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Fundamentals of prediction

Prediction is the art and science of leveraging patterns found in natural
and social processes to conjecture about uncertain events. We use the word
prediction broadly to refer to statements about things we don’t know for
sure yet, including but not limited to the outcome of future events.

Machine learning is to a large extent the study of algorithmic prediction.
Before we can dive into machine learning, we should familiarize ourselves
with prediction. Starting from first principles, we will motivate the goals of
prediction before building up to a statistical theory of prediction.

We can formalize the goal of prediction problems by assuming a popu-
lation of N instances with a variety of attributes. We associate with each
instance two variables, denoted X and Y. The goal of prediction is to
conjecture a plausible value for Y after observing X alone. But when is a
prediction good? For that, we must quantify some notion of the quality of
prediction and aim to optimize that quantity.

To start, suppose that for each variable X we make a deterministic
prediction f (X) by means of some prediction function f . A natural goal is
to find a function f that makes the fewest number of incorrect predictions,
where f (X) 6= Y, across the population. We can think of this function as a
computer program that reads X as input and outputs a prediction f (X) that
we hope matches the value Y. For a fixed prediction function, f , we can
sum up all of the errors made on the population. Dividing by the size of
the population, we observe the average (or mean) error rate of the function.

Minimizing errors

Let’s understand how we can find a prediction function that makes as few
errors as possible on a given population in the case of binary prediction,
where the variable Y has only two values.

Consider a population of Abalone, a type of marine snail with colorful
shells featuring a varying number of rings. Our goal is to predict the sex,
male or female, of the Abalone from the number of rings on the shell.
We can tabulate the population of Abalone by counting for each possible
number of rings, the number of male and female instances in the population.

From this way of presenting the population, it is not hard to compute
the predictor that makes the fewest mistakes. For each value on the X-axis,
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Figure 1: Predicting the sex of Abalone sea snails

we predict “female” if the number of female instances with this X-value is
larger than the number of male instances. Otherwise, we predict “male” for
the given X-value. For example, there’s a majority of male Abalone with
seven rings on the shell. Hence, it makes sense to predict “male” when we
see seven rings on a shell. Scrutinizing the figure a bit further, we can see
that the best possible predictor is a threshold function that returns “male”
whenever the number of rings is at most 8, and “female” whenever the
number of rings is greater or equal to 9.

The number of mistakes our predictor makes is still significant. After
all, most counts are pretty close to each other. But it’s better than random
guessing. It uses whatever there is that we can say from the number of
rings about the sex of an Abalone snail, which is just not much.

What we constructed here is called the minimum error rule. It generalizes
to multiple attributes. If we had measured not only the number of rings,
but also the length of the shell, we would repeat the analogous counting
exercise over the two-dimensional space of all possible values of the two
attributes.

The minimum error rule is intuitive and simple, but computing the
rule exactly requires examining the entire population. Tracking down
every instance of a population is not only intractable. It also defeats the
purpose of prediction in almost any practical scenario. If we had a way
of enumerating the X and Y value of all instances in a population, the
prediction problem would be solved. Given an instance X we could simply
look up the corresponding value of Y from our records.

What’s missing so far is a way of doing prediction that does not require
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Figure 2: Representing Abalone population as a distribution

us to enumerate the entire population of interest.

Modeling knowledge

Fundamentally, what makes prediction without enumeration possible is
knowledge about the population. Human beings organize and represent
knowledge in different ways. In this chapter, we will explore in depth the
consequences of one particular way to represent populations, specifically,
as probability distributions.

The assumption we make is that we have knowledge of a probability
distribution p(x, y) over pairs of X and Y values. We assume that this
distribution conceptualizes the “typical instance” in a population. If we
were to select an instance uniformly at random from the population, what
relations between its attributes might we expect? We expect that a uniform
sample from our population would be the same as a sample from p(x, y).
We call such a distribution a statistical model or simply model of a population.
The word model emphasizes that the distribution isn’t the population itself.
It is, in a sense, a sketch of a population that we use to make predictions.

Let’s revisit our Abalone example in probabilistic form. Assume we
know the distribution of the number of rings of male and female Abalone,
as illustrated in the figure.

Both follow a skewed normal distribution described by three parameters
each, a location, a scale, and a skew parameter. Knowing the distribution is
to assume that we know these parameters. Although the specific numbers
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won’t matter for our example, let’s spell them out for concreteness. The
distribution for male Abalone has location 7.4, scale 4.48, and skew 3.12,
whereas the distribution for female Abalone has location 7.63, scale 4.67,
and skew 4.34. To complete the specification of the joint distribution over X
and Y, we need to determine the relative proportion of males and females.
Assume for this example that male and female Abalone are equally likely.

