
3

Supervised learning

Previously, we talked about the fundamentals of prediction and statistical
modeling of populations. Our goal was, broadly speaking, to use available
information described by a random variable X to conjecture about an
unknown outcome Y.

In the important special case of a binary outcome Y, we saw that we can
write an optimal predictor Ŷ as a threshold of some function f :

Ŷ(x) = 1{ f (x) > t}

We saw that in many cases the optimal function is a ratio of two likelihood
functions.

This optimal predictor has a serious limitation in practice, however. To
be able to compute the prediction for a given input, we need to know a
probability density function for the positive instances in our problem and
also one for the negative instances. But we are often unable to construct or
unwilling to assume a particular density function.

As a thought experiment, attempt to imagine what a probability density
function over images labeled cat might look like. Coming up with such a
density function appears to be a formidable task, one that’s not intuitively
any easier than merely classifying whether an image contains a cat or not.

In this chapter, we transition from a purely mathematical characterization
of optimal predictors to an algorithmic framework. This framework has
two components. One is the idea of working with finite samples from a
population. The other is the theory of supervised learning and it tells us
how to use finite samples to build predictors algorithmically.

Sample versus population

Let’s take a step back to reflect on the interpretation of the pair of random
variables (X, Y) that we’ve worked with so far. We think of the random
variables (X, Y) as modeling a population of instances in our prediction
problem. From this pair of random variables, we can derive other random
variables such as a predictor Ŷ = 1{ f (X) > t}. All of these are random
variables in the same probability space. When we talk about, say, the true

1

positive rate of the predictor Ŷ, we therefore make a statement about the
joint distribution of (X, Y).

In almost all prediction problems, however, we do not have access to the
entire population of instances that we will encounter. Neither do we have a
probability model for the joint distribution of the random variables (X, Y).
The joint distribution is a theoretical construct that we can reason about, but
it doesn’t readily tell us what to do when we don’t have precise knowledge
of the joint distribution.

What knowledge then do we typically have about the underlying popu-
lation and how can we use it algorithmically to find good predictors? In
this chapter we will begin to answer both questions.

First we assume that from past experience we have observed n labeled
instances (x1, y1), ..., (xn, yn). We assume that each data point (xi, yi) is a
draw from the same underlying distribution (X, Y). Moreover, we will
often assume that the data points are drawn independently. This pair
of assumptions is often called the “i.i.d. assumption”, a shorthand for
independent and identically distributed.

To give an example, consider a population consisting of all currently
eligible voters in the United States and some of their features, such as, age,
income, state of residence etc. An i.i.d. sample from this population would
correspond to a repeated sampling process that selects a uniformly random
voter from the entire reference population.

Sampling is a difficult problem with numerous pitfalls that can strongly
affect the performance of statistical estimators and the validity of what we
learn from data. In the voting example, individuals might be unreachable
or decline to respond. Even defining a good population for the problem
we’re trying to solve is often tricky. Populations can change over time. They
may depend on a particular social context, geography, or may not be neatly
characterized by formal criteria. Task yourself with the idea of taking a
random sample of spoken sentences in the English language, for example,
and you will quickly run into these issues.

In this chapter, as is common in learning theory, we largely ignore these
important issues. We instead focus on the significant challenges that remain
even if we have a well-defined population and an unbiased sample from it.

Supervised learning

Supervised learning is the prevalent method for constructing predictors from
data. The essential idea is very simple. We assume we have labeled data,
in this context also called training examples, of the form (x1, y1), ..., (xn, yn),
where each example is a pair (xi, yi) of an instance xi and a corresponding

2

label yi. The notion of supervision refers to the availability of these labels.
Given such a collection of labeled data points, supervised learning

turns the task of finding a good predictor into an optimization problem
involving these data points. This optimization problem is called empirical
risk minimization.

Recall, in the last chapter we assumed full knowledge of the joint dis-
tribution of (X, Y) and analytically found predictors that minimize risk.
The risk is equal to the expected value of a loss function that quantifies
the cost of each possible prediction for a given true outcome. For binary
prediction problems, there are four possible pairs of labels corresponding
to true positives, false positives, true negatives, and false negatives. In this
case, the loss function boils down to specifying a cost to each of the four
possibilities.

More generally, a loss function is a function loss : Y × Y → R , where Y
is the set of values that Y can assume. Whereas previously we focused on
the predictor Ŷ as a random variable, in this chapter our focus shifts to the
functional form that the predictor has. By convention, we write Ŷ = f (X),
where f : X → Y is a function that maps from the sample space X into the
label space Y .

