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Epilogue

Unknown outcomes often follow patterns found in past observations.
But when do they not? As powerful as statistical patterns are, they are
not without limitations. Every discipline built on the empirical law also
experiences its failure.

In fact, Halley’s contemporaries already bore witness. Seeking to in-
crease revenue still despite the sale of life annuities, King William III desired
to tax his citizens in proportion to their wealth. An income tax appeared
too controversial and unpopular with his constituents so that the king’s
advisors had to come up with something else. In 1696, the king introduced
a property tax based on the number of windows in a house. It stands to
reason that the wealth of a family correlated strongly with the number of
windows in their home. So, the window tax looked quite reasonable from a
statistical perspective.

Although successful on the whole and adopted by many other countries,
the window tax had a peculiar side effect. People adjusted. Increasingly,
houses would have bricked-up window spaces. In Edinburgh an entire row
of houses featured no bedroom windows at all. The correlation between the
number of windows and wealth thus deteriorated.

The problem with the window tax foretold a robust limitation of pre-
diction. Datasets display a static snapshot of a population. Predictions on
the basis of data are accurate only under an unspoken stability assumption.
Future observations must follow the same data-generating process. It’s
the “more of the same” principle that we call generalization in supervised
learning.

However, predictions often motivate consequential actions in the real
world that change the populations we observe. Chemist and technology
critic Ursula Franklin summarizes the problem aptly in her 1989 book called
The Real World of Technology:

[T]echnologies are developed and used within a particular social,
economic, and political context. They arise out of a social struc-
ture, they are grafted on to it, and they may reinforce it or destroy
it, often in ways that are neither foreseen nor foreseeable.1

Franklin continues:
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[C]ontext is not a passive medium but a dynamic counterpart.
The responses of people, individually, and collectively, and the
responses of nature are often underrated in the formulation of
plans and predictions.

Franklin understood that predictions are not made in a vacuum. They are
agents of change through the actions they prompt. Decisions are always part
of an evolving environment. It’s this dynamic environment that determines
the merit of a decision.

Predictions can fail catastrophically when the underlying population is
subject to unmodeled changes. Even benign changes to a population, some-
times called distribution shift, can sharply degrade the utility of statistical
models. Numerous results in machine learning are testament to the fragility
of even the best performing models under changing environments.

Other disciplines have run into the same problem. In his influential
critique from 1976, economist Robert Lucas argued that patterns found
in historical macroeconomic data are an inadequate basis of policy mak-
ing, since any policy would inevitably perturb those statistical patterns.
Subsequently, economists sought to ground macroeconomics in the microe-
conomic principles of utility theory and rational behavior of the individual,
an intellectual program known as microfoundations dominant to this day.
The hope was that microfoundations would furnish a more reliable basis of
economic policy making.

It is tempting to see dynamic modeling as a possible remedy to the prob-
lem Lucas describes. However, Lucas critique was about dynamic models.
Macroeconomists at the time were well aware of dynamic programming
and optimal control. A survey of control-theoretic tools in macroeconomics
from 1976 starts with the lines:

In the past decade, a number of engineers and economists have
asked the question: “If modern control theory can improve the
guidance of airplanes and spacecraft, can it also help in the
control of inflation and unemployment?”2

If anything, the 60s and 70s had been the heyday of dynamic modeling.
Entire disciplines, such as system dynamics, attempted to create dynamic
models of complex social systems, such as, corporations, cities, and even the
western industrial world. Proponents of system dynamics used simulations
of these models to motivate consequential policy propositions. Reflecting
on these times, economist Schumacher wrote in 1973:

There have never been so many futurologists, planners, forecast-
ers, and model-builders as there are today, and the most intrigu-
ing product of technological progress, the computer, seems to
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offer untold new possibilities. [. . . ] Are not such machines just
what we have been waiting for?3

It was not the lack of dynamic models that Lucas criticized, it was the fact
that policy may invalidate the empirical basis of the model. Lucas’ critique
puts pressure how we come to know a model. Taking action can invalidate
not just a particular model but also disrupt the social and empirical facts
from which we derived the model.