Representing the population this way, it makes sense to predict “male”
whenever the probability density for male Abalone is larger than that for
female Abalone. By inspecting the plot we can see that the density is
higher for male snails up until 8 rings at which point it is larger for female
instances. We can see that the predictor we derive from this representation
is the same threshold rule that we had before.

We arrived at the same result without the need to enumerate and count
all possible instances in the population. Instead, we recovered the minimum
error rule from knowing only 7 parameters, three for each conditional
distribution, and one for the balance of the two classes.

Modeling populations as probability distributions is an important step
in making prediction algorithmic. It allows us to represent populations
succinctly, and gives us the means to make predictions about instances we
haven’t encountered.

Subsequent chapters extend these fundamentals of prediction to the
case where we don’t know the exact probability distribution, but only have
a random sample drawn from the distribution. It is tempting to think
about machine learning as being all about that, namely what we do with
a sample of data drawn from a distribution. However, as we learn in this
chapter, many fundamentally important questions arise even if we have full
knowledge of the population.

Prediction from statistical models

Let’s proceed to formalize prediction assuming we have full knowledge of
a statistical model of the population. Our first goal is to formally develop
the minimum error rule in greater generality.

We begin with binary prediction where we suppose Y has two alternative
values, 0 and 1. Given some measured information X, our goal is to
conjecture whether Y equals zero or one.

Throughout we assume that X and Y are random variables drawn from
a joint probability distribution. It is convenient both mathematically and
conceptually to specify the joint distribution as follows. We assume that Y
has a priori (or prior) probabilities:

p0 = P[Y = 0] , p1 = P[Y = 1]
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That is, we assume we know the proportion of instances with Y = 1
and Y = 0 in the population. We’ll always model available information
as being a random vector X with support in Rd. Its distribution depends
on whether Y is equal to zero or one. In other words, there are two
different statistical models for the data, one for each value of Y. These
models are the conditional probability densities of X given a value y for Y,
denoted p(x | Y = y). This density function is often called a generative model
or likelihood function for each scenario.

Example: signal versus noise

For a simple example with more mathematical formalism, suppose that
when Y = 0 we observe a scalar X = ω where ω is unit-variance, zero
mean Gaussian noise ω ∼ N (0, 1). Recall that the Gaussian distribution of

mean µ and variance σ2 is given by the density 1
σ
√

2π
e−

1
2(

x−µ
σ )

2

.
Suppose when Y = 1, we would observe X = s + ω for some scalar s.

That is, the conditional densities are

p(x | Y = 0) = N (0, 1) ,
p(x | Y = 1) = N (s, 1) .

The larger the shift s is, the easier it is to predict whether Y = 0 or Y = 1.
For example, suppose s = 10 and we observed X = 11. If we had Y = 0, the
probability that the observation is greater than 10 is on the order of 10−23,
and hence we’d likely think we’re in the alternative scenario where Y = 1.
However, if s were very close to zero, distinguishing between the two
alternatives is rather challenging. We can think of a small difference s that
we’re trying to detect as a needle in a haystack.

Prediction via optimization

Our core approach to all statistical decision making will be to formulate an
appropriate optimization problem for which the decision rule is the optimal
solution. That is, we will optimize over algorithms, searching for functions
that map data to decisions and predictions. We will define an appropriate
notion of the cost associated to each decision, and attempt to construct
decision rules that minimize the expected value of this cost. As we will see,
choosing this optimization framework has many immediate consequences.
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Figure 3: Illustration of shifted Gaussians

Predictors and labels

A predictor is a function Ŷ(x) that maps an input x to a prediction ŷ = Ŷ(x).
The prediction ŷ is also called a label for the point x. The target variable Y
can be both real valued or discrete. When Y is a discrete random variable,
each different value it can take on is called a class of the prediction problem.

To ease notation, we take the liberty to write Ŷ as a shorthand for the
random variable Ŷ(X) that we get by applying the prediction function Ŷ to
the random variable X.

The most common case we consider through the book is binary predic-
tion, where we have two classes, 0 and 1. Sometimes it’s mathematically
convenient to instead work with the numbers −1 and 1 for the two classes.

In most cases we consider, labels are scalars that are either discrete
or real-valued. Sometimes it also makes sense to consider vector-valued
predictions and target variables.

The creation and encoding of suitable labels for a prediction problem
is an important step in applying machine learning to real world problems.
We will return to it multiple times.

Loss functions and risk

The final ingredient in our formal setup is a loss function which generalizes
the notion of an error that we defined as a mismatch between prediction
and target value.

A loss function takes two inputs, ŷ and y, and returns a real num-
ber loss(ŷ, y) that we interpret as a quantified loss for predicting ŷ when
the target is y. A loss could be negative in which case we think of it as a
reward.