Although the random variable Ŷ and the function f are mathematically
not the same objects, we will call both a predictor and extend our risk
definition to apply the function as well:

R[f] = E [loss(f (X), Y)] .

The main new definition in this chapter is a finite sample analog of the risk,
called empirical risk.

Definition 1. Given a set of labeled data points S = ((x1, y1), ..., (xn, yn)), the
empirical risk of a predictor f : X → Y with respect to the sample S is defined as

RS[f] =
1
n

n

∑
i=1

loss(f (xi), yi) .

Rather than taking expectation over the population, the empirical risk
averages the loss function over a finite sample. Conceptually, we think of
the finite sample as something that is in our possession, e.g., stored on our
hard disk.

Empirical risk serves as a proxy for the risk. Whereas the risk R[f] is a
population quantity—that is, a property of the joint distribution (X, Y) and
our predictor f —the empirical risk is a sample quantity.

We can think of the empirical risk as the sample average estimator of
the risk. When samples are drawn i.i.d., the empirical risk is a random

3

variable that equals the sum of n independent random variables. If losses
are bounded, the central limit theorem therefore suggests that the empirical
risk approximates the risk for a fixed predictor f .

Regardless of the distribution of S, however, note that we can always
compute the empirical risk RS[f] entirely from the sample S and the predic-
tor f . Since empirical risk a quantity we can compute from samples alone, it
makes sense to turn it into an objective function that we can try to minimize
numerically.

Empirical risk minimization is the optimization problem of finding a
predictor in a given function family that minimizes the empirical risk.

Definition 2. Given a function class F ⊆ X → Y , empirical risk minimization
on a set of labeled data points S corresponds to the objective:

min
f∈F

RS[f]

A solution to the optimization problem is called empirical risk minimizer.

There is a tautology relating risk and empirical risk that is good to keep
in mind:

R[f] = RS[f] + (R[f]− RS[f])

Although mathematically trivial, the tautology reveals an important insight.
To minimize risk, we can first attempt to minimize empirical risk. If we
successfully find a predictor f that achieves small empirical risk RS[f],
we’re left worrying about the term R[f]− RS[f]. This term quantifies how
much the empirical risk of f underestimates its risk. We call this difference
generalization gap and it is of fundamental importance to machine learning.
Intuitively speaking, it tells us how well the performance of our predictor
transfers from seen examples (the training examples) to unseen examples (a
fresh example from the population) drawn from the same distribution. This
process is called generalization.

Generalization is not the only goal of supervised learning. A constant
predictor that always outputs 0 generalizes perfectly well, but is almost
always entirely useless. What we also need is that the predictor achieves
small empirical risk RS[f]. Making the empirical risk small is fundamentally
about optimization. As a consequence, a large part of supervised learning
deals with optimization. For us to be able to talk about optimization, we
need to commit to a representation of the function class F that appears in
the empirical risk minimization problem. The representation of the function
class, as well as the choice of a suitable loss function, determines whether
or not we can efficiently find an empirical risk minimizer.

To summarize, introducing empirical risk minimization directly leads to
three important questions that we will work through in turn.

4

• Representation: What is the class of functions F we should choose?
• Optimization: How can we efficiently solve the resulting optimization

problem?
• Generalization: Will the performance of predictor transfer gracefully

from seen training examples to unseen instances of our problem?

These three questions are intertwined. Machine learning is not so much
about studying these questions in isolation as it is about the often delicate
interplay between them. Our choice of representation influences both the
difficulty of optimization and our generalization performance. Improve-
ments in optimization may not help, or could even hurt, generalization.
Moreover, there are aspects of the problem that don’t neatly fall into only
one of these categories. The choice of the loss function, for example, affects
all of the three questions above.

There are important differences between the three questions. Results
in optimization, for example, tend to be independent of the statistical
assumptions about the data generating process. We will see a number of
different optimization methods that under certain circumstances find either
a global or local minimum of the empirical risk objective. In contrast, to
reason about generalization, we need some assumptions about the data
generating process. The most common one is the i.i.d.-assumption we
discussed earlier. We will also see several mathematical frameworks for
reasoning about the gap between risk and empirical risk.

Let’s start with a foundational example that illustrates these core con-
cepts and their interplay.

A first learning algorithm: The perceptron

As we discussed in the introduction, in 1958 the New York Times reported
the Office of Naval Research claiming the perceptron algorithm1 would
“be able to walk, talk, see, write, reproduce itself and be conscious of its
existence.” Let’s now dive into this algorithm that seemed to have such
unbounded potential.

