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Sequential decision making and dynamic
programming

As the previous chapters motivated we don’t just make predictions for
their own sake, but rather use data to inform decision making and action.
This chapter examines sequential decisions and the interplay between pre-
dictions and actions in settings where our repeated actions are directed
towards a concrete end-goal. It will force us to understand statistical mod-
els that evolve over time and the nature of dependencies in data that is
temporally correlated. We will also have to understand feedback and its
impact on statistical decision-making problems.

In machine learning, the subfield of using statistical tools to direct actions
in dynamic environments is commonly called “reinforcement learning” (RL).
However, this blanket term tends to lead people towards specific solution
techniques. So we are going to try to maintain a broader view of the area
of sequential decision making, including perspectives from related fields of
predictive analytics and optimal control. These multiple perspectives will
allow us to highlight how RL is different from the machine learning we are
most familiar with.

This chapter will follow a similar flow to our study of prediction. We will
formalize a temporal mathematical model of sequential decision making
involving notions from dynamical systems. We will then present a common
optimization framework for making sequential decisions when models
are known: dynamic programming. Dynamic programming will enable
algorithms for finding or approximating optimal decisions under a variety
of scenarios. In the sequel, we will turn to the learning problem of how to
best make sequential decisions when the mechanisms underlying dynamics
and costs are not known in advance.

From predictions to actions

Let’s first begin with a discussion of how sequential decision making differs
from static prediction. In our study of decision theory, we laid out a
framework for making optimal predictions of a binary covariate Y when we
had access to data X, and probabilistic models of how X and Y were related.
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Supervised learning was the resulting problem of making such decisions
from data rather than probabilistic models.

In sequential decision making, we add two new variables. First, we
incorporate actions denoted U that we aim to take throughout a procedure.
We also introduce rewards R that we aim to maximize. In sequential decision
making, the goal is to analyze the data X and then subsequently choose U
so that R is large. We have explicit agency in choosing U and are evaluated
based on some quality scoring of U and X. There are an endless number of
problems where this formulation is applied from supply chain optimization
to robotic planning to online engagement maximization. Reinforcement
learning is the resulting problem of taking actions so as to maximize rewards
where our actions are only a function of previously observed data rather
than probabilistic models. Not surprisingly, the optimization problem
associated with sequential decision making is more challenging than the
one that arises in decision theory.

Dynamical systems

In addition to the action variable in sequential decision making, another
key feature of sequential decision making problems is the notion of time
and sequence. We assume data is collected in an evolving process, and our
current actions influence our future rewards.

We begin by bringing all of these elements together in the general
definition of a discrete time dynamical system. The definitions both simple
and broad. We will illustrate with several examples shortly.

A dynamical system model has a state Xt, exogenous input Ut modeling
our control action, and reward Rt. The state evolves in discrete time steps
according to the equation

Xt+1 = ft(Xt, Ut, Wt)

where Wt is a random variable and ft is a function. The reward is assumed
to be a function of these variables as well:

Rt = gt(Xt, Ut, Wt)

for some function gt. To simplify our notation throughout, we will com-
monly write R explicitly as a function of (X, U, W), that is, Rt[Xt, Ut, Wt].

Formally, we can think of this definition as a structural equation model
that we also used to define causal models. After all, the equations above
give us a way to incrementally build up a data-generating process from
noise variables. Whether or not the dynamical system is intended to capture
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any causal relationships in the real world is a matter of choice. Practitioners
might pursue this formalism for reward maximization without modeling
causal relationships. A good example is the use of sequential decision
making tools for revenue maximization in targeted advertising. Rather than
modeling causal relationships between, say, preferences and clicks, targeted
advertising heavily relies on all sorts of signals, be they causal or not.

Concrete examples

Grocery shopping. Bob really likes to eat cheerios for breakfast every
morning. Let the state Xt denotes the amount of Cheerios in Bob’s kitchen
on day t. The action Ut denotes the amount of Cheerios Bob buys on day t
and Wt denotes the amount of Cheerios he eats that day. The random
variable Wt varies with Bob’s hunger. This yields the dynamical system

Xt+1 = Xt + Ut −Wt .

