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Deep learning

The past chapters have sketched a path towards predictive modeling:
acquire data, construct a set of features that properly represent data in
a way such that relevant conditions can be discriminated, pose a convex
optimization problem that balances fitting training data to managing model
complexity, optimize this problem with a standard solver, and then reason
about generalization via the holdout method or cross validation. In many
ways this pipeline suffices for most predictive tasks.

However, this standard practice does have its deficiencies. Feature
engineering has many moving pieces, and choices at one part of the pipeline
may influence downstream decisions in unpredictable ways. Moreover,
different software dependencies may be required to intertwine the various
parts of this chain, making the machine learning engineering more fragile.
It’s additionally possible that more concise feature representations are
possible if the pieces can all be tuned together.

Though motivated differently by different people, deep learning can
be understood as an attempt to “delayer” the abstraction boundaries in
the standard machine learning workflow. It enables holistic design of
representation and optimization. This delayering comes at the cost of
loss of convexity and some theoretical guarantees on optimization and
generalization. But, as we will now describe in this chapter, this cost is
often quite modest and, on many machine learning problems such as image
classification and machine translation, the predictive gains can be dramatic.

Deep learning has been tremendously successful in solving industrial
machine learning problems at many tech companies. It is also the top
performing approach in most academic prediction tasks in computer vision,
speech, and other domains.

The success of deep learning is not just a purely technical matter. Once
the industry had embraced deep learning, an unprecedented amount of
resources has gone into building and refining high quality software for
practicing deep learning. The open source deep learning ecosystem is vast
and evolving quickly. For almost any task, there is already some code
available to start from. Companies are actively competing over open source
frameworks with convenient high-level syntax and extensive documentation.
An honest answer for why practitioners prefer deep learning at this point
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over other methods is because it simply seems to work better on many
problems and there is a lot of quality code available.

We now retrace our path through representation, optimization, and
generalization, highlighting what is different for deep learning and what
remains the same.

Deep models and feature representation

We discussed in the chapter on representation that template matching,
pooling, and nonlinear lifting can all be achieved by affine transformations
followed by pointwise nonlinearities. These mappings can be chained
together to give a series of new feature vectors:

x`+1 = φ(A`x` + b`) .

Here, ` indexes the layer of a model. We can chain several layers together to
yield a final representation xL.

As a canonical example, suppose x1 is a pixel representation of an
image. Let’s say this representation has size d1 × d1 × c1, with d1 counting
spatial dimensions and c1 counting the number of color channels. We could
apply c2 template matching convolutions to this image, resulting in a second
layer of size d1 × d1 × c2. Since we expect convolutions to capture local
variation, we can compress the size of this second layer, averaging every 2×
2 cell to produce x2 of size d2× d2× c2, with d2 < d1 and c2 > c1. Repeating
this procedure several times will yield a representation xL−1 which has few
spatial dimensions (dL−1 is small) but many channel dimensions (cL−1 is
large). We can then map this penultimate layer through some universal
approximator like a neural network.

A variety of machine learning pipelines can be thought of in this way.
The first layer might correspond to edge detectors like in SIFT1 or HOG.2 The
second layer may look for parts relevant to detection like in a deformable
parts model.3 The insight in deep learning is that we can declare the
parameters of each layer A` and b` to be optimization variables. This way, we
do not have to worry about the particular edge or color detectors to use for
our problem, but can instead let the collected data dictate the best settings
of these features.

This abstraction of “features” as “structured linear maps with tunable
parameters” allows for a set of basic building blocks that can be used across
a variety of domains.

1. Fully connected layers. Fully connected layers are simply unstruc-
tured neural networks that we discussed in the representation chapter.
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For a fixed nonlinear function σ, a fully connected layer maps a vec-
tor x to a vector z with coordinates

zi = σ

(
∑

j
Aijxj + bi

)
.

While it is popular to chain fully connected layers together to get
deep neural networks, there is little established advantage over just
using a single layer. Daniely et al. have backed up this empirical
observation, showing theoretically that no new approximation power
is gained by concatenating fully connected layers.4 Moreover, as we
will discuss below, concatenating many layers together often slows
down optimization. As with most things in deep learning, there’s
nothing saying you can’t chain fully connected layers, but we argue
that most of the gains in deep learning come from the structured
transforms, including the ones we highlight here.