Toward introducing this algorithm, let’s assume we’re in a binary pre-
diction problem with labels in {−1, 1} for notational convenience. The
perceptron algorithm aims to find a linear separator of the data, that is, a hy-
perplane specified by coefficients w ∈ Rd that so that all positive examples
lie on one side of the hyperplane and all negative ones on the other.

Formally, we can express this as yi〈w, xi〉 > 0. In other words, the
linear function f (x) = 〈w, x〉 agrees in sign with the labels on all training
instances (xi, yi). In fact, the perceptron algorithm will give us a bit more.
Specifically, we require that the sign agreement has some margin yi〈w, xi〉 ≥

5

https://www.nytimes.com/1958/07/08/archives/new-navy-device-learns-by-doing-psychologist-shows-embryo-of.html

w
〈w, x〉 > 0

〈w, x〉 < 0

Figure 1: Illustration of a linear separator

1. That is, when y = 1, the linear function must take on a value of at least 1
and when y = −1, the linear function must be at most −1. Once we find
such a linear function, our prediction Ŷ(x) on a data point x is Ŷ(x) = 1
if 〈w, x〉 ≥ 0 and Ŷ(x) = −1 otherwise.

The algorithm goes about finding a linear separator w incrementally in
a sequence of update steps.

Perceptron
• Start from the initial solution w0 = 0
• At each step t = 0, 1, 2, ...:

– Select a random index i ∈ {1, ..., n}
– Case 1: If yi〈wt, xi〉 < 1, put

wt+1 = wt + yixi

– Case 2: Otherwise put wt+1 = wt.

Case 1 corresponds to what’s called a margin mistake. The sign of the
linear function may not disagree with the label, but it doesn’t have the
required margin that we asked for.

When an update occurs, we have

〈wt+1, xi〉 = 〈wt, xi〉+ ‖xi‖2 .

In this sense, the algorithm is nudging the hyperplane to be less wrong
on example xi. However, in doing so it could introduce errors on other
examples. It is not yet clear that the algorithm converges to a linear separator
when this is possible.

6

w

x−x
w w

w− x

Figure 2: Illustration of the perceptron update. Left: One misclassified
example x. Right: After update.

Connection to empirical risk minimization

Before we turn to the formal guarantees of the perceptron, it is instructive
to see how to relate it to empirical risk minimization. In order to do so, it’s
helpful to introduce two hyperparameters to the algorithm by considering the
alternative update rule:

wt+1 = γwt + ηyixi

Here η is a positive scalar called a learning rate and γ ∈ [0, 1] is called the
forgetting rate.

First, it’s clear from the description that we’re looking for a linear
separator. Hence, our function class is the set of linear functions fw(x) =
〈w, x〉, where w ∈ Rd. We will sometimes call the vector w the weight vector
or vector of model parameters.

An optimization method that picks a random example at each step and
makes a local improvement to the model parameters is the stochastic gradient
method. This method will figure prominently in our chapter on optimization
as it is the workhorse of many machine learning applications today. The
local improvement the method picks at each step is given by a local linear
approximation of the loss function around the current model parameters.
This linear approximation can be written neatly in terms of the vector of
first derivatives, called gradient, of the loss function with respect to the
current model parameters.

The formal update rule reads

wt+1 = wt − η∇wt loss(fwt(xi), yi)

Here, the example (xi, yi) is randomly chosen and the expression∇wt loss(fwt(xi), yi)
is the gradient of the loss function with respect to the model parameters wt

7

−2 0 2 4
ŷy

0

1

2

3
Hinge loss

Figure 3: Hinge loss

on the example (xi, yi). We will typically drop the vector wt from the sub-
script of the gradient when it’s clear from the context. The scalar η > 0 is a
step size parameter that we will discuss more carefully later. For now, think
of it as a small constant.

It turns out that we can connect this update rule with the perceptron
algorithm by choosing a suitable loss function. Consider the loss function

loss(〈w, x〉, y) = max
{

1− y〈w, x〉, 0
}

.

This loss function is called hinge loss. Note that its gradient is−yx when y〈w, x〉 <
1 and 0 when y〈w, x〉 > 1.

The gradient of the hinge loss is not defined when y〈w, x〉 = 1. In
other words, the loss function is not differentiable everywhere. This is why
technically speaking the stochastic gradient method operates with what is
called a subgradient. The mathematical theory of subgradient optimization
rigorously justifies calling the gradient 0 when y〈w, x〉 = 1. We will ignore
this technicality throughout the book.

