuss in turn.

First, all models suffer a significant drop in performance on the new test
set. The accuracy on the new data is substantially lower than on the old
data. This shows that these models transfer surprisingly poorly from one
dataset to a very similar dataset that was constructed in much the same way
as the original data. This observation resonates with a robust fact about
machine learning. Model fitting will do exactly that. The model will be
good on exactly the data it is trained on, but there is no good reason to
believe that it will perform well on other data. Generalization as we cast it
in the preceding chapter is thus about interpolation. It’s about doing well on
more data from the same source. It is decidedly not about doing well on
data from other sources.
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The second observation is relevant to the question of adaptivity; it’s
a bit more subtle. The scatter plots admit a clean linear fit with positive
slope. In other words, the better a model is on the old test set the better
it is on the new test set, as well. But notice that newer models, i.e., those
with higher performance on the original test set, had more time to adapt
to the test set and to incorporate more information about it. Nonetheless,
the better a model performed on the old test set the better it performs on
the new set. Moreover, on CIFAR-10 we even see clearly that the absolute
performance drops diminishes with increasing accuracy on the old test set.
In particular, if our goal was to do well on the new test set, seemingly our
best strategy is to continue to inch forward on the old test set. This might
seem counterintuitive.

We will discuss each of these two observations in more detail, starting
with the one about adaptivity.

Benign adaptivity

The experiments we just discussed suggest that the effect of adaptivity was
more benign than our previous analysis suggested. This raises the question
what it is that prevents more serious overfitting. There are a number of
pieces to the puzzle that researchers have found. Here we highlight two.

The main idea behind both mechanisms that damp adaptivity is that the
set of possible nodes in the adaptive tree may be much less than nk because
of empirical conventions. The first mechanism is model similarity. Effectively,
model similarity notes that the leaves of the adaptive tree may be producing
similar predictions, and hence the adaptivity penalty is smaller than our
worst case count. The second mechanism is the leaderboard principle. This
more subtle effect states that since publication biases force researchers to
chase state-of-the-art results, they only publish models if they see significant
improvements over prior models.

While we don’t believe that these two phenomena explain the entirety
of why overfitting is not observed in practice, they are simple mechanisms
that significantly reduce the effects of adaptivity. As we said, these are two
examples of norms in machine learning practice that diminish the effects of
overfitting.

Model similarity

Naively, there are 2n total assignments of binary labels to a dataset of size n.
But how many such labeling assignments do we see in practice? We do not
solve pattern recognition problems using the ensembling attack described
above. Rather, we use a relatively small set of function approximation
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architectures, and tune the parameters of these architectures. While we have
seen that these architectures can yield any of the 2n labeling patterns, we
expect that a much smaller set of predictions is returned in practice when
we run standard empirical risk minimization.

Model similarity formalizes this notion as follows. Given an adaptively
chosen sequence of predictors f1, . . . , fk, we have a corresponding sequence
of empirical risks R1, . . . , Rk.

Definition 1. We say that a sequence of models f1, . . . , fk are ζ-similar if for all
pairs of models fi and f j with empirical risks Ri ≤ Rj, respectively, we have

P
[
{ f j(x) = y} ∩ { fi(x) 6= y}

]
≤ ζ .

This definition states that there is low probability of a model with
small empirical risk misclassifying an example where a model with higher
empirical risk was correct. It effectively grades the set of examples as being
easier or harder to classify, and suggests that models with low risk usually
get the easy examples correct.

Though simple, this definition is sufficient to reduce the size of the
adaptive tree, thus leading to better theoretical bound.33 Empirically, deep
learning models appear to have high similarity beyond what follows from
their accuracies.33

The definition of similarity can also help explain the scatter plots we
saw previously: When we consider the empirical risks of high similarity
models on two different test sets, the scatter plot the (Ri, R′i) pairs cluster
around a line.34

The leaderboard principle

The leaderboard principle postulates that a researcher only cares if their model
improved over the previous best or not. This motivates a notion of leaderboard
error where the holdout method is only required to track the risk of the
best performing model over time, rather than the risk of all models ever
evaluated.

Definition 2. Given an adaptively chosen sequence of predictors f1, . . . , fk, we
define the leaderboard error of a sequence of estimates R1, . . . , Rk as

lberr(R1, . . . , Rk) = max
1≤t≤k

∣∣∣∣min
1≤i≤t

R[ fi]− Rt

∣∣∣∣ .

