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Reinforcement learning

Dynamic programming and its approximations studied thus far all
require knowledge of the probabilistic mechanisms underlying how data
and rewards change over time. When these mechanisms are unknown,
appropriate techniques to probe and learn about the underlying dynamics
must be employed in order to find optimal actions. We shall refer to the
solutions to sequential decision making problems when the dynamics are
unknown as reinforcement learning. Depending on context, the term may refer
to a body of work in artificial intelligence, the community of researchers
and practitioners who apply a certain set of tools to sequential decision
making, and data-driven dynamic programming. That said, it is a useful
name to collect a set of problems of broad interest to machine learning,
control theory, and robotics communities.

A particularly simple and effective strategy for reinforcement learning
problems is to estimate a predictive model for the dynamical system and
then to use the fit model as if it were the true model in the optimal control
problem. This is an application of the principle of certainty equivalence, an idea
tracing back to the dynamic programming literature of the 1950s.1, 2 Cer-
tainty equivalence is a general solution strategy for the following problem.
Suppose you want to solve some optimization problem with a parameter ϑ
that is unknown. However, suppose we can gather data to estimate ϑ. Then
the certainty equivalent solution is to use a point estimate for ϑ as if it were
the true value. That is, you act as if you were certain of the value of ϑ,
even though you have only estimated ϑ from data. We will see throughout
this chapter that such certainty equivalent solutions are powerfully simple
and effective baseline for sequential decision making in the absence of well
specified models.

Certainty equivalence is a very general principle. We can apply it to
the output of a filtering scheme that predicts state, as we described in our
discussion of partially observed Markov Decision Processes. We can also
apply this principle in the study of MDPs with unknown parameters. For
every problem in this chapter, our core baseline will always be the certainty
equivalent solution. Surprisingly, we will see that certainty equivalent
baselines are typically quite competitive and give a clear illustration of the
best quality one can expect in many reinforcement learning problems.
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Exploration-exploitation tradeoffs: Regret and PAC learn-
ing

In order to compare different approaches to reinforcement learning, we
need to decide on some appropriate rules of comparison. Though there
are a variety of important metrics for engineering practice that must be
considered including ease of implementation and robustness, a first-order
statistical comparison might ask how many samples are needed to achieve
a policy with high reward.

For this question, there are two predominant conventions to compare
methods: PAC-error and regret. PAC is a shorthand for probably approximately
correct. It is a useful notion when we spend all of our time learning about a
system, and then want to know how suboptimal our solution will be when
built from the data gathered thus far. Regret is more geared towards online
execution where we evaluate the reward accrued at all time steps, even if we
are spending that time probing the system to learn about its dynamics. Our
focus in this chapter will be showing that these two concepts are closely
related.

Let us formalize the two notions. As in the previous chapter, we will be
concerned with sequential decision making problems of the form

maximizeπt EWt

[
∑T

t=0 Rt(Xt, Ut, Wt)
]

subject to Xt+1 = f (Xt, Ut, Wt)
Ut = πt(Xt, Xt−1, . . .)
(x0 given.)

Let π? denote the optimal policy of this problem.
For PAC, let’s suppose we allocate N samples to probe the system and

use them in some way to build a policy πN . We can define the optimization
error of this policy to be

E(πN) = E

[
T

∑
t=1

Rt[X′t, π?(X′t), Wt]

]
−E

[
T

∑
t=1

Rt[Xt, πN(Xt), Wt]

]
.

Our model has (δ, ε)-PAC error if E(πN) ≤ ε with probability at least 1− δ.
The probability here is measured with respect to the sampling process and
dynamics of the system.

Regret is defined similarly, but is subtly different. Suppose we are now
only allowed T total actions and we want to understand the cumulative
award achieved after applying these T actions. In this case, we have to
balance the number of inputs we use to find a good policy (exploration)
against the number of inputs used to achieve the best reward (exploitation).
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Formally, suppose we use a policy πt at each time step to choose our
action. Suppose π? is some other fixed policy. Let Xt denote the states
induced by the policy sequence πt and X′t denote the states induced by π?.
Then the regret of {πt} is defined to be

RT({πt}) = E

[
T

∑
t=1

Rt[X′t, π?(X′t), Wt]

]
−E

[
T

∑
t=1

Rt[Xt, πt(Xt), Wt]

]
.

It is simply the expected difference in the rewards generated under policy π?

as compared to those generated under policy sequence πt. One major way
that regret differs from PAC-error is the policy can change with each time
step.

One note of caution for both of these metrics is that they are comparing
to a policy π?. It’s possible that the comparison policy π? is not very good.
So we can have small regret and still not have a particularly useful solution
to the SDM problem. As a designer it’s imperative to understand π? to
formalize the best possible outcome with perfect information. That said,
regret and PAC-error are valuable ways to quantify how much exploration is
necessary to find nearly optimal policies. Moreover, both notions have pro-
vided successful frameworks for algorithm development: many algorithms
with low regret or PAC-error are indeed powerful in practice.

Multi-armed bandits

The multi-armed bandit is one of the simplest reinforcement learning prob-
lems, and studying this particular problem provides many insights into
exploration-exploitation tradeoffs.

In the multi-armed bandit, we assume no state whatsoever. There are K to-
tal actions, and the reward is a random function of which action you choose.
We can model this by saying there are i.i.d. random variables Wt1, . . . , Wtk,
and your reward is the dot product

Rt = [Wt1, . . . , WtK]eut

where ei is a standard basis vector. Here Wti take values in the range [0, 1].
We assume that all of the Wti are independent, and that Wti and Wsi are
identically distributed. Let µi = E[Wti]. Then the expected reward at time t
is precisely µut .

The multi-armed bandit problem is inspired by gambling on slot ma-
chines. Indeed, a “bandit” is a colloquial name for a slot machine. Assume
that you have K slot machines. Each machine has some probability of
paying out when you play it. You want to find the machine that has the
largest probability of paying out, and then play that machine for the rest of
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time. The reader should take an opportunity to ponder the irony that much
of our understanding of statistical decision making comes from gambling.

First let’s understand what the optimal policy is if we know the model.
The total reward is equal to

E
Wt

[
T

∑
t=0

Rt(ut, Wt)

]
=

T

∑
t=1

µut .

The optimal policy is hence to choose a constant action ut = k where k =
arg maxi µi.

When we don’t know the model, it makes sense that our goal is to
quickly find the action corresponding to the largest mean. Let’s first do a
simple PAC analysis, and then turn to the slightly more complicated regret
analysis. Our simple baseline is one of certainty equivalence. We will try
each action N/K times, and compute the empirical return. The empirical
means are:

µ̂k =
K
N

N/K

∑
i=1

R(k)
i

Our policy will be to take the action with the highest observed empirical
return.

To estimate the value of this policy, let’s assume that the best action
is u = 1. Then define

∆i = µ1 − µi .

Then we have

E(πN) =
K

∑
i=1

T∆i P[∀i : µ̂k ≥ µ̂i] .

We can bound the probability that action k is selected as follows. First,
if action k has the largest empirical mean, it must have a larger empirical
mean than the true best option, action 1:

P[∀i : µ̂k ≥ µ̂i] ≤ P[µ̂k ≥ µ̂1] .