2. Convolutions. Convolutions are the most important building block in
all of deep learning. We have already discussed the use of convolutions
as template matchers that promote spatial invariances. Suppose the
input is d0× d0× c0, with the first two components indexing space and
the last indexing channels. The parameter A has size q0× q0× c0× c1,
where q0 is usually small (greater than 2 and less than 10. b typically
has size c1. The number of parameters used to define a convolutional
layer is dramatically smaller than what would be used in a fully
connected layer. The structured linear map of a convolution can be
written as

za,b,c = σ

(
∑
i,j,k

Ai,j,k,cxa−i,b−j,k + bc

)
.

3. Recurrent structures. Recurrent structures let us capture repeatable
stationary patters in time or space. Suppose we expect stationarity
in time. In this case, we expect each layer to represent a state of
the system, and the next time step should be a static function of the
previous:

xt+1 = f (xt)

When we write f as a neural network, this is called a recurrent neural
network. Recurrent neural networks share weights insofar as the f does
not change from one time step to the next.

4. Attention mechanisms. Attention mechanisms have proven powerful
tools in natural language processing for collections of vectors with
dependencies that are not necessarily sequential. Suppose our layer
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is a list of m vectors of dimension d. That is, x has shape d×m. An
attention layer will have two matrices U and V, one to operate on the
feature dimensions and one to operate on the sequential dimensions.
The transformation takes form

za,b = σ

(
∑
i,j

Ua,ixijVb,j

)
.

Just as was the case with convolutions, this structured map can have
fewer dimensions than a fully connected layer, and can also respect a
separation of the feature dimensions from the sequential dimensions
in the data matrix x.

Optimization of deep nets

Once we have settled on a feature representation, typically called model
architecture in this context, we now need to solve empirical risk minimization.
Let’s group all of the parameters of the layers into a single large array of
weights, w. We denote the map from x to prediction with weights w
as f (x; w). At an abstract level, empirical risk minimization amounts to
minimizing

RS[w] =
1
n

n

∑
i=1

loss( f (xi; w), yi) .

This is a nonconvex optimization problem, but we can still run gradient
methods to try to find minimizers. Our main concerns from an optimization
perspective are whether we run into local optima and how can we compute
gradient steps efficiently.

We will address gradient computation through a discussion of automatic
differentiation. With regards to global optimization, there are unfortunately
computational complexity results proving efficient optimization of arbitrary
neural networks is intractable. Even neural nets with a single neuron can
have exponentially many local minimizers,5 and finding the minimum
of a simple two-layer neural network is NP-hard.6, 7 We cannot expect a
perfectly clean mathematical theory guiding our design and implementation
of neural net optimization algorithms.

However, these theoretical results are about the worst case. In practice,
optimization of neural nets is often easy. If the loss is bounded below by
zero, any model with zero loss is a global minimizer. As we discussed in
the generalization chapter, one can quickly find a global optimum of a state-
of-the-art neural net by cloning a GitHub repo and turning off the various
regularization schemes. In this section, we aim to provide some insights
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about the disconnect between computational complexity in the worst case
and the results achieved in practice. We provide some partial insights as to
why neural net optimization is doable by studying the convergence of the
predictions and how this convergence can be aided by overparameterization.

Convergence of predictions in nonlinear models

Consider the special case where we aim to minimize the square-loss. Let ŷt
denote the vector of predictions

(
f (xi; wt)

)n
i=1 ∈ Rn. Gradient descent

follows the iterations

wt+1 = wt − αDw f (x; wt)(ŷt − y)

where Dw f (x; wt) denotes the d× n Jacobian matrix of the predictions ŷt.
Reasoning about convergence of the weights is difficult, but we showed in
the optimization chapter that we could reason about convergence of the
predictions:

ŷt+1 − y = (I − αDw f (x; wt)
TDw f (x; wt))(ŷt − y) + αεt .