6



A prediction error corresponds to the loss function loss(ŷ, y) = 1{ŷ 6= y}
that indicates disagreement between its two inputs. Loss functions give us
modeling flexibility that will become crucial as we apply this formal setup
throughout this book.

An important notion is the expected loss of a predictor taken over a
population. This construct is called risk.

Definition 1. We define the risk associated with Ŷ to be

R[Ŷ] := E[loss(Ŷ(X), Y)] .

Here, the expectation is taken jointly over X and Y.

Now that we defined risk, our goal is to determine which decision rule
minimizes risk. Let’s get a sense for how we might go about this.

In order to minimize risk, theoretically speaking, we need to solve an
infinite dimensional optimization problem over binary-valued functions. That
is, for every x, we need to find a binary assignment. Fortunately, the infinite
dimension here turns out to not be a problem analytically once we make
use of the law of iterated expectation.

Lemma 1. We claim that the optimal predictor is given by

Ŷ(x) = 1

{
P[Y = 1 | X = x] ≥ loss(1, 0)− loss(0, 0)

loss(0, 1)− loss(1, 1) P[Y = 0 | X = x]
}

.

This rule corresponds to the intuitive rule we derived when thinking
about how to make predictions over the population. For a fixed value
of the data X = x, we compare the frequency of which Y = 1 occurs to
which Y = 0 occurs. If this frequency exceeds some threshold that is defined
by our loss function, then we set Ŷ(x) = 1. Otherwise, we set Ŷ(x) = 0.

Proof. To see why this rule is optimal, we make use of the law of iterated
expectation:

E[loss(Ŷ(X), Y)] = E

[
E

[
loss(Ŷ(X), Y) | X

]]
.

Here, the outer expectation is over a random draw of X and the inner
expectation samples Y conditional on X. Since there are no constraints on
the predictor Ŷ, we can minimize the expression by minimizing the inner
expectation independently for each possible setting that X can assume.

Indeed, for a fixed value x, we can expand the expected loss for each of
the two possible predictions:

E[loss(0, Y) | X = x] = loss(0, 0)P[Y = 0 | X = x] + loss(0, 1)P[Y = 1 | X = x]
E[loss(1, Y) | X = x] = loss(1, 0)P[Y = 0 | X = x] + loss(1, 1)P[Y = 1 | X = x] .
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The optimal assignment for this x is to set Ŷ(x) = 1 whenever the sec-
ond expression is smaller than the first. Writing out this inequality and
rearranging gives us the rule specified in the lemma.

Probabilities of the form P[Y = y | X = x], as they appeared in the
lemma, are called posterior probability.

We can relate them to the likelihood function via Bayes rule:

P[Y = y | X = x] =
p(x | Y = y)py

p(x)
,

where p(x) is a density function for the marginal distribution of X.
When we use posterior probabilities, we can rewrite the optimal predic-

tor as

Ŷ(x) = 1

{
p(x | Y = 1)
p(x | Y = 0)

≥ p0(loss(1, 0)− loss(0, 0))
p1(loss(0, 1)− loss(1, 1))

}
.

This rule is an example of a likelihood ratio test.

Definition 2. The likelihood ratio is the ratio of the likelihood functions:

L(x) :=
p(x | Y = 1)
p(x | Y = 0)

A likelihood ratio test (LRT) is a predictor of the form

Ŷ(x) = 1{L(x) ≥ η}

for some scalar threshold η > 0.

If we denote the optimal threshold value

η =
p0(loss(1, 0)− loss(0, 0))
p1(loss(0, 1)− loss(1, 1))

, (1)

then the predictor that minimizes the risk is the likelihood ratio test

Ŷ(x) = 1{L(x) ≥ η} .

A LRT naturally partitions the sample space in two regions:

X0 = {x ∈ X : L(x) ≤ η}
X1 = {x ∈ X : L(x) > η} .
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The sample space X then becomes the disjoint union of X0 and X1. Since
we only need to identify which set x belongs to, we can use any function h :
X → R which gives rise to the same threshold rule. As long as h(x) ≤
t whenever L(x) ≤ η and vice versa, these functions give rise to the
same partition into X0 and X1. So, for example, if g is any monotonically
increasing function, then the predictor

Ŷg(x) = 1{g(L(x)) ≥ g(η)}

is equivalent to using Ŷ(x). In particular, it’s popular to use the logarithmic
predictor

Ŷlog(x) = 1{log p(x | Y = 1)− log p(x | Y = 0) ≥ log(η)} ,

as it is often more convenient or numerically stable to work with logarithms
of likelihoods.

This discussion shows that there are an infinite number of functions which
give rise to the same binary predictor. Hence, we don’t need to know the
conditional densities exactly and can still compute the optimal predictor.
For example, suppose the true partitioning of the real line under an LRT is

X0 = {x : x ≥ 0} and X1 = {x : x < 0} .