We can bound this last term using Hoeffding’s inequality. Let m = N/K.
Since each reward corresponds to an independent draw of some random
process, we have µ̂k − µ̂1 is the mean of 2m independent random variables
in the range [−1, 1]:

1
2
(µ̂k − µ̂1) =

1
2m

(
m

∑
i=1

R(k)
i +

m

∑
i=1
−R(1)

i

)
.
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Now writing Hoeffding’s inequality for this random variable gives the tail
bound

P[µ̂k ≥ µ̂1] = P[1
2(µ̂k − µ̂1) ≥ 0] ≤ exp

(
−

m∆2
k

4

)
which results in an optimization error

E(πN) ≤
K

∑
i=1

T∆i exp

(
−

N∆2
i

4K

)
.

with probability 1. This expression reveals that the multi-armed bandit
problem is fairly simple. If ∆i are all small, then any action will yield about
the same reward. But if all of the ∆i are large, then finding the optimal
action only takes a few samples. Naively, without knowing anything about
the gaps at all, we can use the fact that xe−x2/2 ≤ 1

2 for nonnegative x to
find

E(πN) ≤
K3/2T√

N
.

This shows that no matter what the gaps are, as long as N is larger than K3,
we would expect to have a high quality solution.

Let’s now turn to analyzing regret of a simple certainty equivalence
baseline. Given a time horizon T, we can spend the first m time steps
searching for the best return. Then we can choose this action for the
remaining T −m time steps. This strategy is called explore-then-commit.

The analysis of the explore-then-commit strategy for the multi-armed
bandit is a straightforward extension of the PAC analysis. If at round t, we
apply action k, the expected gap between our policy and the optimal policy
is ∆k. So if we let Tk denote the number of times action k is chosen by our
policy then we must have

RT =
K

∑
k=1

E[Tk]∆k .

Tk are necessarily random variables: what the policy learns about the
different means will depend on the observed sequence xk which are all
random variables.

Suppose that for exploration, we mimic our offline procedure, trying
each action m times and record the observed rewards for that action r(k)i
for i = 1, . . . , m. At the end of these mk actions, we compute the empirical
mean associated with each action as before. Then we must have that

E[Tk] = m + (T −mK)P[∀i : µ̂k ≥ µ̂i] .
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The first term just states that each action is performed m times. The second
term states that action k is chosen for the commit phase only if its empirical
mean is larger than all of the other empirical means.

Using Hoeffding’s inequality again to bound these probabilities, we can
put everything together bound the expected regret as

RT ≤
K

∑
k=1

m∆k + (T −mK)∆k exp

(
−

m∆2
k

4

)
.

Let’s specialize to the case of two actions to see what we can take away
from this decomposition:

1. Gap dependent regret. First, assume we know the gap between the
means, ∆2, but we don’t know which action leads to the higher mean.
Suppose that

m0 =

⌈
4

∆2
2

log

(
T∆2

2
4

)⌉
≥ 1 .

Then using m = m0, we have

RT ≤ m∆2 + T∆2 exp

(
−m∆2

2
4

)

≤ ∆2 +
4

∆2

(
log

(
T∆2

2
4

)
+ 1

)
.

If m0 < 1, then ∆2 < 2√
T

, then choosing a random arm yields total
expected regret at most

RT =
T
2

∆2 ≤
√

T .

If ∆2 is very small, then we might also just favor the bound

RT ≤ 1
2 ∆2T .

Each of these bounds applies in different regimes and tells us different
properties of this algorithm. The first bound shows that with appro-
priate choice of m, explore-then-commit incurs regret asymptotically
bounded by log(T). This is effectively the smallest asymptotic growth
achievable and is the gold standard for regret algorithms. However,
this logarithmic regret bound depends on the gap ∆2. For small ∆2,
the second bound shows the regret is never worse than

√
T for any

value of the gap.
√

T is one of the more common values for regret,
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and though it is technically asymptotically worse than logarithmic,
algorithms with

√
T regret tend to be more stable and robust than

their logarithmic counterparts. Finally, we note that a very naive
algorithm will incur regret that grows linearly with the horizon T.
Though linear regret is not typically an ideal situation, there are many
applications where it’s acceptable. If ∆2 is tiny to the point where it is
hard to observe the difference between µ1 and µ2, then linear regret
might be completely satisfactory for an application.

2. Gap independent regret. We can get a gap independent,
√

T regret
for explore then commit for any value of ∆2. This just requires a bit of
calculus:

4
∆2

(
log
(

T∆2

4

)
+ 1
)
= 2
√

T
(

2
∆2
√

T

(
log
(

T∆2

4

)
+ 1
))

= 2
√

T sup
x≥0

2 log(x) + 1
x

≤ 4e−1/2
√

T ≤ 2.5
√

T .

Hence,
RT ≤ ∆2 + 2.5

√
T

no matter the size of ∆2 the gap is. Often times this unconditional
bound is smaller than the logarithmic bound we derived above.

3. Gap independent policy. The stopping rule we described thus far
requires knowing the value of ∆2. However, if we set m = T2/3 then
we can achieve sublinear regret no matter what the value of ∆2 is. To
see this again just requires some calculus:

RT ≤ T2/3∆2 + T∆2 exp

(
−T2/3∆2

2
4

)

= T2/3

(
∆2 + T1/3∆2 exp

(
−T2/3∆2

2
4

))

≤ T2/3

(
∆2 + 2 sup

x≥0
xe−x2

)
≤ 2T2/3 .

O(T2/3) regret is technically “worse” than an asymptotic regret of O(T1/2),
but often times such algorithms perform well in practice. This is
because there is a difference between worst case and average case
behavior, and hence these worst-case bounds on regret themselves do
not tell the whole story. A practitioner has to weigh the circumstances
of their application to decide what sorts of worst-case scenarios are
acceptable.
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Interleaving exploration and exploitation

Explore-then-commit is remarkably simple, and illustrates most of the
phenomena associated with regret minimization. There are essentially two
main shortcomings in the case of the multi-armed bandit:

1. For a variety of practical concerns, it would be preferable to interleave
exploration with exploitation.

2. If you don’t know the gap, you only get a T2/3 rate.

A way to fix this is called successive elimination. As in explore-then-
commit, we try all actions m times. Then, we drop the actions that are
clearly performing poorly. We then try the remaining actions 4m times,
and drop the poorly performing actions. We run repeated cycles of this
pruning procedure, yielding a collection of better actions on average, aiming
at convergence to the best return.

Successive Elimination Algorithm:
• Given number of rounds B and an increasing sequence of

positive integers {m`}.
• Initialize the active set of options A = {1, . . . , K}.
• For ` = 1, . . . , B:

1. Try every action in A for m` times.
2. Compute the empirical means µ̂k from this iteration only.
3. Remove from A any action j with µj + 2−` < maxk∈A µk.

The following theorem bounds the regret of successive elimination, and
was proven by Auer and Ortner.3

Theorem 1. With B = b1
2 log2

T
e c and m` = d22`+1 log T

4` e, the successive
elimination algorithm accrues expected regret

RT ≤ ∑
i : ∆i>λ

(
∆i +

32 log(T∆2
i ) + 96

∆i

)
+ max

i : ∆i≤λ
∆iT

for any λ >
√

e/T.