Here,
εt =

α

2
Λ‖ŷt − y‖2

and Λ bounds the curvature of the f . If εt is sufficiently small the predictions
will converge to the training labels.

Hence, under some assumptions, nonconvexity does not stand in the
way of convergence to an empirical risk minimizer. Moreover, control of the
Jacobians Dw f can accelerate convergence. We can derive some reasonable
ground rules on how to keep Dw f well conditioned by unpacking how we
compute gradients of compositions of functions.

Automatic differentiation

For linear models it’s not hard to calculate the gradient with respect to the
model parameters analytically and to implement the analytical expression
efficiently. The situation changes once we stack many operations on top
of each other. Even though in principle we can calculate gradients using
the chain rule, this gets tedious and error-prone very quickly. Moreover,
the straightforward way of implementing the chain rule is computationally
inefficient. What’s worse is that any change to the model architecture would
require us to redo our calculation and update its implementation.

Fortunately, the field of automatic differentiation has the tools to avoid
all of these problems. At a high-level, automatic differentiation provides
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efficient algorithms to compute gradients of any function that we can write
as a composition of differentiable building blocks. Though automatic differ-
entiation has existed since the 1960s, the success of deep learning has led
to numerous free, well-engineered, and efficient automatic differentiation
packages. Moreover, the dynamic programming algorithm behind these
methods is quite instructive as it gives us some insights into how to best
engineer model architectures with desirable gradients.

Automatic differentiation serves two useful purposes in deep learning.
First, it lowers the barrier to entry, allowing practitioners to think more about
modeling than about the particulars of calculus and numerical optimization.
Second, a standard automatic differentiation algorithm helps us write down
parseable formulas for the gradients of our objective function so we can
reason about what structures encourage faster optimization.

To define this dynamic programming algorithm, called backpropagation,
it’s helpful to move up a level of abstraction before making the matter more
concrete again. After all, the idea is completely general and not specific
to deep models. Specifically, we consider an abstract computation that
proceeds in L steps starting from an input z(0) and produces an output z(L)

with L− 1 intermediate steps z(1), . . . , z(L−1):

input z(0)

z(1) = f1(z(0))
...

z(L−1) = fL−1(z(L−2))

output z(L) = fL(z(L−1))

We assume that each layer z(i) is a real-valued vector and that each function fi
maps a real-valued vector of some dimension to another dimension. Recall
that for a function f : Rn → Rm, the Jacobian matrix D(w) is the m × n
matrix of first-order partial derivatives evaluated at the point w. When m =
1 the Jacobian matrix coincides with the transpose of the gradient.

In the context of backpropagation, it makes sense to be a bit more explicit
in our notation. Specifically, we will denote the Jacobian of a function f
with respect to a variable x evaluated at point w by Dx f (w) .

The backpropagation algorithm is a computationally efficient way of
computing the partial derivatives of the output z(L) with respect to the in-
put z(0) evaluated at a given parameter vector w, that is, the Jacobian Dz(0)z

(L)(w).
Along the way, it computes the Jacobians for any of the intermediate layers
as well.
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Backpropagation
• Input: parameters w
• Forward pass:

– Set v0 = w
– For i = 1, . . . , L:

* Store vi−1 and compute vi = fi(vi−1)

• Backward pass:

– Set ΛL = Dz(L)z(L)(vL) = I.
– For i = L, . . . , 1:

* Set Λi−1 = ΛiDz(i−1)z(i)(vi−1).

• Output Λ0.

First note that backpropagation runs in time O(LC) where C is the com-
putational cost of performing an operation at one step. On the forward
pass, this cost correspond to function evaluation. On the backward pass, it
requires computing the partial derivatives of z(i) with respect to z(i−1). The
computational cost depends on what the operation is. Typically, the i-th step
of the backward pass has the same computational cost as the correspond-
ing i-th step of the forward pass up to constant factors. What is important
is that computing these partial derivatives is an entirely local operation. It
only requires the partial derivatives of a function with respect to its input
evaluated at the value vi−1 that we computed in the forward pass. This
observation is key to all fast implementations of backpropagation. Each
operation in our computation only has to implement function evaluation, its
first-order derivatives, and store an array of values computed in the forward
pass. There is nothing else we need to know about the computation that
comes before or after.