While this example is a bit cartoonish, it turns out that such simple models
are commonly used in managing large production supply chains. Any
system where resources are stochastically depleted and must be replenished
can be modeled comparably. If Bob had a rough model for how much he
eats in a given day, he could forecast when his supply would be depleted.
And he could then minimize the number of trips he’d need to make to the
grocer using optimal control.

Moving objects. Consider a physical model of a flying object. The
simplest model of the dynamics of this system are given by Newton’s
laws of mechanics. Let Zt denote the position of the vehicle (this is a
three-dimensional vector). The derivative of position is velocity

Vt =
∂Zt

∂t
,

and the derivative of velocity is acceleration

At =
∂Vt

∂t
.

Now, we can approximate the rules in discrete time with the simple Taylor
approximations

Zt+1 = Zt + ∆Vt

Vt+1 = Vt + ∆At

We also know by Newton’s second law, that acceleration is equal to the
total applied force divided by the mass of the object: F = mA. The flying
object will be subject to external forces such as gravity and wind Wt and it
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will also receive forces from its propellers Ut. Then we can add this to the
equations to yield a model

Zt+1 = Zt + ∆Vt

Vt+1 = Vt +
∆
m
(Wt + Ut) .

Oftentimes, we only observe the acceleration through an accelerometer.
Then estimating the position and velocity becomes a filtering problem.
Optimal control problems for this model include flying the object along a
given trajectory or flying to a desired location in a minimal amount of time.

Markov decision processes

Our definition in terms of structural equations is not the only dynamical
model used in machine learning. Some people prefer to work directly with
probabilistic transition models and conditional probabilities. In a Markov
Decision Process, we again have a state Xt and input Ut, and they are linked
by a probabilistic model

P[Xt+1 | Xt, Ut] .

This is effectively the same as the structural equation model above except
we hide the randomness in this probabilistic notation.

Example: machine repair. The following example illustrates the elegance
of the conditional probability models for dynamical systems. This example
comes from Bertsekas.1 Suppose we have a machine with ten states of
repair. State 10 denotes excellent condition and 1 denotes the inability to
function. Every time one uses the machine in state j, it has a probability
of falling into disrepair, given by the probabilities P[Xt+1 = i | Xt = j] ,
where P[Xt+1 = i | Xt = j] = 0 if i > j. The action a one can take at any
time is to repair the machine, resetting the system state to 10. Hence

P[Xt+1 = i | Xt = j, Ut = 0] = P[Xt+1 = i | Xt = j]

and
P[Xt+1 = i | Xt = j, Ut = 1] = 1 {i = 10} .

While we could write this dynamical system as a structural equation model,
it is more conveniently expressed by these probability tables.

Optimal sequential decision making

Just as risk minimization was the main optimization problem we studied in
static decision theory, there is an abstract class of optimization problems
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that underlie most sequential decision making (SDM) problems. The main
problem is to find a sequence of decision policies that maximize a cumulative
reward subject to the uncertain, stochastic system dynamics. At each time,
we assign a reward Rt(Xt, Ut, Wt) to the current state-action pair. The goal
is to find a sequence of actions to make the summed reward as large as
possible:

maximize{ut} EWt

[
∑T

t=0 Rt(Xt, ut, Wt)
]

subject to Xt+1 = ft(Xt, ut, Wt)
(x0 given)

Here, the expected value is over the sequence of stochastic disturbance
variables Wt. Note here, Wt is a random variable and Xt are is hence also
a random variable. The sequence of actions {ut} is our decision variable.
It could be chosen via a random or deterministic procedure as a matter of
design. But it is important to understand what information is allowed to be
used in order to select ut.

Since the dynamics are stochastic, the optimal SDM problem typically
allows a policy to observe the state before deciding upon the next action.
This allows a decision strategy to continually mitigate uncertainty through
feedback. This is why we optimize over policies rather than over a deter-
ministic sequence of actions. That is, our goal is to find functions of the
current state πt such that Ut = πt(Xt, Xt−1, . . .) is optimal in expected value.
By a control policy (or simply “a policy”) we mean a function that takes a
trajectory from a dynamical system and outputs a new control action. In
order for πt to be implementable, it must only have access only to previous
states and actions.