We can see that the hinge loss gives us part of the update rule in
the perceptron algorithm. The other part comes from adding a weight
penalty λ

2 ‖w‖2 to the loss function that discourages the weights from grow-
ing out of bounds. This weight penalty is called `2-regularization, weight
decay, or Tikhonov regularization depending on which field you work in. The
purpose of regularization is to promote generalization. We will therefore
return to regularization in detail when we discuss generalization in more
depth. For now, note that the margin constraint we introduced is inconse-
quential unless we penalize large vectors. Without the weight penalty we

8

could simply scale up any linear separator until it separates the points with
the desired margin.

Putting the two loss functions together, we get the `2-regularized empir-
ical risk minimization problem for the hinge loss:

1
n

n

∑
i=1

max
{

1− yi〈w, xi〉, 0
}
+

λ

2
‖w‖2

2

The perceptron algorithm corresponds to solving this empirical risk objective
with the stochastic gradient method. The constant η, which we dubbed
the learning rate, is the step size of the stochastic gradient methods. The
forgetting rate constant γ is equal to (1− ηλ). The optimization problem is
also known as support vector machine and we will return to it later on.

A word about surrogate losses

When the goal was to maximize the accuracy of a predictor, we mathemat-
ically solved the risk minimization problem with respect to the zero-one
loss

loss(ŷ, y) = 1{ŷ 6= y}
that gives us penalty 1 if our label is incorrect, and penalty 0 if our predicted
label ŷ matches the true label y. We saw that the optimal predictor in this
case was a maximum a posteriori rule, where we selected the label with higher
posterior probability.

Why don’t we directly solve empirical risk minimization with respect to
the zero-one loss? The reason is that the empirical risk with the zero-one loss
is computationally difficult to optimize directly. In fact, this optimization
problem is NP-hard even for linear prediction rules.2 To get a better sense
of the difficulty, convince yourself that the stochastic gradient method,
for example, fails entirely on the zero-one loss objective. Of course, the
stochastic gradient method is not the only learning algorithm.

The hinge loss therefore serves as a surrogate loss for the zero-one loss.
We hope that by optimizing the hinge loss, we end up optimizing the zero-
one loss as well. The hinge loss is not the only reasonable choice. There
are numerous loss functions that approximate the zero-one loss in different
ways.

• The hinge loss is max{1− yŷ, 0} and support vector machine refers to
empirical risk minimization with the hinge loss and `2-regularization.
This is what the perceptron is optimizing.

• The squared loss is given by 1
2(y− ŷ)2. Linear least squares regression

corresponds to empirical risk minimization with the squared loss.

9

−2 0 2 4
ŷy

0

1

2

3

4
Hinge

−2 0 2 4
ŷy

0

1

2

3

4
Logistic

−2 0 2 4
ŷy

0

1

2

3

4
Squared

Figure 4: Hinge, squared, logistic loss compared with the zero-one loss.

• The logistic loss is − log(σ(ŷ)) when y = 1 and − log(1− σ(ŷ)) when
y = −1, where σ(z) = 1/(1 + exp(−z)) is the logistic function. Lo-
gistic regression corresponds to empirical risk minimization with the
logistic loss and linear functions.

Sometimes we can theoretically relate empirical risk minimization under
a surrogate loss to the zero-one loss. In general, however, these loss functions
are used heuristically and practitioners evaluate performance by trial-and-
error.

Formal guarantees for the perceptron

We saw that the perceptron corresponds to finding a linear predictor using
the stochastic gradient method. What we haven’t seen yet is a proof that the
perceptron method works and under what conditions. Recall that there are
two questions we need to address. The first is why the perceptron method
successfully fits the training data, a question about optimization. The second
is why the solution should also correctly classify unseen examples drawn
from the same distribution, a question about generalization. We will address
each in turn with results from the 1960s. Even though the analysis here is
over 50 years old, it has all of the essential parts of more recent theoretical
arguments in machine learning.

Mistake bound

To see why we perform well on the training data, we use a mistake bound
due to Novikoff.3 The bound shows that if there exists a linear separator of

10

the training data, then the perceptron will find it quickly provided that the
margin of the separating hyperplane isn’t too small.

Margin is a simple way to evaluate how well a predictor separates data.
Any vector w ∈ Rd defines a hyperplane Hw = {x : wTx = 0}. Suppose
that the hyperplane Hw corresponding to the vector w perfectly separates
the data in S. Then we define the margin of such a vector w as the smallest
distance of our data points to this hyperplane:

γ(S, w) = min
1≤i≤n

dist(xi,Hw) .