The main correctness property of the algorithm is that the final output Λ0
equals the partial derivative of the output layer with respect to the input
layer evaluated at the input w.

Proposition 1. Correctness of backpropagation.

Λ0 = Dz(0)z
(L)(w)

The claim directly follows by induction from the following lemma, which
states that if we have the correct partial derivatives at step i of the backward
pass, then we also get them at step i− 1.

Lemma 1. Backpropagation invariant.

Λi = Dz(i)z
(L)(vi) =⇒ Λi−1 = Dz(i−1)z(L)(vi−1)
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Proof. Assume that the premise holds. Then, we have

Λi−1 = ΛiDz(i−1)z(i)(vi−1)

= Dz(i)z
(L)(vi)Dz(i−1)z(i)(vi−1)

= Dz(i−1)z(L)(vi−1)

The last identity is the multivariate chain rule.

To aid the intuition, it can be helpful to write the multivariate chain rule
informally in the familiar Leibniz notation:

∂z(L)

∂z(i)
∂z(i)

∂z(i−1)
=

∂z(L)

∂z(i−1)

A worked out example

The backpropagation algorithm works in great generality. It produces
partial derivatives for any variable appearing in any layer z(i). So, if we
want partial derivatives with respect to some parameters, we only need to
make sure they appear on one of the layers. This abstraction is so general
that we can easily express all sorts of deep architectures and the associated
objective functions with it.

But let’s make that more concrete and get a feeling for the mechanics
of backpropagation in the two cases that are most common: a non-linear
transformation applied coordinate-wise, and a linear transformation.

Suppose at some point in our computation we apply the rectified linear
unit ReLU = max{u, 0} coordinate-wise to the vector u. ReLU units remain
one of the most common non-linearities in deep neural networks. To
implement the backward pass, all we need to be able to do is to compute the
partial derivatives of ReLU(u) with respect to u. It’s clear that when ui > 0,
the derivative is 1. When ui < 0, the derivative is 0. The derivative is not
defined at ui = 0, but we choose to ignore this issue by setting it to be 0.
The resulting Jacobian matrix is a diagonal matrix D(u) which has a one
in all coordinates corresponding to positive coordinates of the input vector,
and is zero elsewhere.

• Forward pass:

– Input: u
– Store u and compute the value v = ReLU(u).

• Backward pass:
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– Input: Jacobian matrix Λ
– Output ΛD(u)

If we were to swap out the rectified linear unit for some other coordinate-
wise nonlinearity, we’d still get a diagonal matrix. What changes are the
coefficients along the diagonal.

Now, let’s consider an affine transformation of the input v = Au + b.
The Jacobian of an affine transformation is simply the matrix A itself. Hence,
the backward pass is simple:

• Backward pass:

– Input: Jacobian matrix Λ
– Output: ΛA

We can now easily chain these together. Suppose we have a typical
ReLU network that strings together L linear transformations with ReLU
operations in between:

f (x) = ALReLU(AL−1ReLU(· · ·ReLU(A1x)))

The Jacobian of this chained operation with respect to the input x is given
by a chain of linear operations:

ALDL−1AL−1 · · ·D1A1

Each matrix Di is a diagonal matrix that zeroes out some coordinates and
leaves others untouched. Now, in a deep model architecture the weights of
the linear transformation are typically trainable. That means we really want
to be able to compute the gradients with respect to, say, the coefficients of
the matrix Ai.

Fortunately, the same reasoning applies. All we need to do is to make Ai
part of the input to the matrix-vector multiplication node and backpropaga-
tion will automatically produce derivatives for it. To illustrate this point,
suppose we want to compute the partial derivatives with respect to, say,
the j-th column of Ai. Let u = ReLU(Ai−1 · · · (A1x)) be the vector that
we multiply Ai with. We know from the argument above that the Jaco-
bian of the output with respect to the vector Aiu is given by the linear
map B = ALDL−1AL−1 · · ·Di. To get the Jacobian with respect to the j-th
column of Ai we therefore only need to find the partial derivative of Aiu
with respect to the j-th column of Ai. We can verify by taking derivatives
that this equals uj I. Hence, the partial derivatives of f (x) with respect to
the j-th column of Ai are given by Buj.