We discuss an algorithm called the Ladder algorithm that achieves small
leaderboard error. The algorithm is simple. For each given predictor, it
compares the empirical risk estimate of the predictor to the previously
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smallest empirical risk achieved by any predictor encountered so far. If
the loss is below the previous best by some margin, it announces the
empirical risk of the current predictor and notes it as the best seen so far.
Importantly, if the loss is not smaller by a margin, the algorithm releases no
new information and simply continues to report the previous best.

Again, we focus on risk with respect to the zero-one loss, although the
ideas apply more generally.

Input: Dataset S, threshold η > 0
• Assign initial leaderboard error R0 ← 1.
• For each round t← 1, 2 . . . :

1. Receive predictor ft : X → Y
2. If RS[ ft] < Rt−1 − η, update leaderboard error to Rt ←

RS[ ft]. Else keep previous leaderboard error Rt ← Rt−1.
3. Output leaderboard error Rt

The next theorem follows from a variant of the adaptive tree argument
we saw earlier, in which we carefully prune the tree and bound its size.

Theorem 1. For a suitably chosen threshold parameter, for any sequence of adap-
tively chosen predictors f1, . . . , fk, the Ladder algorithm achieves with probabil-
ity 1− o(1):

lberr(R1, . . . , Rk) ≤ O

(
log1/3(kn)

n1/3

)
.

Proof. Set η = log1/3(kn)/n1/3. With this setting of η, it suffices to show that
with probability 1− o(1) we have for all t ∈ [k] the bound |RS[ ft]− R[ ft]| ≤
O(η) = O(log1/3(kn)/n1/3).

Let A be the adaptive analyst generating the function sequence. The
algorithm A naturally defines a rooted tree T of depth k recursively defined
as follows:

1. The root is labeled by f1 = A(∅).
2. Each node at depth 1 < i ≤ k corresponds to one realization (h1, r1, . . . , hi−1, ri−1)

of the tuple of random variables ( f1, R1, . . . , fi−1, Ri−1) and is labeled
by hi = A(h1, r1, . . . , hi−1, ri−1). Its children are defined by each pos-
sible value of the output Ri of Ladder Mechanism on the sequence
h1, r1, . . . , ri−1, hi.

Let B = (1/η + 1) log(4k(n + 1)). We claim that the size of the tree
satisfies |T | ≤ 2B. To prove the claim, we will uniquely encode each node
in the tree using B bits of information. The claim then follows directly.
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Figure 6: Low bit encoding of the adaptive tree. Dashed lines correspond to
rounds with no update.

The compression argument is as follows. We use dlog ke ≤ log(2k) bits
to specify the depth of the node in the tree. We then specify the index
of each i ∈ [k] for which the Ladder algorithm performs an “update” so
that Ri ≤ Ri−1 − η together with the value Ri. Note that since Ri ∈ [0, 1]
there can be at most d1/ηe ≤ (1/η) + 1 many such steps. This is because
the loss is lower bounded by 0 and decreases by η each time there is an
update.

Moreover, there are at most n+ 1 many possible values for Ri, since we’re
talking about the zero-one loss on a dataset of size n. Hence, specifying all
such indices requires at most (1/η + 1)(log(n + 1) + log(2k)) bits. These
bits of information uniquely identify each node in the graph, since for every
index i not explicitly listed we know that Ri = Ri−1. The total number of
bits we used is:

(1/η + 1)(log(n + 1) + log(2k)) + log(2k) ≤ (1/η + 1) log(4k(n + 1)) = B .

This establishes the claim we made. The theorem now follows by applying a
union bound over all nodes in T and using Hoeffding’s inequality for each
fixed node. Let F be the set of all functions appearing in T . By a union
bound, we have

P {∃ f ∈ F : |R[ f ]− RS[ f ]| > ε} ≤ 2|F | exp(−2ε2n)

≤ 2 exp(−2ε2n + B) .

Verify that by putting ε = 5η, this expression can be upper bounded
by 2 exp(−n1/3) = o(1), and thus the claim follows.
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Harms associated with data

The collection and use of data often raises serious ethical concerns. We will
walk through some that are particularly relevant to machine learning.