If economics reckoned with this problem decades ago, it’s worth taking
a look at how the field has developed since. Oversimplifying greatly, the
ambitious macroeconomic theorizing of the 20th century gave way to a
greater focus on microeconomics and empirical work. Field experiments
and causal inference, in particular, are now at the forefront of economic
research.

Fundamental limitations of dynamic models not only surfaced in eco-
nomics, they were also called out by control theorists themselves. In a
widely heralded plenary lecture at the 1989 IEEE Conference on Decision
and Control, Gunter Stein argued against “the increasing worship of abstract
mathematical results in control at the expense of more specific examinations
of their practical, physical consequences.” Stein warned that mathematical
and algorithmic formulations often elided fundamental physical limitations
and trade-offs that could lead to catastrophic consequences.

Unstable systems illustrate this point. A stable system has the property
that no matter how you disturb the system, it will always come back to
rest. If you heat water on the stove, it will always eventually return to room
temperature. An unstable system on the other hand can evolve away from
a natural equilibrium exponentially quickly, like a contagious pathogen.
From a computational perspective, however, there is no more difficulty in
mathematically solving a sequential decision making problem with unstable
dynamics than in solving one with stable dynamics. We can write down
and solve decision making problems in both cases, and they appear to
be of equal computational difficulty. But in reality, unstable systems are
dangerous in a way that stable systems are not. Small errors get rapidly
amplified, possibly resulting in catastrophe. Likely the most famous such
catastrophe is the Chernobyl disaster, which Stein described as the failure
to “respect the unstable” inherent in the reactor design.

As the artificial intelligence and machine learning communities increas-
ingly embrace dynamic modeling, they will inevitably relearn these cau-
tionary lessons of days past.
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Beyond pattern classification?

Part of the recent enthusiasm for causality and reinforcement learning
stems from the hope that these formalisms might address some of the
inherent issues with the static pattern classification paradigm. Indeed, they
might. But neither causality nor reinforcement learning are a panacea.
Without hard earned substantive domain knowledge to guide modeling
and mathematical assumptions, there is little that sets these formalisms
apart from pattern classification. The reliance on subject matter knowledge
stands in contrast with the nature of recent advances in machine learning
that largely did without—and that was the point.

Looking ahead, the space of machine learning beyond pattern classifica-
tion is full of uncharted territory. In fact, even the basic premise that there
is such a space is not entirely settled.

Some argue that as a practical matter machine learning will proceed
in its current form. Those who think so would see progress coming from
faster hardware, larger datasets, better benchmarks, and increasingly clever
ways of reducing new problems to pattern classification. This position
isn’t unreasonable in light of historical or recent developments. Pattern
classification has reemerged several times over the past 70 years, and each
time it has shown increasingly impressive capabilities.

We can try to imagine what replaces pattern recognition when it falls
out of favor. And perhaps we can find some inspiration by returning one
last time to Edmund Halley. Halley is more well-known for astronomy than
for his life table. Much of astronomy before the 17th century was more
similar to pattern recognition than fundamental physics. Halley himself
had used curve-fitting methods to predict the paths of comets, but found
notable errors in his predictions for the comet Kirch. He discussed his
calculations with Isaac Newton, who solved the problem by establishing
a fundamental description of the laws of gravity and motion. Halley, so
excited by these results, paid to publish Newton’s magnum opus Philosophiæ
Naturalis Principia Mathematica.

Even if it may not be physics once again or on its own, similarly dis-
ruptive conceptual departures from pattern recognition may be viable and
necessary for machine learning to become a safe and reliable technology in
our lives.

We hope that our story about machine learning was helpful to those
who aspire to write its next chapters.

4



Bibliography

1 Ursula Franklin. The Real World of Technology. House of Anansi, 1999.

2 David Kendrick. Applications of control theory to macroeconomics. In
Annals of Economic and Social Measurement, volume 5, pages 171–190. NBER,
1976.

3 Ernst Friedrich Schumacher. Small Is Beautiful: A Study of Economics as if
People Mattered. Random House, 2011.

5


	Beyond pattern classification?