Let’s add in the final ingredient, a loss function. Suppose AL maps into
one dimension and consider the squared loss 1

2( f (x)− y)2. The only thing

9



this loss function does is to scale our Jacobian by a factor f (x)− y. In other
words, the partial derivatives of the loss with respect to the j-th columns of
the weight matrix Ai is given by ( f (x)− y)Buj.

As usual with derivatives, we can interpret this quantity as the sensitivity
of our loss to changes in the model parameters. This interpretation will be
helpful next.

Vanishing gradients

The previous discussion revealed that the gradients of deep models are
produced by chains of linear operations. Generally speaking, chains of
linear operations tend to either blow up the input exponentially with depth,
or shrink it, depending on the singular values of the matrices. It is helpful
to keep in mind the simple case of powering the same symmetric real
matrix A a number of times. For almost all vectors u, the norm ‖ALu‖
grows as Θ

(
λ1(A)L) asymptotically with L. Hence it vanishes exponentially

quickly if λ1(A) < 1 and it grows exponentially quickly if λ1(A) > 1.
When it comes to gradients, these two cases correspond to the vanishing

gradients problem and the exploding gradients problem, respectively. Both
result in a failure case for gradient-based optimization methods. Huge
gradients are numerically unstable. Tiny gradients preclude progress and
stall any gradient-based optimization method. We can always avoid one of
the problems by scaling the weights, but avoiding both can be delicate.

Vanishing and exploding gradients are not the fault of an optimization
method. They are a property of the model architecture. As a result, to
avoid them we need to engineer our model architectures carefully. Many
architecture innovations in deep learning aim to address this problem. We
will discuss two of them. The first are residual connections, and the second
are layer normalizations.

Residual connections

The basic idea behind residual networks is to make each layer close to the
identity map. Traditional building blocks of neural networks typically
looked like two affine transformations A, B, with a nonlinearity in the
middle:

f (x) = B(ReLU(A(x)))

Residual networks modify these building blocks by adding the input x back
to the output:

h(x) = x + B(ReLU(A(x)))
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In cases where the output of C differs in its dimension from x, practitioners
use different padding or truncation schemes to match dimensions. Thinking
about the computation graph, we create a connection from the input to the
output of the building block that skips the transformation. Such connections
are therefore called skip connections.

This seemingly innocuous change was hugely successful. Residual
networks took the computer vision community by storm, after they achieved
leading performance in numerous benchmarks upon their release in 2015.
These networks seemed to avoid the vanishing gradients better than prior
architectures and allowed for model depths not seen before.

Let’s begin to get some intuition for why residual layers are reasonable
by thinking about what they do to the gradient computation. Let J = Dx f (x)
be the Jacobian of the function f with respect to its input. We can verify
that the Jacobian of the residual block looks like

J′ = Dxh(x) = Dx I(x) +Dx f (x) = I + J .

In other words, the Jacobian of a residual block is the Jacobian of a regular
block plus the identity. This means that if we scale down the weights of
the regular block, the Jacobian J′ approaches the identity in the sense that
all its singular values are between 1− ε and 1 + ε. We can think of such a
transformation as locally well-conditioned. It neither blows up nor shrinks
down the gradient much. Since the full Jacobian of a deep residual network
will be a product of such matrices, our reasoning suggests that suitably
scaled residual networks have well-conditioned Jacobians, and hence, as we
discussed above, predictions should converge rapidly.

Our analyses of non-convex ERM thus far have described scenarios
where we could prove the predictions converge to the training labels. Resid-
ual networks are interesting as we can construct cases where the weights
converge to a unique optimal solution. This perhaps gives even further
motivation for their use.