Representational harm and biases

As we saw earlier, we have no reason to expect a machine learning model to
perform well on any population that differs significantly from the training
data. As a result, underrepresentation or misrepresentation of populations
in the training data has direct consequences on the performance of any
model trained on the data.

In a striking demonstration of this problem, Buolamwini and Gebru35

point out that two facial analysis benchmarks, IJB-A and Adience, over-
whelmingly featured lighter-skinned subjects. Introducing a new facial
analysis dataset, which is balanced by gender and skin type, Buolamwini
and Gebru demonstrated that commercial face recognition software mis-
classified darker-skinned females at the highest rate, while misclassifying
lighter-skinned males at the lowest rate.

Images are not the only domain where this problem surfaces. Models
trained on text corpora reflect the biases and stereotypical representations
present in the training data. A well known example is the case of word
embeddings. Word embeddings map words in the English language to a
vector representation. This representation can then be used as a feature
representation for various other downstream tasks. A popular word em-
bedding method is Google’s word2vec tool that was trained on a corpus of
Google news articles. Researchers demonstrated that the resulting word
embeddings encoded stereotypical gender representations of the form man
is to computer programmer as woman is to homemaker.36 Findings like these
motivated much work on debiasing techniques that aim to remove such
biases from the learned representation. However, there is doubt whether
such methods can successfully remove bias after the fact.37

Privacy violations

The Netflix Prize was one of the most famous machine learning competitions.
Starting on October 2, 2006, the competition ran for nearly three years
ending with a grand prize of $1M, announced on September 18, 2009. Over
the years, the competition saw 44,014 submissions from 5169 teams.
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The Netflix training data contained roughly 100 million movie ratings
from nearly 500 thousand Netflix subscribers on a set of 17770 movies.
Each data point corresponds to a tuple <user, movie, date of rating,
rating>. At about 650 megabytes in size, the dataset was just small enough
to fit on a CD-ROM, but large enough to be pose a challenge at the time.

The Netflix data can be thought of as a matrix with n = 480189 rows
and m = 17770 columns. Each row corresponds to a Netflix subscriber and
each column to a movie. The only entries present in the matrix are those for
which a given subscriber rated a given movie with rating in {1, 2, 3, 4, 5}.
All other entries—that is, the vast majority—are missing. The objective of
the participants was to predict the missing entries of the matrix, a problem
known as matrix completion, or collaborative filtering somewhat more broadly.
In fact, the Netflix challenge did so much to popularize this problem that
it is sometimes called the Netflix problem. The idea is that if we could
predict missing entries, we’d be able to recommend unseen movies to users
accordingly.

The holdout data that Netflix kept secret consisted of about three mil-
lion ratings. Half of them were used to compute a running leaderboard
throughout the competition. The other half determined the final winner.

The Netflix competition was hugely influential. Not only did it attract
significant participation, it also fueled much academic interest in collabora-
tive filtering for years to come. Moreover, it popularized the competition
format as an appealing way for companies to engage with the machine
learning community. A startup called Kaggle, founded in April 2010, orga-
nized hundreds of machine learning competitions for various companies
and organizations before its acquisition by Google in 2017.

But the Netflix competition became infamous for another reason. Al-
though Netflix had replaced usernames by random numbers, researchers
Narayanan and Shmatikov were able to re-identify many of the Netflix
subscribers whose movie ratings were in the dataset.38 In a nutshell, their
idea was to link movie ratings in the Netflix dataset with publicly available
movie ratings on IMDB, an online movie database. Some Netflix subscribers
had also publicly rated an overlapping set of movies on IMDB under their
real name. By matching movie ratings between the two sources of informa-
tion, Narayanan and Shmatikov succeeded in associating anonymous users
in the Netflix data with real names from IMDB. In the privacy literature,
this is called a linkage attack and it’s one of the many ways that seemingly
anonymized data can be de-anonymized.39

What followed were multiple class action lawsuits against Netflix, as
well as an inquiry by the Federal Trade Commission over privacy concerns.
As a consequence, Netflix canceled plans for a second competition, which it
had announced on August 6, 2009.
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To this day, privacy concerns are a highly legitimate obstacle to public
data release and dataset creation. Deanonymization techniques are mature
and efficient. There provably is no algorithm that could take a dataset and
provide a rigorous privacy guarantee to all participants, while being useful
for all analyses and machine learning purposes. Dwork and Roth call this
the Fundamental Law of Information Recovery: “overly accurate answers to
too many questions will destroy privacy in a spectacular way.”40

Copyright

Privacy concerns are not the only obstruction to creating public datasets and
using data for machine learning purposes. Almost all data sources are also
subject to copyright. Copyright is a type of intellectual property, protected
essentially worldwide through international treaties. It gives the creator of
a piece of work the exclusive right to create copies of it. Copyright expires
only decades after the creator dies. Text, images, video, digital or not, are
all subject to copyright. Copyright infringement is a serious crime in many
countries.