Another popular strategy is known as optimism in the face of uncertainty.
This strategy is also often called “bet on the best.” At iteration t, take all of
the observations seen so far and form a set up upper confidence bounds Bi
such that

P[∀i : µi ≤ Bi(t)] ≤ 1− δ

This leads to the Upper Confidence Bound (UCB) algorithm.
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UCB Algorithm
• For t = 1, . . . , T:

1. Choose action k = arg maxi Bi(t− 1).
2. Play action k and observe reward rt.
3. Update the confidence bounds.

For the simple case of the multi-armed bandit, we can use the bound
that would directly come from Hoeffding’s inequality:

Bi(t) = µ̂i(t) +

√
2 log(1/δ)

Ti(t)

where we remind the reader that Ti(t) denotes the number of times we have
tried action i up to round t. Though Ti(t) is a random variable, one can still
prove that this choice yields an algorithm with nearly optimal regret.

More generally, optimistic algorithms work by maintaining an uncer-
tainty set about the dynamics model underlying the SDM problem. The
idea is to maintain a set S where we have confidence our true model lies.
The algorithm then proceeds by choosing the model in S which gives the
highest expected reward. The idea here is that either we get the right model
in which case we get a large reward, or we learn quickly that we have a
suboptimal model and we remove it from our set S.

Contextual bandits

Contextual bandits provide a transition from multi-armed bandits to full-
fledged reinforcement learning, introducing state or context into the decision
problem. Our goal in contextual bandits is to iteratively update a policy to
maximize the total reward:

maximizeut E
Wt

[
T

∑
t=1

R(Xt, ut, Wt)

]
Here, we choose actions ut according to some policy that is a function of
the observations of the random variables Xt, which are called contexts or
states. We make no assumptions about how contexts evolve over time. We
assume that the reward function is unknown and, at every time step, the
received reward is given by

R(Xt, ut, Wt) = R(Xt, ut) + Wt

where Wt is a random variable with zero mean and independent from all
other variables in the problem.
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Contextual bandits are a convenient way to abstractly model engagement
problems on the internet. In this example, contexts correspond to informa-
tion about a person. Every interaction a person has with the website can
be scored in term of some sort of reward function that encodes outcomes
such as whether the person clicked on an ad, liked an article, or purchased
an item. Whatever the reward function is, the goal will be to maximize the
total reward accumulated over all time. The Xt will be features describing
the person’s interaction history, and the action will be related to the content
served.

As was the case with the multi-armed bandit, the key idea in solving
contextual bandits is to reduce the problem to a prediction problem. In
fact we can upper bound our regret by our errors in prediction. The regret
accrued by a policy π is

E

{
T

∑
t=1

max
u

R(Xt, u)− R(Xt, π(Xt))

}
.

This is because if we know the reward function, then the optimal strategy is
to choose the action that maximizes R. This is equivalent to the dynamic
programming solution when the dynamics are trivial.

Let’s reduce this problem to one of prediction. Suppose that at time t
we have built an approximation of the reward function R that we de-
note R̂t(x, u). Let’s suppose that our algorithm uses the policy

π(Xt) = arg max
u

R̂t(Xt, u) .

That is, we take our current estimate as if it was the true reward function,
and pick the action that maximizes reward given the context Xt.

To bound the regret for such an algorithm, note that we have for any
action u

0 ≤ R̂t(Xt, π(Xt))− R̂t(Xt, u)
≤ R(Xt, π(Xt))− R(Xt, u)

+
[

R̂t(Xt, π(Xt))− R(Xt, π(Xt))
]
+
[

R̂t(Xt, u)− R(Xt, u)
]

.

Hence,

T

∑
t=1

max
u

R(Xt, u)− R(Xt, π(Xt)) ≤ 2
T

∑
t=1

max
u
|R̂t(Xt, u)− R(Xt, u)| .

This final inequality shows that if the prediction error goes to zero, the
associated algorithm accrues sublinear regret.
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While there are a variety of algorithms for contextual bandits, we focus
our attention on two simple solutions that leverage the above reduction
to prediction. These algorithms work well in practice and are by far the
most commonly implemented. Indeed, they are so common that most
applications don’t even call these implementations of contextual bandit
problems, as they take the bandit nature completely for granted.

Our regret bound naturally suggests the following explore-then-commit
procedure.

Explore-then-commit for contextual bandits
• For t = 1, 2, . . . , m:

1. Receive new context xt.
2. Choose a random action ut.
3. Receive reward rt.

• Find a function R̂m to minimize prediction error: R̂m :=
arg min f ∑m

s=1 loss( f (xs, us), rs) .
• Define the policy π(x) = arg maxu R̂m(xt, u).
• For t = m + 1, m + 2, . . .:

1. Receive new context xt.
2. Choose the action given by π(xt).
3. Receive reward rt.

Second, an even more popular method is the following greedy algorithm.
The greedy algorithm avoids the initial random exploration stage and
instead picks whatever is optimal for the data seen so far.

Greedy algorithm for contextual bandits
• For t = 1, 2, . . .

1. Find a function R̂t to minimize prediction error:

R̂t := arg min
f

t−1

∑
s=1

loss( f (xs, us), rs) .

2. Receive new context xt.
3. Choose the action given by the policy

πt(xt) := arg max
u

R̂t(xt, u) .

4. Receive reward rt.
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In worst-case settings, the greedy algorithm may accrue linear regret.
However, worst-case contexts appear to be rare. In the linear contextual
bandits problem, where rewards are an unknown linear function of the
context, even slight random permutations of a worst-case instance lead to
sublinear regret.4

The success of the greedy algorithm shows that it is not always desirable
to be exploring random actions to see what happens. This is especially true
for industrial applications where random exploration is often costly and
the value of adding exploration seems limited.5, 6 This context is useful to
keep in mind as we move to the more complex problem of reinforcement
learning and approximate dynamic programming.

When the model is unknown: Approximate dynamic pro-
gramming

We now bring dynamics back into the picture and attempt to formalize how
to solve general SDM problems when we don’t know the dynamics model or
even the reward function. We turn to exploring the three main approaches in
this space: certainty equivalence fits a model from some collected data and
then uses this model as if it were true in the SDM problem. Approximate
Dynamic Programming uses Bellman’s principle of optimality and stochastic
approximation to learn Q-functions from data. Direct Policy Search directly
searches for policies by using data from previous episodes in order to
improve the reward. Each of these has their advantages and disadvantages
as we now explore in depth.

Certainty equivalence for sequential decision making

One of the simplest, and perhaps most obvious strategies to solve an SDM
problem when the dynamics are unknown is to estimate the dynamics from
some data and then to use this estimated model as if it were the true model
in the SDM problem.

Estimating a model from data is commonly called “system identification”
in the dynamical systems and control literature. System identification differs
from conventional estimation because one needs to carefully choose the
right inputs to excite various degrees of freedom and because dynamical
outputs are correlated over time with the parameters we hope to estimate,
the inputs we feed to the system, and the stochastic disturbances. Once
data is collected, however, conventional prediction tools can be used to find
the system that best agrees with the data and can be applied to analyze the
number of samples required to yield accurate models.
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Let’s suppose we want to build a predictor of the state xt+1 from the
trajectory history of past observed states and actions. A simple, classic
strategy is simply to inject a random probing sequence ut for control and
then measure how the state responds. Up to stochastic noise, we should
have that

xt+1 ≈ ϕ(xt, ut) ,

where ϕ is some model aiming to approximate the true dynamics. ϕ might
arise from a first-principles physical model or might be a non-parametric
approximation by a neural network. The state-transition function can then
be fit using supervised learning. For instance, a model can be fit by solving
the least-squares problem

minimizeϕ ∑N−1
t=0 ||xt+1 − ϕ(xt, ut)||2 .