Setting the threshold to t = 0, the functions h(x) = x or h(x) = x3 give the
same predictor, as does any odd function which is positive on the right half
line.

Example: needle in a haystack revisited

Let’s return to our needle in a haystack example with

p(X | Y = 0) = N (0, 1) ,
p(X | Y = 1) = N (s, 1) ,

and assume that the prior probability of Y = 1 is very small, say, p1 = 10−6.
Suppose that if we declare Ŷ = 0, we do not pay a cost. If we declare Ŷ = 1
but are wrong, we incur a cost of 100. But if we guess Ŷ = 1 and it is
actually true that Y = 1, we actually gain a reward of 1, 000, 000. That is
loss(0, 0) = 0, loss(0, 1) = 0, loss(1, 0) = 100, and loss(1, 1) = −1, 000, 000 .

What is the LRT for this problem? Here, it’s considerably easier to work
with logarithms:

log(η) = log
(
(1− 10−6) · 100

10−6 · 106

)
≈ 4.61
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Now,

log p(x | Y = 1)− log p(x | Y = 0) = −1
2
(x− s)2 +

1
2

x2 = sx− 1
2

s2

Hence, the optimal predictor is to declare

Ŷ = 1
{

sx > 1
2 s2 + log(η)

}
.

The optimal rule here is linear. Moreover, the rule divides the space into
two open intervals. While the entire real line lies in the union of these two
intervals, it is exceptionally unlikely to ever see an x larger than |s|+ 5.
Hence, even if our predictor were incorrect in these regions, the risk would
still be nearly optimal as these terms have almost no bearing on our expected
risk!

Maximum a posteriori and maximum likelihood

A folk theorem of statistical decision theory states that essentially all optimal
rules are equivalent to likelihood ratio tests. While this isn’t always true,
many important prediction rules end up being equivalent to LRTs. Shortly,
we’ll see an optimization problem that speaks to the power of LRTs. But
before that, we can already show that the well known maximum likelihood
and maximum a posteriori predictors are both LRTs.

The expected error of a predictor is the expected number of times we
declare Ŷ = 0 (resp. Ŷ = 1) when Ŷ = 1 (resp. Ŷ = 0) is true. Minimizing the
error is equivalent to minimizing the risk with cost loss(0, 0) = loss(1, 1) =
0, loss(1, 0) = loss(0, 1) = 1. The optimum predictor is hence a likelihood
ratio test. In particular,

Ŷ(x) = 1
{
L(x) ≥ p0

p1

}
.

Using Bayes rule, one can see that this rule is equivalent to

Ŷ(x) = arg max
y∈{0,1}

P[Y = y | X = x] .

Recall that the expression P[Y = y | X = x] is called the posterior probabil-
ity of Y = y given X = x. And this rule is hence referred to as the maximum
a posteriori (MAP) rule.

As we discussed above, the expression p(x | Y = y) is called the likelihood
of the point x given the class Y = y. A maximum likelihood rule would set

Ŷ(x) = arg max
y

p(x | Y = y) .
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This is completely equivalent to the LRT when p0 = p1 and the costs
are loss(0, 0) = loss(1, 1) = 0, loss(1, 0) = loss(0, 1) = 1. Hence, the maxi-
mum likelihood rule is equivalent to the MAP rule with a uniform prior on
the labels.

That both of these popular rules ended up reducing to LRTs is no
accident. In what follows, we will show that LRTs are almost always the
optimal solution of optimization-driven decision theory.

Types of errors and successes

Let Ŷ(x) denote any predictor mapping into {0, 1}. Binary predictions can
be right or wrong in four different ways summarized by the confusion table.

Table 1: Confusion table

Y = 0 Y = 1

Ŷ = 0 true negative false negative
Ŷ = 1 false positive true positive

Taking expected values over the populations give us four corresponding
rates that are characteristics of a predictor.

1. True Positive Rate: TPR = P[Ŷ(X) = 1 | Y = 1]. Also known as
power, sensitivity, probability of detection, or recall.

2. False Negative Rate: FNR = 1− TPR. Also known as type II error or
probability of missed detection.

3. False Positive Rate: FPR = P[Ŷ(X) = 1 | Y = 0]. Also known as size
or type I error or probability of false alarm.

4. True Negative Rate TNR = 1 − FPR, the probability of declaring
Ŷ = 0 given Y = 0. This is also known as specificity.

There are other quantities that are also of interest in statistics and
machine learning:

1. Precision: P[Y = 1 | Ŷ(X) = 1]. This is equal to (p1TPR)/(p0FPR +
p1TPR).

2. F1-score: F1 is the harmonic mean of precision and recall. We can
write this as

F1 =
2TPR

1 + TPR + p0
p1

FPR
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3. False discovery rate: False discovery rate (FDR) is equal to the ex-
pected ratio of the number of false positives to the total number of
positives.