The question of how copyright affects machine learning practice is
far from settled. Courts have yet to set precedents on whether copies of
content that feed into machine learning training pipelines may be considered
copyright infringement.

Legal scholar Levendowski argues that copyright law biases creators of
machine learning systems toward “biased, low-friction data”. These are
data sources that carry a low risk of creating a liability under copyright law,
but carry various biases in the data that affect how the resulting models
perform.41

One source of low-friction data is what is known as “public domain”.
Under current US law, works enter public domain 75 years after the death
of the copyright holder. This means that most public domain works were
published prior to 1925. If the creator of a machine learning system relied
primarily on public domain works for training, it would likely bias the data
toward older content.

Another example of a low-friction dataset is the Enron email corpus that
contains 1.6 million emails sent among Enron employees over the course
of multiple years leading up to the collapse of the company in 2001. The
corpus was released by the Federal Energy Regulatory Commission (FERC)
in 2003, following its investigation into the serious accounting fraud case
that became known as “Enron scandal”. The Enron dataset is one of the few
available large data sources of emails sent between real people. Even though
the data were released by regulators to the public, that doesn’t mean that
they are “public domain”. However, it is highly unlikely that a former Enron
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employee might sue for copyright infringement. The dataset has numerous
biases. The emails are two decades old, and sent by predominantly male
senior managers in a particular business sector.

An example of a dataset that is not low-friction is the corpus of news
articles that became the basis for Google’s famous word embedding tool
called word2vec that we mentioned earlier. Due to copyright concerns with
the news articles contained in the corpus, the dataset was never released,
only the trained model.

Problem framing and comparisons with humans

A long-standing ambition of artificial intelligence research is to match or
exceed human cognitive abilities by an algorithm. This desire often leads to
comparisons between humans and machines on various tasks. Judgments
about human accuracy often also enter the debate around when to use
statistical models in high stakes decision making settings.

The comparison between human decision makers and statistical models
is by no means new. For decades, researchers have compared the accuracy
of human judgments with that of statistical models.42

Even within machine learning, the debate dates way back. A 1991 paper
by Bromley and Sackinger explicitly compared the performance of artificial
neural networks to a measure of human accuracy on the USPS digits dataset
that predates the famous MNIST data.27 A first experiment put the human
accuracy at 2.5%, a second experiment found the number 1.51%, while a
third reported the number 2.37%.43

Comparison with so-called human baselines has since become widely
accepted in the machine learning community. The Electronic Frontier
Foundation (EFF), for example, hosts a major repository of AI progress
measures that compares the performance of machine learning models to
reported human accuracies on numerous benchmarks.44

For the ILSVRC 2012 data, the reported human error rate is 5.1%. To
be precise, this number is referring to the fraction of times that the correct
image label was not contained in the top 5 predicted labels. This often
quoted number corresponds to the performance of a single human annotator
who was “trained on 500 images and annotated 1500 test images”. A second
annotator who was “trained on 100 images and then annotated 258 test
images” achieved an error rate of 12%.29

Based on this number of 5.1%, researchers announced in 2015 that
their model was “the first to surpass human-level performance”.45 Not
surprisingly, this claim received significant attention throughout the media.

However, a later more careful investigation into “human accuracy” on
ImageNet revealed a very different picture.46 The researchers found that
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only models from 2020 are actually on par with the strongest human labeler.
Moreover, when restricting the data to 590 object classes out of 1000 classes
in total, the best human labeler performed much better at less than 1%
error than even the best predictive models. Recall, that the ILSVRC 2012

data featured 118 different dog breeds alone, some of which are extremely
hard to distinguish for anyone who is not a trained dog expert. In fact, the
researchers had to consult with experts from the American Kennel Club
(AKC) to disambiguate challenging cases of different dog breeds. Simply
removing dog classes alone increases the performance of the best human
labeler to less than 1.3% error.