Let ϕ̂ denote the function fit to the collected data to model the dynamics.
Let ωt denote a random variable that we will use as a model for the noise
process. With such a point estimate for the model, we might solve the
optimal control problem

maximize Eωt [∑
N
t=0 R(xt, ut)]

subject to xt+1 = ϕ̂(xt, ut) + ωt, ut = πt(τt) .

In this case, we are solving the wrong problem to get our control policies πt.
Not only is the model incorrect, but this formulation requires some plau-
sible model of the noise process. But we emphasize that this is standard
engineering practice. Though more sophisticated techniques can be used
to account for the errors in modeling, feedback often can compensate for
these modeling errors.

Approximate dynamic programming

Approximate dynamic programming approaches the RL problem by di-
rectly approximating the optimal control cost and then solving this with
techniques from dynamic programming. Approximate Dynamic Program-
ming methods typically try to infer Q-functions directly from data. The
standard assumption in most practical implementations of Q-learning is
that the Q-functions are static, as would be the case in the infinite horizon,
discounted optimal control problem.

Probably the best known approximate dynamic programming method
is Q-learning.7 Q-learning simply attempts to solve value iteration using
stochastic approximation. If we draw a sample trajectory using the policy
given by the optimal policy, then we should have (approximately and in
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expectation)

Qγ(xt, ut) ≈ R(xt, ut) + γ max
u′
Qγ(xt+1, u′) .

Thus, beginning with some initial guess Q(old)
γ for the Q-function, we can

update

Q(new)
γ (xt, ut) = (1− η)Q(old)

γ (xt, ut)+ η

(
R(xt, ut) + γ max

u′
Q(old)

γ (xt+1, u′)
)

where η is a step-size or learning rate.
The update here only requires data generated by the policy Qold

γ and
does not need to know the explicit form of the dynamics. Moreover, we
don’t even need to know the reward function if this is provided online
when we generate trajectories. Hence, Q-learning is often called “model
free.” We strongly dislike this terminology and do not wish to dwell on it.
Unfortunately, distinguishing between what is “model-free” and what is
“model-based” tends to just lead to confusion. All reinforcement learning
is inherently based on models, as it implicitly assumes data is generated
by some Markov Decision Process. In order to run Q-learning we need
to know the form of the Q-function itself, and except for the tabular case,
how to represent this function requires some knowledge of the underlying
dynamics. Moreover, assuming that value iteration is the proper solution of
the problem is a modeling assumption: we are assuming a discount factor
and time invariant dynamics. But the reader should be advised that when
they read “model-free,” this almost always means “no model of the state
transition function was used when running this algorithm.”

For continuous control problems methods like Q-learning appear to
make an inefficient use of samples. Suppose the internal state of the
system is of dimension d. When modeling the state-transition function, each
sample provides d pieces of information about the dynamics. By contrast,
Q-learning only uses 1 piece of information per time step. Such inefficiency
is often seen in practice. Also troubling is the fact that we had to introduce
the discount factor in order to get a simple form of the Bellman equation.
One can avoid discount factors, but this requires either considerably more
sophisticated analysis. Large discount factors do in practice lead to brittle
methods, and the discount factor becomes a hyperparameter that must be
tuned to stabilize performance.

We close this section by noting that for many problems with high dimen-
sional states or other structure, we might be interested in not representing
Q-functions as a look up table. Instead, we might approximate the Q-
functions with a parametric family: Q(x, u; ϑ). Though we’d like to update
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the parameter ϑ using something like gradient descent, it’s not immedi-
ately obvious how to do so. The simplest attempt, following the guide of
stochastic approximation is to run the iterations:

δt = R(xt, ut) + γQ(xt+1, ut+1; ϑt)−Q(xt, ut; ϑt)

ϑt+1 = ϑt + ηδt∇Q(xt, ut, ϑt)

This algorithm is called Q-learning with function approximation. A typically
more stable version uses momentum to average out noise in Q-learning.
With δt as above, we add the modification

et = λet−1 +∇Q(xt, ut, ϑt)

ϑt+1 = ϑt + ηδtet

for λ ∈ [0, 1]. This method is known as SARSA(λ).8

Direct policy search

The most ambitious form of control without models attempts to directly
learn a policy function from episodic experiences without ever building a
model or appealing to the Bellman equation. From the oracle perspective,
these policy driven methods turn the problem of RL into derivative-free
optimization.

In turn, let’s first begin with a review of a general paradigm for leverag-
ing random sampling to solve optimization problems. Consider the general
unconstrained optimization problem

maximizez∈Rd R(z) .

Any optimization problem like this is equivalent to an optimization over
probability densities on z:

maximizep(z) Ep[R(z)] .

If z? is the optimal solution, then we’ll get the same value if we put a δ-
function around z?. Moreover, if p is a density, it is clear that the expected
value of the reward function can never be larger than the maximal reward
achievable by a fixed z. So we can either optimize over z or we can optimize
over densities over z.

Since optimizing over the space of all probability densities is intractable,
we must restrict the class of densities over which we optimize. For example,
we can consider a family parameterized by a parameter vector ϑ: p(z; ϑ)
and attempt to optimize

maximizeϑ Ep(z;ϑ)[R(z)] .
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If this family of densities contains all of the Delta functions, then the optimal
value will coincide with the non-random optimization problem. But if the
family does not contain the Delta functions, the resulting optimization
problem only provides a lower bound on the optimal value no matter how
good of a probability distribution we find.

That said, this reparameterization provides a powerful and general
algorithmic framework for optimization. In particular, we can compute the
derivative of J(ϑ) := Ep(z;ϑ)[R(z)] using the following calculation (called
“the log-likelihood trick”):

∇ϑ J(ϑ) =
∫

R(z)∇ϑ p(z; ϑ)dz

=
∫

R(z)
(
∇ϑ p(z; ϑ)

p(z; ϑ)

)
p(z; ϑ)dz

=
∫

(R(z)∇ϑ log p(z; ϑ)) p(z; ϑ)dz

= Ep(z;ϑ) [R(z)∇ϑ log p(z; ϑ)] .

This derivation reveals that the gradient of J with respect to ϑ is the expected
value of the function

G(z, ϑ) = R(z)∇ϑ log p(z; ϑ)

Hence, if we sample z from the distribution defined by p(z; ϑ), we can
compute G(z, ϑ) and will have an unbiased estimate of the gradient of J.
We can follow this direction and will be running stochastic gradient descent
on J, defining the following algorithm:

REINFORCE algorithm:
• Input Hyperparameters: step-sizes αj > 0.
• Initialize: ϑ0 and k = 0.
• Until the heat death of the universe, do:

1. Sample zk ∼ p(z; ϑk).
2. Set ϑk+1 = ϑk + αkR(zk)∇ϑ log p(zk; ϑk).
3. k← k + 1.

The main appeal of the REINFORCE Algorithm is that it is not hard
to implement. If you can efficiently sample from p(z; ϑ) and can easily
compute ∇ log p, you can run this algorithm on essentially any problem.
But such generality must and does come with a significant cost. The
algorithm operates on stochastic gradients of the sampling distribution,
but the function we cared about optimizing—R—is only accessed through
function evaluations. Direct search methods that use the log-likelihood
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trick are necessarily derivative free optimization methods, and, in turn,
are necessarily less effective than methods that compute actual gradients,
especially when the function evaluations are noisy. Another significant
concern is that the choice of distribution can lead to very high variance
in the stochastic gradients. Such high variance in turn implies that many
samples need to be drawn to find a stationary point.