In the case where both labels are equally likely, precision, F1, and FDR
are also only functions of FPR and TPR. However, these quantities explicitly
account for class imbalances: when there is a significant skew between p0
and p1, such measures are often preferred.

TPR and FPR are competing objectives. We’d like TPR as large as
possible and FPR as small as possible.

We can think of risk minimization as optimizing a balance between TPR
and FPR:

R[Ŷ] := E[loss(Ŷ(X), Y)] = αFPR− βTPR + γ ,

where α and β are nonnegative and γ is some constant. For all such α, β,
and γ, the risk-minimizing predictor is an LRT.

Other cost functions might try to balance TPR versus FPR in other ways.
Which pairs of (FPR, TPR) are achievable?

ROC curves

True and false positive rate lead to another fundamental notion, called the
receiver operating characteristic (ROC) curve.

The ROC curve is a property of the joint distribution (X, Y) and shows
for every possible value α = [0, 1] the best possible true positive rate that
we can hope to achieve with any predictor that has false positive rate α.
As a result the ROC curve is a curve in the FPR-TPR plane. It traces
out the maximal TPR for any given FPR. Clearly the ROC curve contains
values (0, 0) and (1, 1), which are achieved by constant predictors that either
reject or accept all inputs.

We will now show, in a celebrated result by Neyman and Pearson, that
the ROC curve is given by varying the threshold in the likelihood ratio test
from negative to positive infinity.

The Neyman-Pearson Lemma

The Neyman-Pearson Lemma, a fundamental lemma of decision theory,
will be an important tool for us to establish three important facts. First, it
will be a useful tool for understanding the geometric properties of ROC
curves. Second, it will demonstrate another important instance where an
optimal predictor is a likelihood ratio test. Third, it introduces the notion of
probabilistic predictors.
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Figure 4: Example of an ROC curve

Suppose we want to maximize true positive rate subject to an upper
bound on the false positive rate. That is, we aim to solve the optimization
problem:

maximize TPR
subject to FPR ≤ α

Let’s optimize over probabilistic predictors. A probabilistic predictor Q
returns 1 with probability Q(x) and 0 with probability 1−Q(x). With such
rules, we can rewrite our optimization problem as:

maximizeQ E[Q(X) | Y = 1]
subject to E[Q(X) | Y = 0] ≤ α

∀x : Q(x) ∈ [0, 1]

Lemma 2. Neyman-Pearson Lemma. Suppose the likelihood functions p(x|y)
are continuous. Then the optimal probabilistic predictor that maximizes TPR with
an upper bound on FPR is a deterministic likelihood ratio test.

Even in this constrained setup, allowing for more powerful probabilistic
rules, we can’t escape likelihood ratio tests. The Neyman-Pearson Lemma
has many interesting consequences in its own right that we will discuss
momentarily. But first, let’s see why the lemma is true.

The key insight is that for any LRT, we can find a loss function for which
it is optimal. We will prove the lemma by constructing such a problem, and
using the associated condition of optimality.

Proof. Let η be the threshold for an LRT such that the predictor

Qη(x) = 1{L(x) > η}

13



has FPR = α. Such an LRT exists because we assumed our likelihoods were
continuous. Let β denote the TPR of Qη.

We claim that Qη is optimal for the risk minimization problem corre-
sponding to the loss function

loss(1, 0) = ηp1
p0

, loss(0, 1) = 1, loss(1, 1) = 0, loss(0, 0) = 0 .

Indeed, recalling Equation 1, the risk minimizer for this loss function
corresponds to a likelihood ratio test with threshold value

p0(loss(1, 0)− loss(0, 0))
p1(loss(0, 1)− loss(1, 1))

=
p0loss(1, 0)
p1loss(0, 1)

= η .

Moreover, under this loss function, the risk of a predictor Q equals

R[Q] = p0FPR(Q)loss(1, 0) + p1(1− TPR(Q))loss(0, 1)
= p1ηFPR(Q) + p1(1− TPR(Q)) .

Now let Q be any other predictor with FPR(Q) ≤ α. We have by the
optimality of Qη that

p1ηα + p1(1− β) ≤ p1ηFPR(Q) + p1(1− TPR(Q))

≤ p1ηα + p1(1− TPR(Q)) ,

which implies TPR(Q) ≤ β. This in turn means that Qη maximizes TPR for
all rules with FPR ≤ α, proving the lemma.

Properties of ROC curves

A specific randomized predictor that is useful for analysis combines two
other rules. Suppose predictor one yields (FPR(1), TPR(1)) and the second
rule achieves (FPR(2), TPR(2)). If we flip a biased coin and use rule one with
probability p and rule 2 with probability 1− p, then this yields a random-
ized predictor with (FPR, TPR) = (pFPR(1) + (1− p)FPR(2), pTPR(1) + (1−
p)TPR(2)). Using this rule lets us prove several properties of ROC curves.