There is another troubling fact. Small variations in the data collection
protocol turn out to have a significant effect on the performance of machine
predictors: “the accuracy scores of even the best image classifiers are still
highly sensitive to minutiae of the data cleaning process.”47

These results cast doubt not only on how me measure “human accuracy”,
but also on the validity of the presumed theoretical construct of “human
accuracy” itself. It is helpful to take a step back and reflect on measurement
more broadly. Recall from Chapter 4 that the field of measurement theory
distinguishes between a measurement procedure and the target construct
that we wish to measure. For any measurement to be valid, the target
construct has to be valid in the first place.

However, the machine learning community has adopted a rather casual
approach to measuring human accuracy. Many researchers assume that
the construct of human accuracy exists unambiguously and it is whatever
number comes out of some ad-hoc testing protocol for some set of human
beings. These ad-hoc protocols often result in anecdotal comparisons of
questionable scientific value.

There is a broader issue with the idea of human accuracy. The notion
presupposes that we have already accepted the prediction task to be the
definitive task that we ought to solve, thus forgoing alternative solutions.
But in many cases the problem formulation in itself is the subject of norma-
tive debate.

Consider the case of predicting failure to appear in court. This prediction
problem is at the center of an ongoing criminal justice reform in the United
states. Many proponents seek to replace, or at least augment, human judges
by statistical models that predict whether or not a defendant would fail to
appear in court, if released ahead of a future trial in court. Defendants of
high risk are jailed, often for months without a verdict, until their court
appointment. An alternative to prediction is to understand the causes of
failure to appear in court, and to specifically address these. We will turn to
causality in subsequent chapters, where we will see that it often provides
an important alternative to prediction.
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As it turns out, defendants often fail to appear in court for lack of
transportation, lack of childcare, inflexible work hours, or simply too many
court appointments. Addressing these fundamental problems, in fact, is
part of a settlement in Harris County, Texas.

To conclude, invalid judgments about human performance relative to
machines are not just a scientific error, they also have the potential to create
narratives that support poor policy choices in high stakes policy questions
around the use of predictive models in consequential decisions.

Toward better data practices

The practices of data collection and dataset creation in the machine learning
community leave much room for improvement. We close this chapter
highlighting a few practices that can be immediately adopted.

Data annotation

Many existing datasets in machine learning are poorly documented, and
details about their creation are often missing. This leads to a range of issues
from lack of reproducibility and concerns of scientific validity to misuse and
ethical concerns. Fortunately, there is some emerging literature on how to
better execute and document the creation of datasets for machine learning.

Datasheets for datasets is an initiative to promote a more detailed and
systematic annotation for datasets.48 A datasheet requires the creator of
a dataset to answer questions relating to several areas of interest: Moti-
vation, composition, collection process, preprocessing/cleaning/labeling,
uses, distribution, maintenance.

One goal is that process of creating a datasheet will help anticipate
ethical issues with the dataset. But datasheets also aim to make data
practices more reproducible, and help practitioners select more adequate
data sources.

Going a step beyond datasheets, researchers Jo and Gebru49 draw lessons
from archival and library sciences for the construction and documentation
of machine learning datasets. These lessons draw attention to issues of
consent, inclusivity, power, transparency, ethics and privacy.

Lessons from measurement

Measurement theory is an established science with ancient roots. In short,
measurement is about assigning numbers to objects in the real world in a
way that reflects relationships between these objects. Measurement draws an
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important distinction between a construct that we wish to measure and the
measurement procedure that we used to create a numerical representation
of the construct.

For example, we can think of a well-designed math exam as measuring
the mathematical abilities of a student. A student with greater mathematical
ability than another is expected to score higher on the exam. Viewed this
way, an exam is a measurement procedure that assigns numbers to students.
The mathematical ability of a student is the construct we hope to measure.
We desire that the ordering of these numbers reflects the sorting of students
by their mathematical abilities. A measurement procedure operationalizes
a construct.

Recall that in a prediction problem we have covariates X from which
we’re trying to predict a variable Y. This variable Y is what we call the
target variable in our prediction problem. The definition and choice of a
target variable is one way that measurement theory becomes relevant to
machine learning practice.