Let’s consider the simple case of where the activation function is the
identity. The resulting residual blocks are linear transformations of the
form I + A. We can chain them as A = (I + AL) · · · (I + A1). Such networks
are no longer universal approximators, but they are non-convex parame-
terizations of linear functions. We can turn this parameterization into an
optimization problem by solving a least squares regression problem in this
residual parameterization:

minimizeA1,...,AL E[1
2‖A(X)−Y‖2]

Assume X is a random vector with covariance matrix I and Y = B(X) + G
where B is a linear transformation and G is centered random Gaussian
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noise. A standard trick shows that up to an additive constant the objective
function is equal to

f (A1, . . . , AL) =
1
2
‖A− B‖2

F .

What can we say about the gradients of this function? We can verify that
the Jacobian of f with respect to Ai equals

DAi f (A1, . . . , AL) = PTEQT

where P = (I + AL) · · · (I + Ai+1) and Q = (I + Ai−1) · · · (I + A1).
Note that when P and Q are non-singular, then the gradient can only

vanish at E = 0. But that means we’re at the global minimum of the objective
function f . We can ensure that P and Q are non-singular by making the
largest singular value of each Ai to be less than 1/L.

The property we find here is that the gradient vanishes only at the
optimum. This is implied by convexity, but it does not imply convexity.
Indeed, the objective function above is not convex. However, this weaker
property is enough to ensure that gradient-based methods do not get stuck
except at the optimum. In particular, the objective has no saddle points. This
desirable property does not hold for the standard parameterization A =
AL · · · A1 and so it speaks to the benefit of the residual parameterization.

Normalization

Consider a feature vector x. We can partition this vector into subsets so that

x =
[
x1 · · · xP

]
,

and normalize each subset to yield a vector with partitions

x′i = 1/si(xi − µi)

where µi is the mean of the components of xi and si is the standard deviation.
Such normalization schemes have proven powerful for accelerating the

convergence of stochastic gradient descent. In particular, it is clear why
such an operation can improve the conditioning of the Jacobian. Consider
the simple linear case where ŷ = Xw. Then D(w) = X. If each row of X
has a large mean, i.e., X ≈ X0 + c11T, then, X may be ill conditioned, as
the rank one term will dominate first singular value, and the remaining
singular values may be small. Removing the mean improves the condition
number. Rescaling by the variance may improve the condition number, but
also has the benefit of avoiding numerical scaling issues, forcing each layer
in a neural network to be on the same scale.

12



Such whole vector operations are expensive. Normalization in deep
learning chooses parts of the vector to normalize that can be computed
quickly. Batch Normalization normalizes along the data-dimension in
batches of data used to as stochastic gradient minibatches.8 Group Nor-
malization generalizes this notion to arbitrary partitioning of the data,
encompassing a variety of normalization proposals.9 The best normaliza-
tion scheme for a particular task is problem dependent, but there is a great
deal of flexibility in how one partitions features for normalization.

Generalization in deep learning

While our understanding of optimization of deep neural networks has made
significant progress, our understanding of generalization is considerably
less settled. In the previous chapter, we highlighted four paths towards
generalization: stability, capacity, margin, optimization. It’s plausible deep
neural networks have elements of all four of these core components. The
evidence is not as cut and dry as it is for linear models, but some mathe-
matical progress has been made to understand how deep learning leverages
classic foundations of generalization. In this section we review the partial
evidence gathered so far.

In the next chapter we will extend this discussion by taking a closer
look at the role that data and community practices play in the study of
generalization for deep learning.

Algorithmic stability of deep neural networks

We discussed how stochastic gradient descent trained on convex models
was algorithmically stable. The results we saw in Chapter 6 extend to some
to the non-convex case. However, results that go through uniform stability
ultimately cannot explain the generalization performance of training large
deep models. The reason is that uniform stability does not depend on the
data generating distribution. In fact, uniform stability is invariant under
changes to the labeling of the data. But we saw in Chapter 6 that we can
make the generalization gap whatever we want by randomizing the labels
in the training set.

Nevertheless, it’s possible that a weaker notion of stability that is sen-
sitive to the data would work. In fact, it does appear to be the case in
experiment that stochastic gradient descent is relatively stable in concrete
instances. To measure stability empirically we can look at the Euclidean
distance between the parameters of two identical models trained on the
datasets which differ only by a single example. If these are close for many
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Figure 1: Parameter divergence on AlexNet trained on ImageNet. The two
models differ only in a single example.

independent runs, then the algorithm appears to be stable. Note that
parameter distance is a stronger notion than stability of the loss.