That said, the ease of implementation should not be readily discounted.
Direct search methods are easy to implement, and oftentimes reasonable
results can be achieved with considerably less effort than custom solvers
tailored to the structure of the optimization problem. There are two primary
ways that this sort of stochastic search arises in reinforcement learning:
Policy gradient and pure random search.

Policy gradient

Though we have seen that the optimal solutions of Bellman’s equations
are deterministic, probabilistic policies can add an element of exploration
to a control strategy, hopefully enabling an algorithm to simultaneously
achieve reasonable awards and learn more about the underlying dynamics
and reward functions. Such policies are the starting point for policy gradient
methods.9

Consider a parametric, randomized policy such that ut is sampled from a
distribution p(u|τt; ϑ) that is only a function of the currently observed trajec-
tory and a parameter vector ϑ. A probabilistic policy induces a probability
distribution over trajectories:

p(τ; ϑ) =
L−1

∏
t=0

p(xt+1|xt, ut)p(ut|τt; ϑ) .

Moreover, we can overload notation and define the reward of a trajectory to
be

R(τ) =
N

∑
t=0

Rt(xt, ut)

Then our optimization problem for reinforcement learning takes the form
of stochastic search. Policy gradient thus proceeds by sampling a trajectory
using the probabilistic policy with parameters ϑk, and then updating using
REINFORCE.

Using the log-likelihood trick and the factored form of the probability
distribution p(τ; ϑ), we can see that the gradient of J with respect to ϑ is not
a function of the underlying dynamics. However, at this point this should not
be surprising: by shifting to distributions over policies, we push the burden
of optimization onto the sampling procedure.
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Pure random search

An older and more widely applied method to solve the generic stochastic
search problem is to directly perturb the current decision variable z by
random noise and then update the model based on the received reward at
this perturbed value. That is, we apply the REINFORCE Algorithm with
sampling distribution p(z; ϑ) = p0(z− ϑ) for some distribution p0. Simplest
examples for p0 would be the uniform distribution on a sphere or a normal
distribution. Perhaps less surprisingly here, REINFORCE can again be run
without any knowledge of the underlying dynamics. The REINFORCE
algorithm has a simple interpretation in terms of gradient approximation.
Indeed, REINFORCE is equivalent to approximate gradient ascent of R

ϑt+1 = ϑt + αgσ(ϑk)

with the gradient approximation

gσ(ϑ) =
R(ϑ + σε)− R(ϑ− σε)

2σ
ε .

This update says to compute a finite difference approximation to the gra-
dient along the direction ε and move along the gradient. One can reduce
the variance of such a finite-difference estimate by sampling along multiple
random directions and averaging:

g(m)
σ (ϑ) =

1
m

m

∑
i=1

R(ϑ + σεi)− R(ϑ− σεi)

2σ
εi .

This is akin to approximating the gradient in the random subspace spanned
by the εi

This particular algorithm and its generalizations goes by many different
names. Probably the earliest proposal for this method is by Rastrigin.10

Somewhat surprisingly, Rastrigin initially developed this method to solve
reinforcement learning problems. His main motivating example was an in-
verted pendulum. A rigorous analysis using contemporary techniques was
provided by Nesterov and Spokoiny.11 Random search was also discovered
by the evolutionary algorithms community and is called (µ, λ)-Evolution
Strategies.12, 13 Random search has also been studied in the context of
stochastic approximation14 and bandits.15, 16 Algorithms that get invented
by four different communities probably have something good going for
them.

Deep reinforcement learning

We have thus far spent no time discussing deep reinforcement learning.
That is because there is nothing conceptually different other than using
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neural networks for function approximation. That is, if one wants to take
any of the described methods and make them deep, they simply need
to add a neural net. In model-based RL, ϕ is parameterized as a neural
net, in ADP, the Q-functions or Value Functions are assumed to be well-
approximated by neural nets, and in policy search, the policies are set to be
neural nets. The algorithmic concepts themselves don’t change. However,
convergence analysis certainly will change, and algorithms like Q-learning
might not even converge. The classic text Neurodynamic Programming by
Bertsekas and Tsitisklis discusses the adaptations needed to admit function
approximation.17

Certainty equivalence is often optimal for reinforcement
learning

In this section, we give a survey of the power of certainty equivalence in se-
quential decision making problems. We focus on the simple cases of tabular
MDPs and LQR as they are illustrative of more general problems while still
being manageable enough to analyze with relatively simple mathematics.
However, these analyses are less than a decade old. Though the principle of
certainty equivalence dates back over 60 years, our formal understanding of
certainty equivalence and its robustness is just now solidifying.

Certainty equivalence for LQR

Consider the linear quadratic regulator problem

minimize limT→∞ EWt

[
1

2T ∑T
t=0 XT

t ΦXt + UT
t ΨUt

]
,

subject to Xt+1 = AXt + BUt + Wt, Ut = πt(Xt)
(x0 given).

We have shown that the solution to this problem is static state feedback Ut =
−K?Xt where

K? = (Ψ + BT MB)−1BT MA

and M is the unique stabilizing solution to the Discrete Algebraic Riccati
Equation

M = Φ + AT MA− (AT MB)(Ψ + BT MB)−1(BT MA) .

Suppose that instead of knowing (A, B, Φ, Ψ) exactly, we only have es-
timates (Â, B̂, Φ̂, Ψ̂). Certainty equivalence would then yield a control
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policy Ut = −K̂Xt where K̂ can be found using (Â, B̂, Φ̂, Ψ̂) in place
of (A, B, Φ, Ψ) in the formulae above. What is the cost of this model?

The following discussion follows arguments due to Mania et al.18

Let J(K) denote that cost of using the policy K. Note that this cost may
be infinite, but it will also be differentiable in K. If we unroll the dynam-
ics and compute expected values, one can see that the cost is the limit of
polynomials in K, and hence is differentiable.

Suppose that

ε := max
{
‖Â− A‖, ‖B̂− B‖, ‖Φ̂−Φ‖, ‖Ψ̂−Ψ‖

}
If we Taylor expand the cost we find that for some t ∈ [0, 1],

J(K̂)− J? = 〈∇J(K?), K̂− K?〉+
1
2
(K̂− K?)

T∇2 J(K̃)(K̂− K?) .

where K̃ = (1− t)K? + tK̂. The first term is equal to zero because K? is
optimal. Since the map from (A, B, Φ, Ψ) to K? is differentiable, there must
be constants L and ε0 such that ‖K̂ − K?‖ ≤ Lε whenever ε ≤ ε0. This
means that as long as the estimates for (A, B, Φ, Ψ) are close enough to the
true values, we must have

J(K̂)− J? = O(ε2) .

Just how good should the estimates for these quantities be? Let’s focus
on the dynamics (A, B) as the cost matrices Φ and Ψ are typically design
parameters, not unknown properties of the system. Suppose A is d × d
and B is d × p. Basic parameter counting suggests that if we observe T
sequential states from the dynamical system, we observe a total of dT
numbers, one for each dimension of the state per time step. Hence, a naive
statistical guess would suggest that

max
{
‖Â− A‖, ‖B̂− B‖

}
≤ O

(√
d + p

T

)
.

Combining this with our Taylor series argument implies that

J(K̂)− J? = O
(

d + p
T

)
.

As we already described, this also suggests that certainty equivalent control
accrues a regret of

RT = O(
√

T) .
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This argument can be made completely rigorous.18 The regret accrued
also turns out to be the optimal.19 Moreover, the Taylor series argument
here works for any model where the cost function is twice differentiable.
Thus, we’d expect to see similar behavior in more general SDM problems
with continuous state spaces.