Consider a machine learning practitioner who attempts to classify the
sentiment of a paragraph of text as “toxic” or not. In the language of
measurement, “toxicity” is a construct. Whatever labeling procedure the
practitioner comes up with can be thought of as a measurement procedure
that implicitly or explicitly operationalizes this construct. Before resorting
to ad-hoc labeling or survey procedures, machine learning practitioners
should survey available research.

A poor target variable cannot be ironed out with additional data. In fact,
the more data we feed into our model, the better it gets at capturing the
flawed target variable. Improved data quality or diversity are no cure either.

All formal fairness criteria that involve the target variable, separation and
sufficiency are two prominent examples are either meaningless or downright
misleading when the target variable itself is the locus of discrimination.
Recall from Chapter 2 that separation requires the protected attribute to be
independent of the prediction conditional on the target variable. Sufficiency
requires the target variable to be independent of the protected attribute
given the prediction.

To get a better grasp of what makes a target variable more or less
problematic, consider a few examples.

1. Predicting the value of the Standard and Poor 500 Index (S&P 500) at
the close of the New York Stock Exchange tomorrow.

2. Predicting whether an individual is going to default on a loan.
3. Predicting whether an individual is going to commit a crime.

The first example is rather innocuous. It references a fairly robust target
variable, even though it relies on a number of social facts.
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The second example is a common application of statistical modeling
that underlies much of modern credit scoring in the United States. At first
sight a default event seems like a clean cut target variable. But the reality
is different. In a public dataset released by the Federal Reserve50 default
events are coded by a so-called performance variable that measures a serious
delinquency in at least one credit line of a certain time period. More specifically,
the report states that the

measure is based on the performance of new or existing accounts
and measures whether individuals have been late 90 days or
more on one or more of their accounts or had a public record
item or a new collection agency account during the performance
period.50

Our third example runs into the most concerning measurement problem.
How do we determine if an individual committed a crime? What we can
determine with certainty is whether or not an individual was arrested and
found guilty of a crime. But this depends crucially on who is likely to be
policed in the first place and who is able to maneuver the criminal justice
system successfully following an arrest.

Sorting out what a good target variable is, in full generality, can involve
the whole apparatus of measurement theory. The scope of measurement
theory, however, goes beyond defining reliable and valid target variables
for prediction. Measurement comes in whenever we create features for a
machine learning problem and should therefore be an essential part of the
data creation process.

Judging the quality of a measurement procedure is a difficult task.
Measurement theory has two important conceptual frameworks for arguing
about what makes measurement good. One is reliability. The other is validity.

Reliability describes the differences observed in multiple measurements
of the same object under identical conditions. Thinking of the measurement
variable as a random variable, reliability is about the variance between
independent identically distributed measurements. As such, reliability can
be analogized with the statistical notion of variance.

Validity is concerned with how well the measurement procedure in
principle captures the concept that we try to measure. If reliability is
analogous to variance, it is tempting to see validity as analogous to bias. But
the situation is a bit more complicated. There is no simple formal criterion
that we could use to establish validity. In practice, validity is based to a
large extent on human expertise and subjective judgments.

One approach to formalize validity is to ask how well a score predicts
some external criterion. This is called external validity. For example, we
could judge a measure of creditworthiness by how well it predicts default
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in a lending scenario. While external validity leads to concrete technical
criteria, it essentially identifies good measurement with predictive accuracy.
However, that’s certainly not all there is to validity.

Construct validity is a framework for discussing validity that includes
numerous different types of evidence. Messick highlights six aspects of
construct validity:

• Content: How well does the content of the measurement instrument,
such as the items on a questionnaire, measure the construct of interest?

• Substantive: Is the construct supported by a sound theoretical founda-
tion?

• Structural: Does the score express relationships in the construct do-
main?

• Generalizability: Does the score generalize across different popula-
tions, settings, and tasks?

• External: Does the score successfully predict external criteria?
• Consequential: What are the potential risks of using the score with

regards to bias, fairness, and distributive justice?

Of these different criteria, external validity is the one most familiar to
the machine learning practitioner. But machine learning practice would
do well to embrace the other, more qualitative, criteria as well. Ultimately,
measurement forces us to grapple with the often surprisingly uncomfortable
question: What are we even trying to do when we predict something?