The plot below displays the parameter distance for the venerable AlexNet
model trained on the ImageNet benchmark. We observe that the parameter
distance grows sub-linearly even though our theoretical analysis is unable
to prove this to be true.

Capacity of deep neural networks

Many researchers have attempted to compute notions like VC-dimension or
Rademacher complexity of neural networks. The earliest work by Baum and
Haussler bounded the VC-dimension of small neural networks and showed
that as long these networks could be optimized well in the underparameterized
regime, then the neural networks would generalize.10 Later, seminal work
by Bartlett showed that the size of the weights was more important than the
number of weights in terms of understanding generalization capabilities of
neural networks.11 These bounds were later sharpened using Rademacher
complexity arguments.12

Margin bounds for deep neural networks

The margin theory for linear models conceptually extends to neural net-
works. The definition of margin is unchanged. It simply quantifies how
close the network is to making an incorrect prediction. What changes is that
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for multi-layer neural networks the choice of a suitable norm is substantially
more delicate.

To see why, a little bit of notation is necessary. We consider multi-layer
neural networks specified by a composition of L layers. Each layer is a linear
transformation of the input, followed by a coordinate-wise non-linear map:

Input x → Ax → σ(Ax)

The linear transformation has trainable parameters, while the non-linear
map does not. For notational simplicity, we assume we have the same
non-linearity σ at each layer scaled so that the map is 1-Lipschitz. For
example, the popular coordinate-wise ReLU max{x, 0} operation satisfies
this assumption.

Given L weight matrices A = (A1, . . . , AL) let fA : Rd → Rk denote the
function computed by the corresponding network:

fA(x) := ALσ(AL−1 · · · σ(A1x) · · · )) .

The network output FA(x) ∈ Rk is converted to a class label in {1, . . . , k}
by taking the arg max over components, with an arbitrary rule for breaking
ties. We assume d ≥ k only for notational convenience.

Our goal now is to define a complexity measure of the neural network
that will allow us to prove a margin bound. Recall that margins are mean-
ingless without a suitable normalization of the network. Convince yourself
that the Euclidean norm can no longer work for multi-layer ReLU networks.
After all we can scale the linear transformation on one later by a constant c
and a subsequent layer by a constant 1/c. Since the ReLU non-linearity
is piecewise linear, this transformation changes the Euclidean norm of
the weights arbitrarily without changing the function that the network
computes.

There’s much ongoing work about what good norms are for deep neural
networks. We will introduce one possible choice here.

Let ‖ · ‖op denote the spectral norm. Also, let ‖A‖2,1 = ‖(‖A:,1‖2, . . . , ‖A:,m‖2)‖1
the matrix norm where we apply the `2-norm to each column of the matrix
and then take the `1-norm of the resulting vector.

The spectral complexity RA of a network FA with weights A is the defined
as

RA :=

(
L

∏
i=1
‖Ai‖op

) L

∑
i=1

(
‖A>i −M>i ‖2,1

‖Ai‖op

)2/3
3/2

. (1)

Here, the matrices M1, . . . , ML are free parameters that we can choose to
minimize the bound. Random matrices tend to be good choices.
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The following theorem provides a generalization bound for neural net-
works with fixed nonlinearities and weight matrices A of bounded spectral
complexity RA.

Theorem 1. Assume data (x1, y1), . . . , (xn, yn) are drawn i.i.d. from any proba-
bility distribution over Rd × {1, . . . , k}. With probability at least 1− δ, for every
margin θ > 0 and every network fA : Rd → Rk,

R[ fA]− Rθ
S[ fA] ≤ Õ

RA
√

∑i ‖xi‖2
2 ln(d)

θn
+

√
ln(1/δ)

n

 ,

where Rθ
S[ f ] ≤ n−1 ∑i 1

[
f (xi)yi ≤ θ + maxj 6=yi f (xi)j

]
.