Proposition 1. The points (0, 0) and (1, 1) are on the ROC curve.

Proof. This proposition follows because the point (0, 0) is achieved when the
threshold η = ∞ in the likelihood ratio test, corresponding to the constant 0
predictor. The point (1, 1) is achieved when η = 0, corresponding to the
constant 1 predictor.
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The Neyman-Pearson Lemma gives us a few more useful properties.

Proposition 2. The ROC must lie above the main diagonal.

Proof. To see why this proposition is true, fix some α > 0. Using a ran-
domized rule, we can achieve a predictor with TPR = FPR = α. But the
Neyman-Pearson LRT with FPR constrained to be less than or equal to α
achieves true positive rate greater than or equal to the randomized rule.

Proposition 3. The ROC curve is concave.

Proof. Suppose (FPR(η1), TPR(η1)) and (FPR(η2), TPR(η2)) are achievable.
Then

(tFPR(η1) + (1− t)FPR(η2), tTPR(η1) + (1− t)TPR(η2))

is achievable by a randomized test. Fixing FPR ≤ tFPR(η1)+ (1− t)FPR(η2),
we see that the optimal Neyman-Pearson LRT achieves TPR ≥ TPR(η1) +
(1− t)TPR(η2).

Example: the needle one more time

Consider again the needle in a haystack example, where p(x | Y = 0) =
N (0, σ2) and p(x | Y = 1) = N (s, σ2) with s a positive scalar. The optimal

predictor is to declare Ŷ = 1 when X is greater than γ := s
2 +

σ2 log η
s . Hence

we have

TPR =
∫ ∞

γ
p(x | Y = 1)dx = 1

2 erfc
(

γ− s√
2σ

)
FPR =

∫ ∞

γ
p(x | Y = 0)dx = 1

2 erfc
(

γ√
2σ

)
.

For fixed s and σ, the ROC curve (FPR(γ), TPR(γ)) only depends on
the signal to noise ratio (SNR), s/σ. For small SNR, the ROC curve is close to
the FPR = TPR line. For large SNR, TPR approaches 1 for all values of FPR.

Area under the ROC curve

Oftentimes in information retrieval and machine learning, the term ROC
curve is overloaded to describe the achievable FPR-TPR pairs that we get
by varying the threshold t in any predictor Ŷ(x) = 1{R(x) > t}. Note such
curves must lie below the ROC curves that are traced out by the optimal
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Figure 5: The ROC curves for various signal to noise ratios in the needle in
the haystack problem.

likelihood ratio test, but may approximate the true ROC curves in many
cases.

A popular summary statistic for evaluating the quality of a decision
function is the area under its associated ROC curve. This is commonly
abbreviated as AUC. In the ROC curve plotted in the previous section, as
the SNR increases, the AUC increases. However, AUC does not tell the
entire story. Here we plot two ROC curves with the same AUC.

If we constrain FPR to be less than 10%, for the blue curve, TPR can be
as high as 80% whereas it can only reach 50% for the red. AUC should
be always viewed skeptically: the shape of an ROC curve is always more
informative than any individual number.

Decisions that discriminate

The purpose of prediction is almost always decision making. We build
predictors to guide our decision making by acting on our predictions. Many
decisions entail a life changing event for the individual. The decision could
grant access to a major opportunity, such as college admission, or deny
access to a vital resource, such as a social benefit.

Binary decision rules always draw a boundary between one group in
the population and its complement. Some are labeled accept, others are
labeled reject. When decisions have serious consequences for the individual,
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Figure 6: Two ROC curves with the same AUC. Note that if we constrain
FPR to be less than 10%, for the blue curve, TPR can be as high as 80%
whereas it can only reach 50% for the red.

however, this decision boundary is not just a technical artifact. Rather it has
moral and legal significance.

The decision maker often has access to data that encode an individual’s
status in socially salient groups relating to race, ethnicity, gender, religion,
or disability status. These and other categories that have been used as the
basis of adverse treatment, oppression, and denial of opportunity in the
past and in many cases to this day.