Limits of data and prediction

Machine learning fails in many scenarios and it’s important to understand
the failure cases as much as the success stories.

The Fragile Families Challenge was a machine learning competition
based on the Fragile Families and Child Wellbeing study (FFCWS).51 Start-
ing from a random sample of hospital births between 1998 and 2000, the
FFCWS followed thousand of American families over the course of 15 years,
collecting detailed information, about the families’ children, their parents,
educational outcomes, and the larger social environment. Once a family
agreed to participate in the study, data were collected when the child was
born, and then at ages 1, 3, 5, 9, and 15.

The Fragile Families Challenge took concluded in 2017. The underlying
dataset for the competition contains 4242 rows, one for each family, and
12943 columns, one for each variable plus an ID number of each family.
Of the 12942 variables, 2358 are constant (i.e., had the same value for all
rows), mostly due to redactions for privacy and ethics concerns. Of the
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approximately 55 million (4242 x 12942) entries in the dataset, about 73%
do not have a value. Missing values have many possible reasons, including
non-response of surveyed families, drop out of study participants, as well as
logical relationships between features that imply certain fields are missing
depending on how others are set. There are six outcome variables, measured
at age 15: 1) child grade point average (GPA), 2) child grit, 3) household eviction,
4) household material hardship, 5) caregiver layoff, and 6) caregiver participation
in job training.

The goal of the competition was to predict the value of the outcome
variables at age 15 given the data from age 1 through 9. As is common
for competitions, the challenge featured a three-way data split: training,
leaderboard, and test sets. The training set is publicly available to all
participants, the leaderboard data support a leaderboard throughout the
competition, and the test set is used to determine a final winner.

Despite significant participation from hundreds of researchers submit-
ting thousands of models over the course of five months, the outcome
of the prediction challenge was disappointing. Even the winning model
performed hardly better than a simple baseline and predicted little more
than the average outcome value.

What caused the poor performance of machine learning on the fragile
families data? There are a number of technical possibilities, the sample size,
the study design, the missing values. But there is also a more fundamental
reason that remains plausible. Perhaps the dynamics of life trajectories are
inherently unpredictable over the six year time delay between measurement
of the covariates and measurement of the outcome. Machine learning works
best in a static and stable world where the past looks like the future. Predic-
tion alone can be a poor choice when we’re anticipating dynamic changes,
or when we are trying to reason about the effect that hypothetical actions
would have in the real world. In subsequent chapters, we will develop
powerful conceptual tools to engage more deeply with this observation.

Chapter notes

This chapter overlaps significantly with a chapter on datasets and measure-
ment in the context of fairness and machine learning in the book by Barocas,
Hardt, and Narayanan.52

The study of adaptivity in data reuse was subject of work by Dwork,
Hardt, Pitassi, Reingold and Roth,53, 54 showing how tools from differential
privacy lead to statistical guarantees under adaptivity. Much subsequent
work in the area of adaptive data analysis extended these works. A concern
closely related to adaptivity goes under the name of inference after selection
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in the statistics community, where it was recognized by Freedman in a 1983

paper.55

The notion of leaderboard error and the Ladder algorithm come from
a work by Blum and Hardt.56 The replication study for CIFAR-10 and
ImageNet is due to Recht, Roelofs, Schmidt, and Shankar.47

The collection and use of large ad-hoc datasets (once referred to as
“big data”) has been scrutinized in several important works, especially
from critical scholars, historians, and social scientists outside the computer
science community. See, for example, boyd and Crawford,57 Tufekci,58, 59

and Onuoha.60 An excellent survey by Paullada, Raji, Bender, Denton,
and Hanna provides a wealth of additional background and references.61

Olteanu, Castillo, Diaz, and Kiciman discuss biases, methodological pitfalls,
and ethical questions in the context of social data analysis.62 In particular,
the article provides comprehensive taxonomies of biases and issues that
can arise in the sourcing, collection, processing, and analysis of social data.
Recently, Couldry and Mejias use the term data colonialism to emphasize the
processes by which data are appropriated and marginalized communities
are exploited through data collection.63

For an introduction to measurement theory, not specific to the social
sciences, see the books by Hand.64, 65 The comprehensive textbook by
Bandalos66 focuses on applications to the social science, including a chapter
on fairness.
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