The policies πt are the decision variables of the problem:

maximizeπt EWt

[
∑T

t=0 Rt(Xt, Ut, Wt)
]

subject to Xt+1 = f (Xt, Ut, Wt)
Ut = πt(Xt, Xt−1, . . .)
(x0 given)

Now, Ut is explicitly a random variable as it is a function of the state Xt.
This SDM problem will be the core of what we study in this chapter.

And our study will follow a similar path to the one we took with decision
theory. We will first study how to solve these SDM problems when we
know the model. There is a general purpose solution for these problems
known as dynamic programming.
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Dynamic programming

The dynamic programming solution to the SDM problem is based on the
principle of optimality: if you’ve found an optimal control policy for a time
horizon of length T, π1, . . . , πT, and you want to know the optimal strategy
starting at state x at time t, then you just have to take the optimal policy
starting at time t, πt, . . . , πT. The best analogy for this is based on driving
directions: if you have mapped out an optimal route from Seattle to Los
Angeles, and this path goes through San Francisco, then you must also
have the optimal route from San Francisco to Los Angeles as the tail end of
your trip. Dynamic programming is built on this principle, allowing us to
recursively find an optimal policy by starting at the final time and going
backwards in time to solve for the earlier stages.

To proceed, define the Q-function to be the mapping:

Qa→b(x, u) = max
{ut}

E
Wt

[
b

∑
t=a

Rt(Xt, ut, Wt)

]
s.t. Xt+1 = ft(Xt, ut, Wt), (Xa, ua) = (x, u)

The Q-function determines the best achievable value of the SDM problem
over times a to b when the action at time a is set to be u and the initial
condition is x. It then follows that the optimal value of the SDM problem
is maxuQ0→T(x0, u), and the optimal policy is π(x0) = arg maxuQ0→T(x0, u).
If we had access to the Q-function for the horizon 0, T, then we’d have ev-
erything we’d need to know to take the first step in the SDM problem.
Moreover, the optimal policy is only a function of the current state of the
system. Once we see the current state, we have all the information we need
to predict future states, and hence we can discard the previous observations.

We can use dynamic programming to compute this Q-function and the
Q-function associated with every subsequent action. That is, clearly we
have that the terminal Q-function is

QT→T(x, u) = E
WT

[RT(x, u, WT)] ,

and then compute recursively

Qt→T(x, u) = E
Wt

[
Rt(x, u, Wt) + max

u′
Qt+1→T( ft(x, u, Wt), u′)

]
.

This expression is known as Bellman’s equation. We also have that for
all times t, the optimal policy is ut = arg maxuQt→T(xt, u) and the policy
depends only on the current state.
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To derive this form of the Q-function, we assume inductively that this
form is true for all times beyond t + 1 and then have the chain of identities

Qt→T(x, u) = max
πt+1,...,πT

E
w

[
Rt(x, u, Wt) +

T

∑
s=t+1

Rs(Xs, πs(Xs), Ws)

]

= E
Wt

[
Rt(x, u, Wt) + max

πt+1,...,πT
E

Wt+1,...,WT

{
T

∑
s=t+1

Rs(Xs, πs(Xs), Ws)

}]

= E
Wt

[
Rt(x, u, Wt) + max

πt+1
Q { f (x, u, Wt), πt+1( f (x, u, Wt))}

]
= E

Wt

[
Rt(x, u, Wt) + max

u′
Q( f (x, u, Wt), u′)

]
.

Here, the most important point is that the maximum can be exchanged
with the expectation with respect to the first Wt. This is because the policies
are allowed to make decisions based on the history of observed states, and
these states are deterministic functions of the noise process.

Infinite time horizons and stationary policies

The Q-functions we derived for these finite time horizons are time varying.
One applies a different policy for each step in time. However, on long
horizons with time invariant dynamics and costs, we can get a simpler
formula. First, for example, consider the limit:

maximize limN→∞ EWt [
1
N ∑N

t=0 R(Xt, Ut, Wt)]
subject to Xt+1 = f (Xt, Ut, Wt), Ut = πt(Xt)

(x0 given).

Such infinite time horizon problems are referred to as average cost dynamic
programs. Note that there are no subscripts on the rewards or transition
functions in this model.