Certainty equivalence for tabular MDPs

For discounted, tabular MDPs, certainty equivalence also yields an optimal
sample complexity. This result is elementary enough to be proven in a
few pages. We first state an approximation theorem that shows that if
you build a policy with the wrong model, the value of that policy can be
bounded in terms of the inaccuracy of your model. Then, using Hoeffding’s
inequality, we can construct a sample complexity bound that is nearly
optimal. The actual optimal rate follows using our main approximation
theorem coupled with slightly more refined concentration inequalities.
We refer readers interested in this more refined analysis to the excellent
reinforcement learning text by Agarwal et al.20

Let V?(x) denote the optimal expected reward attainable by some policy
on the discounted problem

maximize EWt [∑
∞
t=0 γtR(Xt, Ut, Wt)]

subject to Xt+1 = f (Xt, Ut, Wt), Ut = πt(Xt)
(x0 = x).

Note that V? is a function of the initial state. This mapping from initial
state to expected rewards is called the value function of the SDM problem.
Let Vπ(x) denote the expected reward attained when using some fixed,
static policy π. Our aim is to evaluate the reward of particular policies that
arise from certainty equivalence.

To proceed, first let Q̂ be any function mapping state-action pairs to
a real value. We can always define a policy πQ̂(x) = arg maxu Q̂(x, u).

The following theorem quantifies the value of πQ̂ when Q̂ is derived by
solving the Bellman equation with an approximate model of the MDP
dynamics. This theorem has been derived in numerous places in the RL
literature, and yet it does not appear to be particularly well known. As
pointed out by ’Avila Pires and Szepesvari,21 it appears as a Corollary to
Theorem 3.1 in Whitt22 (1978), as Corollary 2 in Singh and Yee23 (1994), as a
corollary of Proposition 3.1 in Bertsekas24 (2012). We emphasize it here as it
demonstrates immediately why certainty equivalence is such a powerful
tool in sequential decision making problems.
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Theorem 2. Model-error for MDPs. Consider a γ-discounted MDP with
dynamics governed by a model p and a reward function r. Let Q̂ denote the Q-
function for the MDP with the same rewards but dynamics P̂. Then we have

V?(x)−VπQ̂(x) ≤ 2γ

(1− γ)2 sup
x,u

∣∣∣∣∣ E
P̂(·|x,u)

[V?]− E
P(·|x,u)

[V?]

∣∣∣∣∣ .

This theorem states that the values associated with the policy that we
derive using the wrong dynamics will be close to optimal if EP̂(·|x,u)[V?]

and EP(·|x,u)[V?] are close for all state-action pairs (x, u). This is a remark-
able result as it shows that we can control our regret by our prediction
errors. But the only prediction that matters is our predictions of the optimal
value vectors V?. Note further that this theorem makes no assumptions
about the size of the state spaces: it holds for discrete, tabular MDPs, and
more general discounted MDPs. A discussion of more general problems is
covered by Bertsekas.25

Focusing on the case of finite-state tabular MDPs, suppose the rewards
are in the range [0, 1] and there are S states and A actions. Then the values
are in the range V?(x) ∈ [0, (1− γ)−1]. Immediately from this result, we can
derive a sample-complexity bound. Let’s suppose that for each pair (x, u),
we collect n samples to estimate the conditional probabilities P[X′ = x′|x, u],
and define P̂(X′ = x′|x, u) to be the number of times we observe x′ divided
by n. Then by Hoeffding’s inequality

P

[∣∣∣∣∣ E
P̂[·|x,u]

[V?]− E
P[·|x,u]

[V?]

∣∣∣∣∣ ≥ ε

]
≤ 2 exp

(
−2nε2(1− γ)2

)
and therefore, by the union bound

sup
x,u

∣∣∣∣∣ E
P̂[·|x,u]

[V?]− E
P[·|x,u]

[V?]

∣∣∣∣∣ ≤
√√√√ log

(
2SA

δ

)
n(1− γ)2 .

with probability 1 − δ. If we let N = SAn denote the total number of
samples collected, we see that

V?(x)−VπQ̂(x) ≤ 2γ

(1− γ)3

√√√√SA log
(

2SA
δ

)
N

.

Our naive bound here is nearly optimal: the dependence on γ can be
reduced from (1− γ)−3 to (1− γ)−3/2 using more refined deviation in-
equalities, but the dependence on S, A, and N is optimal.20, 26 That is,
certainty equivalence achieves an optimal sample complexity for the dis-
counted tabular MDP problem.
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Proof of the model-error theorem

The proof here combines arguments by Bertsekas24 and Agarwal.20 Let us
first introduce notation that makes the proof a bit more elegant. Let Q be
any function mapping state-action pairs to real numbers. Given a policy π
and a state-transition model P, denote TP to be the map from functions to
functions where

[TPQ](x, u) = r(x, u) + γ ∑
x′

max
u′

Q(x′, u′)P[X′ = x′|x, u] .

With this notation, the Bellman equation for the discounted MDP simply
becomes

Q? = TPQ? .

If we were to use P̂ instead of P, this would yield an alternative Q-
function, Q̂, that satisfies the Bellman equation Q̂ = T

P̂
Q̂.

The operator TP is a contraction mapping in the `∞ norm. To see this,
note that for any functions Q1 and Q2,

|[TPQ1 − TPQ2](x, u)| =
∣∣∣∣∣γ ∑

x′
(max

u1
Q1(x′, u1)−max

u2
Q2(x′, u2))P[X′ = x′|x, u]

∣∣∣∣∣
≤ γ ∑

x′
P[X′ = x′|x, u]

∣∣∣∣max
u1

Q1(x′, u1)−max
x2

Q2(x′, u2)

∣∣∣∣
≤ γ‖Q1 −Q2‖∞ .

Since TP is a contraction, the solution of the discounted Bellman equations
are unique and Q? = limk→∞ TP

kQ for any function Q. Similarly, Q̂ =

limk→∞ TP̂
kQ.

Now we can bound∥∥∥TP̂
kQ? −Q?

∥∥∥
∞
≤

k

∑
i=1
‖T

P̂
iQ? − TP̂

i−1Q?‖∞ ≤
k

∑
i=1

γi−1‖T
P̂

Q? −Q?‖∞ .

Taking limits of both sides as k→ ∞, we find∥∥∥Q̂−Q?

∥∥∥
∞
≤ 1

1− γ
‖T

P̂
Q? −Q?‖∞ .

But since Q? = TPQ?, and

[T
P̂

Q? − TPQ?](x, u)

=γ ∑
x′

max
u′

Q?(x′, u′)
(
P̂[X′ = x′|x, u]−P[X′ = x′|x, u]

)
,
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we have the bound∥∥∥Q̂−Q?

∥∥∥
∞
≤ γ

1− γ
sup
x,u

∣∣∣∣∣ E
P̂[·|x,u]

[V?]− E
P[·|x,u]

[V?]

∣∣∣∣∣ .

To complete the proof, it suffices to use
∥∥∥Q̂−Q?