Some see formal or algorithmic decision making as a neutral mathemati-
cal tool. However, numerous scholars have shown how formal models can
perpetuate existing inequities and cause harm. In her book on this topic,
Ruha Benjamin warns of

the employment of new technologies that reflect and reproduce
existing inequities but that are promoted and perceived as more
objective or progressive than the discriminatory systems of a
previous era.1

Even though the problems of inequality and injustice are much broader
than one of formal decisions, we already encounter an important and
challenging facet within the narrow formal setup of this chapter. Specifically,
we are concerned with decision rules that discriminate in the sense of creating
an unjustified basis of differentiation between individuals.
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A concrete example is helpful. Suppose we want to accept or reject
individuals for a job. Suppose we have a perfect estimate of the number of
hours an individual is going to work in the next 5 years. We decide that
this a reasonable measure of productivity and so we accept every applicant
where this number exceeds a certain threshold. On the face of it, our rule
might seem neutral. However, on closer reflection, we realize that this
decision rule systematically disadvantages individuals who are more likely
than others to make use of their parental leave employment benefit that
our hypothetical company offers. We are faced with a conundrum. On
the one hand, we trust our estimate of productivity. On the other hand,
we consider taking parental leave morally irrelevant to the decision we’re
making. It should not be a disadvantage to the applicant. After all that is
precisely the reason why the company is offering a parental leave benefit in
the first place.

The simple example shows that statistical accuracy alone is no safeguard
against discriminatory decisions. It also shows that ignoring sensitive at-
tributes is no safeguard either. So what then is discrimination and how can we
avoid it? This question has occupied scholars from numerous disciplines for
decades. There is no simple answer. Before we go into attempts to formalize
discrimination in our statistical decision making setting, it is helpful to take
a step back and reflect on what the law says.

Legal background in the United States

The legal frameworks governing decision making differ from country to
country, and from one domain to another. We take a glimpse at the situation
in the United States, bearing in mind that our description is incomplete and
does not transfer to other countries.

Discrimination is not a general concept. It is concerned with socially
salient categories that have served as the basis for unjustified and systemat-
ically adverse treatment in the past. United States law recognizes certain
protected categories including race, sex (which extends to sexual orientation),
religion, disability status, and place of birth.

Further, discrimination is a domain specific concept concerned with
important opportunities that affect people’s lives. Regulated domains
include credit (Equal Credit Opportunity Act), education (Civil Rights Act
of 1964; Education Amendments of 1972), employment (Civil Rights Act of
1964), housing (Fair Housing Act), and public accommodation (Civil Rights
Act of 1964). Particularly relevant to machine learning practitioners is the
fact that the scope of these regulations extends to marketing and advertising
within these domains. An ad for a credit card, for example, allocates access
to credit and would therefore fall into the credit domain.
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There are different legal frameworks available to a plaintiff that brings
forward a case of discrimination. One is called disparate treatment, the other
is disparate impact. Both capture different forms of discrimination. Disparate
treatment is about purposeful consideration of group membership with the
intention of discrimination. Disparate impact is about unjustified harm,
possibly through indirect mechanisms. Whereas disparate treatment is
about procedural fairness, disparate impact is more about distributive justice.

It’s worth noting that anti-discrimination law does not reflect one over-
arching moral theory. Pieces of legislation often came in response to civil
rights movements, each hard fought through decades of activism.

Unfortunately, these legal frameworks don’t give us a formal definition
that we could directly apply. In fact, there is some well-recognized tension
between the two doctrines.

Formal non-discrimination criteria

The idea of formal non-discrimination (or fairness) criteria goes back to
pioneering work of Anne Cleary and other researchers in the educational
testing community of the 1960s.2

The main idea is to introduce a discrete random variable A that encodes
membership status in one or multiple protected classes. Formally, this
random variable lives in the same probability space as the other covariates X,
the decision Ŷ = 1{R > t} in terms of a score R, and the outcome Y. The
random variable A might coincide with one of the features in X or correlate
strongly with some combination of them.

Broadly speaking, different statistical fairness criteria all equalize some
group-dependent statistical quantity across groups defined by the different
settings of A. For example, we could ask to equalize acceptance rates across
all groups. This corresponds to imposing the constraint for all groups a
and b:

P[Ŷ = 1 | A = a] = P[Ŷ = 1 | A = b]

Researchers have proposed dozens of different criteria, each trying to
capture different intuitions about what is fair. Simplifying the landscape of
fairness criteria, we can say that there are essentially three fundamentally
different ones of particular significance:

• Acceptance rate P[Ŷ = 1]
• Error rates P[Ŷ = 0 | Y = 1] and P[Ŷ = 1 | Y = 0]
• Outcome frequency given score value P[Y = 1 | R = r]

19



The meaning of the first two as a formal matter is clear given what we
already covered. The third criterion needs a bit more motivation. A useful
property of score functions is calibration which asserts that P[Y = 1 | R =
r] = r for all score values r. In words, we can interpret a score value r as the
propensity of positive outcomes among instances assigned the score value r.
What the third criterion says is closely related. We ask that the score values
have the same meaning in each group. That is, instances labeled r in one
group are equally likely to be positive instances as those scored r in any
other group.

The three criteria can be generalized and simplified using three different
conditional independence statements.