The proof of the theorem involves Rademacher complexity and so-
called data-dependent covering arguments. Although it can be shown
empirically that the above complexity measure RA is somewhat correlated
with generalization performance in some cases, there is no reason to believe
that it is the “right” complexity measure. The bound has other undesirable
properties, such as an exponential dependence on the depth of the network
as well as an implicit dependence on the size of the network.

Implicit regularization by stochastic gradient descent in deep learning

There have been recent attempts to understand the dynamics of stochastic
gradient descent on deep neural networks. Using an argument similar to the
one we used to reason about convergence of the predictions of deep neural
networks, Jacot et al. used a differential equations argument to understand
to which function stochastic gradient converged.13

Here we can sketch the rough details of their argument. Recall our
expression for the dynamics of the predictions in gradient descent:

ŷt+1 − y = (I − αD(wt)
TD(wt))(ŷt − y) + αεt .

If α is very small, we can further approximate this as

ŷt+1 − y = (I − αD(w0)
TD(w0))(ŷt − y) + αε′t .

Now ε′t captures both the curvature of the function representation and
the deviation of the weights from their initial condition. Note that in this
case, D(w0) is a constant for all time. The matrix D(w0)

TD(w0) is n× n,
positive semidefinite, and only depends on the data and the initial setting
of the weights. When the weights are random, this is a kernel induced by
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random features. The expected value of this random feature embedding is
called a Neural Tangent Kernel.

k(x1, x2) = E
w0

[〈∇w f (x1; w0),∇w f (x2; w0)〉] .

Using a limit where α tends to zero, Jacot et. al argue that a deep
neural net will find a minimum norm solution in the RKHS of the Neural
Tangent Kernel. This argument was made non-asymptotic by Heckel and
Soltanolkotabi.14 In the generalization chapter, we showed that the mini-
mum norm solution of in RKHS generalized with a rate of O(1/n). Hence,
this argument suggests a similar rate of generalization may occur in deep
learning, provided the norm of the minimum norm solution does not grow
to rapidly with the number of data points and that the true function opti-
mized by stochastic gradient descent isn’t too dissimilar from the Neural
Tangent Kernel limit. We note that this argument is qualitative, and there
remains work to be done to make these arguments fully rigorous.

Perhaps the most glaring issue with NTK arguments is that they do not
reflect practice. Models trained with Neural Tangent Kernels do not match
the predictive performance of the corresponding neural network. Moreover,
simpler kernels inspired by these networks can out perform Neural Tangent
Kernels.15 There is a significant gap between the theory and practice here,
but the research is new and remains active and this gap may be narrowed
in the coming years.

Chapter notes

Deep learning is at this point a vast field with tens of thousands of papers.
We don’t attempt to survey or systematize this vast literature. It’s worth
emphasizing though the importance of learning about the area by experi-
menting with available code on publicly available datasets. The next chapter
will cover datasets and benchmarks in detail.

Apart from the development of benchmark datasets, one of the most
important advances in deep learning over the last decade has been the
development of high quality, open source software. This software makes
it easier than ever to prototype deep neural network models. One such
open source project is PyTorch (pytorch.org), which we recommend for
the researcher interested in experimenting with deep neural networks.
The best way to begin to understand some of the nuances of architecture
selection is to find pre-existing code and understand how it is composed.
We recommend the tutorial by David Page which demonstrates how the
many different pieces fit together in a deep learning pipeline.16

17

pytorch.org


For a more in depth understanding of automatic differentiation, we
recommend Griewank and Walther’s Evaluating Derivatives.17 This text
works through a variety of unexpected scenarios—such as implicitly defined
functions—where gradients can be computed algorithmically. Jax is open
source automatic differentiation package that incorporates many of these
techniques, and is useful for any application that could be assisted by
automatic differentiation.18

The AlexNet architecture was introduced by Krizhevsky, Sutskever, and
Hinton in 2012.19 Achieving the best known performance on the ImageNet
benchmark at the time, it was pivotal in kicking of the most recent wave of
research on deep learning.

Residual networks were introduced by He, Zhang, Ren, and Sun in
2016.20 The observation about linear residual networks is due to Hardt and
Ma.21

Theorem 1 is due to Bartlett, Foster, and Telgarsky.22 The dimension
dependence of the theorem can be removed.23
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