Average cost dynamic programming is deceptively difficult. These
formulations are not directly amenable to standard dynamic programming
techniques except in cases with special structure. A considerably simpler
infinite time formulation is known as discounted dynamic programming, and
this is the most popular studied formulation. Discounting is a mathematical
convenience that dramatically simplifies algorithms and analysis. Consider
the SDM problem

maximize (1− γ)EWt [∑
∞
t=0 γtR(Xt, Ut, Wt)]

subject to Xt+1 = f (Xt, Ut, Wt), Ut = πt(Xt)
(x0 given).
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where γ is a scalar in (0, 1) called the discount factor. For γ close to 1, the
discounted reward is approximately equal to the average reward. However,
unlike the average cost model, the discounted cost has particularly clean
optimality conditions. If we define Qγ(x, u) to be the Q-function obtained
from solving the discounted problem with initial condition x, then we
have a discounted version of dynamic programming, now with the same
Q-functions on the left and right hand sides:

Qγ(x, u) = E
W

[
R(x, u, W) + γ max

u′
Qγ( f (x, u, W), u′)

]
.

The optimal policy is now for all times to let

ut = arg max
u
Qγ(xt, u) .

The policy is time invariant and one can execute it without any knowledge
of the reward or dynamics functions. At every stage, one simply has to
maximize a function to find the optimal action. Foreshadowing to the next
chapter, the formula additionally suggest that the amount that needs to
be “learned” in order to “control” is not very large for these infinite time
horizon problems.

Computation

Though dynamic programming is a beautiful universal solution to the very
general SDM problem, the generality also suggests computational barriers.
Dynamic programming is only efficiently solvable for special cases, and we
now describe a few important examples.

Tabular MDPs

Tabular MDPs refer to Markov Decision Processes with small number of
states and actions. Say that there are S states and A actions. Then the tran-
sition rules are given by tables of conditional probabilities P[Xt+1|Xt, Ut],
and the size of such tables are S2A. The Q-functions for the tabular case are
also tables, each of size SA, enumerating the cost-to-go for all possible state
action pairs. In this case, the maximization

max
u′
Qa→b(x, u′)

corresponds to looking through all of the actions and choosing the largest
entry in the table. Hence, in the case that the rewards are deterministic
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functions of x and u, Bellman’s equation simplifies to

Qt→T(x, u) = Rt(x, u)+∑
x′

P[Xt+1 = x′|Xt = x, Ut = u]max
u′
Qt+1→T(x′, u′) .

This function can be computed by elementary matrix-vector operations:
the Q-functions are S× A arrays of numbers. The “max” operation can be
performed by operating over each row in such an array. The summation
with respect to x′ can be implemented by multiplying a SA× S array by
an S-dimensional vector. We complete the calculation by summing the
resulting expression with the S× A array of rewards. Hence, the total time
to compute Qt→T is O(S2A).

Linear quadratic regulator

The other important problem where dynamic programming is efficiently
solvable is the case when the dynamics are linear and the rewards are
quadratic. In control design, this class of problems is generally referred to as
the problem of the Linear Quadratic Regulator (LQR):

minimize EWt

[
1
2 ∑T

t=0 XT
t ΦtXt + UT

t ΨtUt

]
,

subject to Xt+1 = AtXt + BtUt + Wt, Ut = πt(Xt)
(x0 given).

Here, Φt and Ψt are most commonly positive semidefinite matrices. wt is
noise with zero mean and bounded variance, and we assume Wt and Wt′

are independent when t 6= t′. The state transitions are governed by a linear
update rule with At and Bt appropriately sized matrices. We also abide
by the common convention in control textbooks to pose the problem as a
minimization—not maximization—problem.

As we have seen above, many systems can be modeled by linear dy-
namics in the real world. However, we haven’t yet discussed cost functions.
It’s important to emphasize here that cost functions are designed not given.
Recall back to supervised learning: though we wanted to minimize the
number of errors made on out-of-sample data, on in-sample data we min-
imized convex surrogate problems. The situation is exactly the same in
this more complex world of dynamical decision making. Cost functions are
designed by the engineer so that the SDM problems are tractable but also
so that the desired outcomes are achieved. Cost function design is part of
the toolkit for online decision making, and quadratic costs can often yield
surprisingly good performance for complex problems.