∥∥∥
∞

to upper bound the

difference between the values of the two policies. Let π?(x) = arg maxu Q?(x, u)
and π̂(x) = arg maxu Q̂?(x, u) denote the optimal policies for the models P
and P̂ respectively. For any policy π, we have

Vπ(x) = r(x, π(x)) + γ ∑
x′

P[X′ = x′|x, π(x)]Vπ(x′) ,

and hence we can bound the optimality gap as

V?(x)−Vπ̂(x) = Q?(x, π?(x))−Vπ̂(x)

= Q?(x, π?(x))−Q?(x, π̂(x)) + Q?(x, π̂(x))−Vπ̂(x)
= Q?(x, π?(x))−Q?(x, π̂(x))

+ γ ∑
x′

P[X′ = x′|x, π̂(x)]
(

V?(x′)−Vπ̂(x′)
)

≤ Q?(x, π?(x))− Q̂(x, π?(x)) + Q̂(x, π̂(x))−Q?(x, π̂(x))

+ γ ∑
x′

P[X′ = x′|x, π̂(x)]
(

V?(x′)−Vπ̂(x′)
)

≤ 2‖Q? − Q̂‖∞ + γ‖V? −Vπ̂‖∞ .

Here, the first inequality holds because Q̂(x, π?(x)) ≤ maxu Q̂(x, u) =

Q̂(x, π̂(x)). Rearranging terms shows that

V?(x)−Vπ̂(x) ≤ 2
1− γ

‖Q? − Q̂‖∞ ,

which, when combined with our previous bound on ‖Q? − Q̂‖∞, completes
the proof.

Sample complexity of other RL algorithms

The sample complexity of reinforcement learning remains an active field,
with many papers honing in on algorithms with optimal complexity. Re-
searchers have now shown a variety of methods achieve the optimal com-
plexity of certainty equivalence including those based on ideas from ap-
proximate dynamic programming and Q-learning. For LQR on the other
hand, no other methods are currently competitive.
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While sample complexity is important, there are not significant gains to
be made over simple baselines that echo decades of engineering practice.
And, unfortunately, though sample complexity is a well posed problem
which excites many researchers, it does not address many of the imped-
iments preventing reinforcement learning form being deployed in more
applications. As we will see in a moment, the optimization framework itself
has inherent weaknesses that cannot be fixed by better sample efficiency,
and these weaknesses must be addressed head-on when designing an SDM
system.

The limits of learning in feedback loops

Though we have shown the power of certainty equivalence, it is also a useful
example to guide how reinforcement learning—and optimal sequential
decision making more generally—can go wrong. First, we will show how
optimal decision making problems themselves can be set up to be very
sensitive to model-error. So treating a model as true in these cases can lead
to misguided optimism about performance. Second, we will adapt this
example to the case where the state is partially observed and demonstrate a
more subtle pathology. As we discussed in the last chapter, when state is
not perfectly observed, decision making is decidedly more difficult. Here
we will show an example where improving your prediction paradoxically
increases your sensitivity to model error.

Fragile instances of the linear quadratic regulator

Consider the following innocuous dynamics:

A =

[
0 1
0 0

]
, B =

[
0
1

]
.

This system is a simple, two-state shift register. Write the state out
with indexed components x = [x(1), x(2)]>. New states enter through the
control B into the second state. The first state x(1) is simply whatever was
in the second register at the previous time step. The open loop dynamics of
this system are as stable as you could imagine. Both eigenvalues of A are
zero.

Let’s say our control objective aims to try to keep the two components
of the state equal to each other. We can model this with the quadratic cost
matrices
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Φ =

[
1 −1
−1 1

]
, Ψ = 0 .

Here, Ψ = 0 for simplicity, as the formulae are particularly nice for this
case. But, as we will discuss in a moment, the situation is not improved
simply by having R be positive. For the disturbance, assume that Wt is zero
mean, has bounded second moment, Σt = E[WtW>t ], and is uncorrelated
with Xt and Ut.

The cost is asking to minimize

E

[
N

∑
t=1

(X(1)
t − X(2)

t )2

]

When Wt = 0, X(1)
t + X(2)

t = X(2)
t−1 + Ut−1, so the intuitive best action would

be to set Ut = X(2)
t . This turns out to be the optimal action, and one can

prove this directly using standard dynamic programming computations or
a Discrete Algebraic Riccati Equation. With this identification, we can write
closed loop dynamics by eliminating the control signal:

Xt+1 =

[
0 1
0 1

]
Xt + Wt .

This closed-loop system is marginally stable, meaning that while signals
don’t blow up, some states will persist forever and not converge to 0. The
second component of the state simply exhibits a random walk on the real
line. We can analytically see that the system is not stable by computing the
eigenvalues of the state-transition matrix, which are here 0 and 1. The 1
corresponds the state where the two components are equal, and such a state
can persist forever.

If we learned an incorrect model of the dynamics, how would that influ-
ence the closed loop behavior? The simplest scenario is that we identified B
from some preliminary experiments. If the true B? = αB, then the closed
loop dynamics are

Xt+1 =

[
0 1
0 α

]
Xt + Wt .

This system is unstable for any α > 1. That is, the system is arbitrarily
sensitive to misidentification of the dynamics. This lack of robustness has
nothing to do with the noise sequence. The structure of the cost is what
drives the system to fragility.

If Ψ > 0, we would get a slightly different policy. Again, using elemen-
tary dynamic programming shows that the optimal control is ut = βt(Ψ)x(2)t
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for some βt(Ψ) ∈ (1/2, 1). The closed loop system will be a bit more stable,
but this comes at the price of reduced performance. You can also check
that if you add ε times the identity to Φ, we again get a control policy
proportional to the second component of the state, x(2)t .

Similar examples are fairly straightforward to construct. The state-
transition matrix of the closed loop dynamics will always be of the form A−
BK, and we can first find a K such that A − BK has an eigenvalue of
magnitude 1. Once this is constructed, it suffices to find a vector v such
that (v′B)−1v′A = K. Then the cost Φ = vv′ yields the desired pathological
example.

One such example that we will use in our discussion of partially observed
systems is the model:

A =

[
1 1
0 1

]
, B =

[
0
1

]
,

Φ =

[
1 1/2

1/2 1/4

]
, Ψ = 0 .

The dynamics here are our “Newton’s Law” dynamics studied in our
dynamic programming examples. One can check that the closed loop
dynamics of this system are

Xt+1 =

[
1 1
−2 −2

]
Xt + Wt .

The transition matrix here has eigenvalues 0 and −1, and the state x =
[1/2,−1] will oscillate in sign and persist forever.

Partially observed example

Recall the generalization of LQR to the case with imperfect state observation
is called “Linear Quadratic Gaussian” control (LQG). This is the simplest,
special case of a POMDP. We again assume linear dynamics:

Xt+1 = AXt + BUt + Wt .

where the state is now corrupted by zero-mean Gaussian noise, Wt. Instead
of measuring the state Xt directly, we instead measure a signal Yt of the
form

Yt = CXt + Vt .

Here, Vt is also zero-mean Gaussian noise. Suppose we’d still like to
minimize a quadratic cost function

lim
T→∞

E

[
1
T

T

∑
t=0

X>t ΦXt + U>t ΨUt

]
.
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This problem is very similar to our LQR problem except for the fact that
we get an indirect measurement of the state and need to apply some sort of
filtering of the Yt signal to estimate Xt.

The optimal solution for LQG is strikingly elegant. Since the observation
of Xt is through a Gaussian process, the maximum likelihood estimation
algorithm has a clean, closed form solution. As we saw in the previous
chapter, our best estimate for Xt, denoted x̂t, given all of the data observed
up to time t is given by a Kalman Filter. The estimate obeys a difference
equation

x̂t+1 = Ax̂t + But + L(yt − Cx̂t) .