Table 2: Non-discrimination criteria

Independence Separation Sufficiency

R ⊥ A R ⊥ A | Y Y ⊥ A | R

Each of these applies not only to binary prediction, but any set of
random variables where the independence statement holds. It’s not hard to
see that independence implies equality of acceptance rates across groups.
Separation implies equality of error rates across groups. And sufficiency
implies that all groups have the same rate of positive outcomes given a
score value.3

Researchers have shown that any two of the three criteria are mutually
exclusive except in special cases. That means, generally speaking, imposing
one criterion forgoes the other two.4, 5

Although these formal criteria are easy to state and arguably natural in
the language of decision theory, their merit as measures of discrimination
has been subject of an ongoing debate.

Merits and limitations of a narrow statistical perspective

The tension between these criteria played out in a public debate around the
use of risk scores to predict recidivism in pre-trial detention decisions.

There’s a risk score, called COMPAS, used by many jurisdictions in the
United States to assess risk of recidivism in pre-trial bail decisions. Recidivism
refers to a person’s relapse into criminal behavior. In the United States, a
defendant may either be detained or released on bail prior to the trial in
court depending on various factors. Judges may detain defendants in part
based on this score.

Investigative journalists at ProPublica found that Black defendants face
a higher false positive rate, i.e., more Black defendants labeled high risk
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end up not committing a crime upon release than among White defendants
labeled high risk.6 In other words, the COMPAS score fails the separation
criterion.

A company called Northpointe, which sells the proprietary COMPAS
risk model, pointed out in return that Black and White defendants have
equal recidivism rates given a particular score value. That is defendants
labeled, say, an ‘8’ for high risk would go on to recidivate at a roughly equal
rate in either group. Northpointe claimed that this property is desirable so
that a judge can interpret scores equally in both groups.7

The COMPAS debate illustrates both the merits and limitations of the
narrow framing of discrimination as a classification criterion.

On the hand, the error rate disparity gave ProPublica a tangible and con-
crete way to put pressure on Northpointe. The narrow framing of decision
making identifies the decision maker as responsible for their decisions. As
such, it can be used to interrogate and possibly intervene in the practices of
an entity.

On the other hand, decisions are always part of a broader system that
embeds structural patterns of discrimination. For example, a measure of
recidivism hinges crucially on existing policing patterns. Crime is only
found where policing activity happens. However, the allocation and severity
of police force itself has racial bias. Some scholars therefore find an emphasis
on statistical criteria rather than structural determinants of discrimination
to be limited.

Chapter notes

The theory we covered in this chapter is also called detection theory and
decision theory. Similarly, what we call a predictor throughout has various
different names, such as decision rule or classifier.

The elementary detection theory covered in this chapter has not changed
much at all since the 1950s and is essentially considered a “solved problem”.
Neyman and Pearson invented the likelihood ratio test8 and later proved
their lemma showing it to be optimal for maximizing true positive rates
while controlling false positive rates.9 Wald followed this work by invent-
ing general Bayes risk minimization in 1939.10 Wald’s ideas were widely
adopted during World War II for the purpose of interpreting RADAR sig-
nals which were often very noisy. Much work was done to improve RADAR
operations, and this led to the formalization that the output of a RADAR
system (the receiver) should be a likelihood ratio, and a decision should
be made based on an LRT. Our proof of Neyman-Pearson’s lemma came
later, and is due to Bertsekas and Tsitsiklis (See Section 9.3 of Introduction to
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Probability11).
Our current theory of detection was fully developed by Peterson, Bird-

sall, and Fox in their report on optimal signal detectability.12 Peterson,
Birdsall, and Fox may have been the first to propose Receiver Operating
Characteristics as the means to characterize the performance of a detection
system, but these ideas were contemporaneously being applied to better
understand psychology and psychophysics as well.13

Statistical Signal Detection theory was adopted in the pattern recognition
community at a very early stage. Chow proposed using optimal detection
theory,14 and this led to a proposal by Highleyman to approximate the risk
by its sample average.15 This transition from population risk to “empirical”
risk gave rise to what we know today as machine learning.

Of course, how decisions and predictions are applied and interpreted
remains an active research topic. There is a large amount of literature now
on the topic of fairness and machine learning. For a general introduction
to the problem and dangers associated with algorithmic decision making
not limited to discrimination, see the books by Benjamin,1 Broussard,16

Eubanks,17 Noble,18 and O’Neil.19 The technical material in our section on
discrimination follows Chapter 2 in the textbook by Barocas, Hardt, and
Narayanan.3

The abalone example was derived from data available at the UCI Ma-
chine Learning Repository, which we will discuss in more detail in Chapter
8. We modified the data to ease exposition. The actual data does not have
an equal number of male and female instances, and the optimal predictor is
not exactly a threshold function.
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