Quadratic costs are also attractive for computational reasons. They are
convex as long as Φt and Ψt are positive definite. Quadratic functions are
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closed under minimization, maximization, addition. And for zero mean
noise Wt with covariance Σ, we know that the noise interacts nicely with
the cost function. That is, we have

EW [(x + W)T M(x + W)] = xT Mx + Tr(MΣ)

for any vector x and matrix M. Hence, when we run dynamic programming,
every Q-function is necessarily quadratic. Moreover, since the Q-functions
are quadratic, the optimal action is a linear function of the state

Ut = −KtXt

for some matrix Kt.
Now consider the case where there are static costs Φt = Φ and Ψt = Ψ,

and time invariant dynamics such that At = A and Bt = B for all t. One
can check that the Q-function on a finite time horizon satisfies a recursion

Qt→T(x, u) = xTΦx + uTΨu + (Ax + Bu)T Mt+1(Ax + Bu) + ct .

for some positive definite matrix Mt+1. In the limit as the time horizon
tends to infinity, the optimal control policy is static, linear state feedback:

ut = −Kxt .

Here the matrix K is defined by

K = (Ψ + BT MB)−1BT MA

and M is a solution to the Discrete Algebraic Riccati Equation

M = Φ + AT MA− (AT MB)(Ψ + BT MB)−1(BT MA) .

Here, M is the unique solution of the Riccati equation where all of the
eigenvalues of A− BK have magnitude less than 1. Finding this specific
solution is relatively easy using standard linear algebraic techniques. It is
also the limit of the Q-functions computed above.

Policy and value iteration

Two of the most well studied methods for solving such discounted infinite
time horizon problems are value iteration and policy iteration. Value iteration
proceeds by the steps

Qk+1(x, u) = E
W

[
R(x, u, W) + γ max

u′
Qk( f (x, u, W), u′)

]
.
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That is, it simply tries to solve the Bellman equation by running a fixed
point operation. This method succeeds when the iteration is a contraction
mapping, and this occurs in many contexts.

On the other hand, Policy Iteration is a two step procedure: policy
evaluation followed by policy improvement. Given a policy πk, the policy
evaluation step is given by

Qk+1(x, u) = E [R(x, u, W) + γQk( f (x, πk(x), W), πk(x))] .

And then the policy is updated by the rule

πk+1(x) = arg max
u
Qk+1(x, u) .

Often times, several steps of policy evaluation are performed before updat-
ing the policy.

For both policy and value iteration, we need to be able to compute
expectations efficiently and must be able to update all values of x and u in
the associated Q functions. This is certainly doable for tabular MDPs. For
general low dimensional problems, policy iteration and value iteration can
be approximated by gridding state space, and then treating the problem as
a tabular one. Then, the resulting Q function can be extended to other (x, u)
pairs by interpolation. There are also special cases where the maxima and
minima yield closed form solutions and hence these iterations reduce to
simpler forms. LQR is a canonical example of such a situation.

Model predictive control

If the Q-functions in value or policy iteration converge quickly, long-term
planning might not be necessary, and we can effectively solve infinite
horizon problem with short-term planning. This is the key idea behind
one of the most powerful techniques for efficiently and effectively finding
quality policies for SDM problems called model predictive control.

Suppose that we aim to solve the infinite horizon average reward prob-
lem:

maximize limT→∞ EWt [
1
T ∑T

t=0 Rt(Wt, Ut)]
subject to Xt+1 = ft(Xt, Ut, Wt)

Ut = πt(Xt)
(x0 given).

Model Predictive Control computes an open loop policy on a finite horizon H

maximizeut EWt [∑
H
t=0 Rt(Xt, ut)]

subject to Xt+1 = ft(Xt, ut, Wt)
(X0 = x).
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This gives a sequence u0(x), . . . , uH(x). The policy is then set to be π(x) =
u0(x). After this policy is executed, we observe a new state, x′, based on
the dynamics. We then recompute the optimization, now using x0 = x′ and
setting the action to be π(x′) = u0(x′).

MPC is a rather intuitive decision strategy. The main idea is to plan
out a sequence of actions for a given horizon, taking into account as much
uncertainty as possible. But rather than executing the entire sequence, we
play the first action and then gain information from the environment about
the noise. This direct feedback influences the next planning stage. For
this reason, model predictive control is often a successful control policy
even when implemented with inaccurate or approximate models. Model
Predictive Control also allows us to easily add a variety of constraints to
our plan at little cost, such as bounds on the magnitude of the actions. We
just append these to the optimization formulation and then lean on the
computational solver to make us a plan with these constraints.