The matrix L that can be found by solving an discrete algebraic Riccati
equation that depends on the variance of vt and wt and on the matrices A
and C. In particular, it’s the DARE with data (A>, C>, Σw, Σv).

The optimal LQG solution takes the estimate of the Kalman Filter, x̂t,
and sets the control signal to be

ut = −Kx̂t .

Here, K is gain matrix that would be used to solve the LQR problem
with data (A, B, Φ, Ψ). That is, LQG performs optimal filtering to compute
the best state estimate, and then computes a feedback policy as if this
estimate was a noiseless measurement of the state. That this turns out
to be optimal is one of the more amazing results in control theory. It
decouples the process of designing an optimal filter from designing an
optimal controller, enabling simplicity and modularity in control design.
This decoupling where we treat the output of our state estimator as the
true state is yet another example of certainty equivalence, and yet another
example of where certainty equivalence turns out to be optimal. However,
as we will now see, LQG highlights a particular scenario where certainty
equivalent control leads to misplaced optimism about robustness.

Before presenting the example, let’s first dive into why LQG is likely less
robust than LQR. Let’s assume that the true dynamics are generated as:

Xt+1 = AXt + B?Ut + Wt ,

though we computed the optimal controller with the matrix B. Define an
error signal, Et = Xt − x̂t, that measures the current deviation between the
actual state and the estimate. Then, using the fact that ut = −Kx̂t, we get
the closed loop dynamics[

X̂t+1
Et+1

]
=

[
A− BK LC

(B− B?)K A− LC

] [
X̂t
Et

]
+

[
LVt

Wt − LVt

]
.

When B = B?, the bottom left block is equal to zero. The system is then
stable provided A − BK and A − LC are both stable matrices (i.e., have
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eigenvalues with magnitude less than one). However, small perturbations in
the off-diagonal block can make the matrix unstable. For intuition, consider
the matrix [

0.9 1
0 0.8

]
.

The eigenvalues of this matrix are 0.9 and 0.8, so the matrix is clearly stable.
But the matrix [

0.9 1
t 0.8

]
has an eigenvalue greater than one if t > 0.02. So a tiny perturbation
significantly shifts the eigenvalues and makes the matrix unstable.

Similar things happen in LQG. Let’s return to our simple dynamics
inspired by Newton’s Laws of Motion

A =

[
1 1
0 1

]
, B =

[
0
1

]
, C =

[
1 0

]
And let’s use any cost matrices Φ and Ψ. We assume that the noise variances
are

E
[
WtW>t

]
=

[
1 2
2 4

]
, E

[
V2

t

]
= σ2

The open loop system here is unstable, having two eigenvalues at 1.
We can stabilize the system only by modifying the second state. The state
disturbance is aligned along the direction of the vector [1/2; 1], and the state
cost only penalizes states aligned with this disturbance. The SDM goal is
simply to remove as much signal as possible in the [1; 1] direction without
using large inputs. We only are able to measure the first component of the
state, and this measurement is corrupted by Gaussian noise.

What does the optimal policy look like? Perhaps unsurprisingly, it
focuses all of its energy on ensuring that there is little state signal along the
disturbance direction. The optimal L matrix is

L =

[
3− d1
2− d2

]
.

where d1 and d2 are small positive numbers that go to zero as σ goes to
zero. The optimal K will have positive coefficients whenever we choose
for Φ and Ψ to be positive semidefinite: if K has a negative entry, it will
necessarily not stabilize (A, B).

Now what happens when we have model mismatch? Let’s assume for
simplicity that σ = 0. If we set B? = tB and use the formula for the closed
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loop above, we see that closed loop state transition matrix is

Acl =


1 1 3 0
−k1 1− k2 2 0

0 0 −2 1
k1(1− t) k2(1− t) −2 1

 .

It’s straight forward to check that when t = 1 (i.e., no model mismatch),
the eigenvalues of A− BK and A− LC all have real parts with magnitude
less than or equal to 1. For the full closed loop matrix, analytically com-
puting the eigenvalues themselves is a pain, but we can prove instability
by looking at a characteristic polynomial. For a matrix to have all of its
eigenvalues in the left half plane, its characteristic polynomial necessarily
must have all positive coefficients. If we look at the linear term in the
characteristic polynomial, of −I − Acl we see that if t > 1, Acl must have an
eigenvalue with real part less than −1, and hence the closed loop is unstable.
This is a very conservative condition, and we could get a tighter bound if
we’d like, but it’s good enough to reveal some paradoxical properties of
LQG. The most striking is that if we build a sensor that gives us a better
and better measurement, our system becomes more and more fragile to
perturbation and model mismatch. For machine learning scientists, this
seems to go against all of our training. How can a system become less robust
if we improve our sensing and estimation?

Let’s look at the example in more detail to get some intuition for what’s
happening. When the sensor noise gets small, the optimal Kalman Filter
is more aggressive. The filter rapidly damps any errors in the disturbance
direction [1; 1/2] and, as σ decreases, it damps the [1; 1] direction less.
When t 6= 1, B− B? is aligned in the [0; 1] and can be treated as a disturbance
signal. This undamped component of the error is fed errors from the state
estimate, and these errors compound each other. Since we spend so much
time focusing on our control along the direction of the injected state noise,
we become highly susceptible to errors in a different direction and these
are the exact errors that occur when there is a gain mismatch between the
model and reality.

The fragility of LQG has many takeaways. It highlights that noiseless
state measurement can be a dangerous modeling assumption, because it
is then optimal to trust our model too much. Model mismatch must be
explicitly accounted for when designing the decision making policies.

This should be a cautionary tale for modern AI systems. Most papers
in reinforcement learning consider MDPs where we perfectly measure the
system state. Building an entire field around optimal actions with perfect
state observation builds too much optimism. Any realistic scenario is going
to have partial state observation, and such problems are much thornier.
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A second lesson is that it is not enough to just improve the prediction
components in feedback systems that are powered by machine learning.
Improving prediction will increase sensitivity to a modeling errors in some
other part of the engineering pipeline, and these must all be accounted for
together to ensure safe and successful decision making.

Chapter notes

This chapter and the previous chapter overlap significantly with a survey of
reinforcement learning by Recht, which contains additional connections to
continuous control.27

Bertsekas has written several valuable texts on reinforcement learning
from different perspectives. His seminal book with Tsitsiklis established
the mathematical formalisms of Neurodynamic Programming that most
resemble contemporary reinforcement learning.17 The second volume of
his Dynamic Programming Book covers many of the advanced topics in
approximate dynamic programming and infinite horizon dynamic program-
ming.28 And his recent book on reinforcement learning builds ties with his
earlier work and recent advances in reinforcement learning post AlphaGo.29

For more on bandits from a theoretical perspective, the reader is in-
vited to consult the comprehensive book by Lattimore and Szepesvari.30

Agarwal et al. provide a thorough introduction to the theoretical aspects of
reinforcement learning from the perspective of learning theory.20

The control theoretic perspective on reinforcement learning is called
dual control. Its originated at a similar time to reinforcement learning, and
many attribute Feldbaum’s work as the origin point.31 Wittenmark surveys
the history of this topic, its limitations, and its comparison to certainty
equivalence methods.32 For further exploration of the limits of classical
optimal control and how to think about robustness, Gunter Stein’s “Respect
the Unstable” remains a classic lecture on the subject.33
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