To concretely see how Model Predictive Control can be effective, it’s
helpful to work through an example. Let’s suppose the dynamics and
rewards are time invariant. Let’s suppose further that the reward function is
bounded above, and there is some state-action pair (x?, u?) which achieves
this maximal reward Rmax.

Suppose we solve the finite time horizon problem where we enforce
that (x, u) must be at (x?, u?) at the end of the time horizon:

maximize EWt [∑
H
t=0 R(Xt, ut)]

subject to Xt+1 = f (Xt, ut, Wt)
(XH, UH) = (x?, u?)
(X0 = x).

We replan at every time step by solving this optimization problem and
taking the first action.

The following proposition summarizes how this policy performs

Proposition 1. Assume that all rewards are bounded above by Rmax. Then with
the above MPC policy, we have for all T that

E

[
1
T

T

∑
t=0

R(xt, ut)

]
≥ Q0→H(x0, u0)− HRmax

T
+ EW [R( f (x?, u?, W), 0)] .

The proposition asserts that there is a “burn in” cost associated with
the initial horizon length. This term goes to zero with T, but will have
different values for different H. The policy converges to a residual average
cost due to the stochasticity of the problem and the fact that we try to force
the system to the state (x?, u?).
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Proof. To analyze how the policy performs, we turn to Bellman’s equation.
For any time t, the MPC policy is

ut = arg max
u
Q0→H(xt, u)

Now,
Q0→H(xt, u) = R(xt, u) + E[max

u′
Q1→H(Xt+1, u′)] .

Now consider what to do at the time t + 1. A suboptimal strategy at this
time is to try to play the optimal strategy on the horizon 1→ H, and then
do nothing on the last step. That is,

max
u
Q0→H(xt+1, u) ≥ max

u′
Q1→H(xt+1, u′) + E[R( f (x?, u?, Wt+H), 0)] .

The last expression follows because the action sequence from 1 → H
enforces (xt+H, ut+H) = (x?, u?). The first term on the right hand side was
computed in expectation above, hence we have

E[max
u
Q0→H(Xt+1, u)] ≥ E[Q0→H(xt, ut)]−E[R(xt, ut, W)]+E[R( f (x?, u?, W), 0)] .

Unwinding this recursion, we find

E[max
u
Q0→H(XT+1, u)] ≥ Q0→H(x0, u0)−E

[
T

∑
t=0

R(xt, ut, Wt)

]
+ TE[R( f (x?, u?, W), 0)] .

Since the rewards are bounded above, we can upper bound the left hand
side by RmaxH. Rearranging terms then proves the theorem.

The main caveat with this argument is that there may not exist a policy
that drives x to x? from an arbitrary initial condition and any realization of
the disturbance signal. Much of the analysis of MPC schemes is devoted to
guaranteeing that the problems are recursively feasible, meaning that such
constraints can be met for all time.

This example also shows how it is often helpful to have some sort of
recourse at the end of the planning horizon to mitigate the possibility of
being too greedy and driving the system into a bad state. The terminal
condition of forcing xH = 0 adds an element of safety to the planning, and
ensures stable execution for all time. More general, adding some terminal
condition to the planning horizon C(xH) is part of good Model Predictive
Control design and is often a powerful way to balance performance and
robustness.
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Partial observation and the separation heuristic

Let’s now move to the situation where instead of observing the state directly,
we observe an output Yt:

Yt = ht(Xt, Ut, Wt) .

All of the policies we derived from optimization formulations above re-
quired feeding back a function of the state. When we can only act on
outputs, SDM problems are considerably more difficult.

1. Static Output Feedback is NP-hard. Consider the case of just building a
static policy from the output Yt. Let’s suppose our model is just the
simple linear model:

Xt+1 = AXt + BUt

Yt = CXt

Here, A, B and C are matrices. Suppose we want to find a feedback
policy Ut = KYt ( where K is a matrix) and all we want to guarantee
is that for any initial x0, the system state converges to zero. This
problem is called static state feedback and is surprisingly NP-Hard. It
turns out that the problem is equivalent to finding a matrix K such
that A + BKC has all of its eigenvalues inside the unit circle in the
complex plane.2 Though in the MDP case, static state feedback was
not only optimal, but computable for tabular MDPs and certain other
SDM problems, static output feedback is computationally intractable.

2. POMDPs are PSPACE hard. Papadimitriou and Tsitsiklis showed that
optimization of general POMDPs, even on small state spaces, was
in all likelihood completely intractable.3 They reduced the problem
of quantifier elimination in logical satisfiability problems (QSAT) to
POMDPs. QSAT seeks to determine the validity of statements like
“there exists x such that for all y there exists z such that for all w this
logical formula is true.” Optimal action in POMDPs essentially have to
keep track of all of the possible true states that might have been visited
given the partial observation and make actions accordingly. Hence,
the policies have a similar flavor to quantifier elimination as they seek
actions that are beneficial to all possible occurrences of the unobserved
variables. Since these policies act over long time horizons, the number
of counterfactuals that must be maintained grows exponentially large.

Despite these challenges, engineers solve POMDP problems all of the
time. Just because the problems are hard in general, doesn’t mean they are
intractable on average. It only means that we cannot expect to have general
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purpose optimal algorithms for these problems. Fortunately, suboptimal
solutions are oftentimes quite good for practice, and there are many useful
heuristics for decision making with partial information. The most com-
mon approach to the output feedback problem is the following two-stage
strategy:

1. Filtering. Using all of your past data {ys} for s = 0, . . . , t, build an
estimate, x̂t, of your state.

2. Action based on certainty equivalence. Solve the desired SDM problem
as if you had perfect observation of the state Xt, using x̂t wherever
you would have used an observation Xt = xt. At run time, plug in the
estimator x̂t as if it were a perfect measurement of the state.

This strategy uses a separation principle between prediction and action.
For certain problems, this two-staged approach is actually optimal. Notably,
if the SDM problem has quadratic rewards/costs, if the dynamics are
linear, and if the noise process is Gaussian, then the separation between
prediction and action is optimal. More commonly, the separation heuristic
is suboptimal, but this abstraction also enables a simple heuristic that is
easy to debug and simple to design.

While we have already covered algorithms for optimal control, we have
not yet discussed state estimation. Estimating the state of a dynamical
system receives the special name filtering. However, at the end of the day,
filtering is a prediction problem. Define the observed data up to time t as

τt := (yt, . . . , y1, ut−1, . . . , u1) .

The goal of filtering is to estimate a a function h(τt) that predicts Xt. We
now describe two approaches to filtering.

Optimal filtering

Given a model of the state transition function and the observation function,
we can attempt to compute the maximum a posteriori estimate of the state
from the data. That is, we could compute p(xt|τt) and then estimate the
mode of this density. Here, we show that such an estimator has a relatively
simple recursive formula, though it is not always computationally tractable
to compute this formula.

To proceed, we first need a calculation that takes advantage of the
conditional independence structure of our dynamical system model. Note
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that

p(yt, xt,xt−1, ut−1|τt−1) =

p(yt|xt, xt−1, ut−1, τt−1)p(xt|xt−1, ut−1, τt−1)

× p(xt−1|τt−1)p(ut−1|τt−1)

= p(yt|xt)p(xt|xt−1, ut−1)p(xt−1|τt−1)p(ut−1|τt−1) .

This decomposition is into terms we now recognize. p(xt|xt−1, ut−1) and p(yt|xt)
define the POMDP model and are known. p(ut|τt) is our policy and it’s
what we’re trying to design. The only unknown here is p(xt−1|τt−1), but
this expression gives us a recursive formula to p(xt|τt) for all t.

To derive this formula, we apply Bayes rule and then use the above
calculation:

p(xt|τt) =

∫
xt−1

p(xt, yt, xt−1, ut−1|τt−1)∫
xt,xt−1

p(xt, yt, xt−1, ut−1|τt−1)

=

∫
xt−1

p(yt|xt)p(xt|xt−1, ut−1)p(xt−1|τt−1)p(ut−1|τt−1)∫
xt,xt−1

p(yt|xt)p(xt|xt−1, ut−1)p(xt−1|τt−1)p(ut−1|τt−1)

=

∫
xt−1

p(yt|xt)p(xt|xt−1, ut−1)p(xt−1|τt−1)∫
xt,xt−1

p(yt|xt)p(xt|xt−1, ut−1)p(xt−1|τt−1)
. (1)

Given a prior for x0, this now gives us a formula to compute a MAP
estimate of xt for all t, incorporating data in a streaming fashion. For tabular
POMDP models with small state spaces, this formula can be computed
simply by summing up the conditional probabilities. In POMDPs without
inputs—also known as hidden Markov models—this formula gives the forward
pass of Viterbi’s decoding algorithm. For models where the dynamics are
linear and the noise is Gaussian, these formulas reduce into an elegant
closed form solution known as Kalman filtering. In general, this optimal
filtering algorithm is called belief propagation and is the basis of a variety of
algorithmic techniques in the field of graphical models.

Kalman filtering

For the case of linear dynamical systems, the above calculation has a simple
closed form solution that looks similar to the solution of LQR. This estimator
is called a Kalman filter, and is one of the most important tools in signal
processing and estimation. The Kalman filter assumes a linear dynamical
system driven by Gaussian noise with observations corrupted by Gaussian
noise

Xt+1 = AXt + BUt + Wt

Yt = CXt + Vt .
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Here, assume Wt and Vt are independent for all time and Gaussian with
means zero and covariances ΣW and ΣV respectively. Because of the joint
Gaussianity, we can compute a closed form formula for the density of Xt
conditioned on the past observations and actions, p(xt|τt). Indeed, Xt is a
Gaussian itself.

On an infinite time horizon, the Kalman filter takes a simple and eluci-
dating form:

x̂t+1 = Ax̂t + But − L(yt − ŷt)

ŷt = Cx̂t

where
L = APCT(CPCT + ΣV)

−1

and P is the positive semidefinite solution to the discrete algebraic Riccati
equation

P = APAT + ΣW − (APCT)(CPCT + ΣV)
−1(CΣAT) .

The derivation of this form follows from the calculation in Equation 1.
But the explanation of the formulas tend to be more insightful than the
derivation. Imagine the case where L = 0. Then our estimate x̂t simulates
the same dynamics as our model with no noise corruption. The matrix L
computes a correction for this simulation based on the observed yt. This
feedback correction is chosen in such a way such that P is the steady state
covariance of the error Xt − x̂t. P ends up being the minimum variance
possible with an estimator that is unbiased in the sense that E[x̂t − Xt] = 0.

Another interesting property of this calculation is that the L matrix is
the LQR gain associated with the LQR problem

minimize limT→∞ EWt

[
1
2 ∑T

t=0 XT
t ΣW Xt + UT

t ΣVUt

]
,

subject to Xt+1 = ATXt + BTUt + Wt, Ut = πt(Xt)
(x0 given).

Control theorists often refer to this pairing as the duality between estimation
and control.

Feedforward prediction

While the optimal filter can be computed in simple cases, we often do not
have simple computational means to compute the optimal state estimate.
That said, the problem of state estimation is necessarily one of prediction,
and the first half of this course gave us a general strategy for building
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such estimators from data. Given many simulations or experimental mea-
surements of our system, we can try to estimate a function h such that
Xt ≈ h(τt). To make this concrete, we can look at time lags of the history

τt−s→t := (yt, . . . , yt−s, ut−1, . . . , ut−s) .

Such time lags are necessarily all of the same length. Then estimating

minimizeh ∑t loss(h(τt−s→t), xt)

is a supervised learning problem, and standard tools can be applied to
design architectures for and estimate h.

Chapter notes

This chapter and the following chapter overlap significantly with a survey
of reinforcement learning by Recht,4 which contains additional connections
to continuous control. Those interested in learning more about continuous
control from an optimization viewpoint should consult the book by Borrelli
et al.5 This book also provides an excellent introduction to model predictive
control. Another excellent introduction to continuous optimal control and
filtering is Boyd’s lecture notes.6

An invaluable introduction to the subject of dynamic programming
is by Bertsekas, who has done pioneering research in this space and has
written some of the most widely read texts.1 For readers interested in
a mathematical introduction to dynamic programming on discrete pro-
cesses, we recommend Puterman’s text.7 Puterman also explains the linear
programming formulation of dynamic programming.
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