Here,

dist(x,Hw) = min{‖x− x′‖ : x′ ∈ Hw} =
|〈x, w〉|
‖w‖ .

Overloading terminology, we define the margin of a dataset to be the
maximum margin achievable by any predictor w:

γ(S) = max
‖w‖=1

γ(S, w) .

We will now show that when a dataset has a large margin, the perceptron
algorithm will find a separating hyperplane quickly.

Let’s consider the simplest form of the perceptron algorithm. We ini-
tialize the algorithm with w0 = 0. The algorithm proceeds by selecting
a random index it at step t checking whether yit w

T
t xit < 1. We call this

condition a margin mistake, i.e., the prediction wT
t xit is either wrong or

too close to the hyperplane. If a margin mistake occurs, the perceptron
performs the update

wt+1 = wt + yit xit .

That is, we rejigger the hyperplane to be more aligned with the signed
direction of the mistake. If no margin mistake occurs, then wt+1 = wt.

To analyze the perceptron we need one additional definition. Define the
diameter of a data S to be

D(S) = max
(x,y)∈S

‖x‖ .

We can now summarize a worst case analysis of the perceptron algorithm
with the following theorem.

Theorem 1. The perceptron algorithm makes at most (2 + D(S)2)γ(S)−2 margin
mistakes on any sequence of examples S that can be perfectly classified by a linear
separator.

11

Proof. The main idea behind the proof of this theorem is that since w only
changes when you make a mistake, we can upper bound and lower bound w
at each time a mistake is made, and then, by comparing these two bounds,
compute an inequality on the total number of mistakes.

To find an upper bound, suppose that at step t the algorithm makes a
margin mistake. We then have the inequality:

‖wt+1‖2 = ‖wt + yit xit‖2

= ‖wt‖2 + 2yit〈wt, xit〉+ ‖xit‖2

≤ ‖wt‖2 + 2 + D(S)2 .

The final inequality uses the fact that yit〈wt, xit〉 < 1. Now, let mt denote
the total number of mistakes made by the perceptron in the first t iterations.
Summing up the above inequality over all the mistakes we make and using
the fact that ‖w0‖ = 0, we get our upper bound on the norm of wt:

‖wt‖ ≤
√

mt(2 + D(S)2) .

Working toward a lower bound on the norm of wt, we will use the
following argument. Let w be any unit vector that correctly classifies all
points in S. If we make a mistake at iteration t, we have

〈w, wt+1 − wt〉 = 〈w, yit xit〉 =
|〈w, xit〉|
‖w‖ ≥ γ(S, w) .

Note that the second equality here holds because w correctly classifies the
point (xit , yit). This is where we use that the data are linearly separable.
The inequality follows from the definition of margin.

Now, let w? denote the hyperplane that achieves the maximum mar-
gin γ(S). Instantiating the previous argument with w?, we find that

‖wt‖ ≥ 〈w?, wt〉 =
t

∑
k=1

wT
? (wk − wk−1) ≥ mtγ(S) ,

where the equality follows from a telescoping sum argument.
This yields the desired lower bound on the norm of wt. Combined with

the upper bound we already derived, it follows that the total number of
mistakes has the bound

mt ≤
2 + D(S)2

γ(S)2 .

The proof we saw has some ingredients we’ll encounter again. Telescop-
ing sums, for example, are a powerful trick used throughout the analysis of

12

optimization algorithms. A telescoping sum lets us understand the behavior
of the final iterate by decomposing it into the incremental updates of the
individual iterations.

The mistake bound does not depend on the dimension of the data. This
is appealing since the requirement of linear separability and high margin,
intuitively speaking, become less taxing the larger the dimension is.

An interesting consequence of this theorem is that if we run the percep-
tron repeatedly over the same dataset, we will eventually end up with a
separating hyperplane. To see this, imagine repeatedly running over the
dataset until no mistake occurred on a full pass over the data. The mistake
bound gives a bound on the number of passes required before the algorithm
terminates.

From mistake bounds to generalization

The previous analysis shows that the perceptron finds a good predictor on
the training data. What can we say about new data that we have not yet
seen?

To talk about generalization, we need to make a statistical assumption
about the data generating process. Specifically we assume that the data
points in the training set S = {(x1, y1) . . . , (xn, yn)} where each drawn i.i.d.
from a fixed underlying distribution D with the labels taking values {−1, 1}
and each xi ∈ Rd.

We know that the perceptron finds a good linear predictor for the
training data (if it exists). What we now show is that this predictor also
works on new data drawn from the same distribution.

To analyze what happens on new data, we will employ a powerful
stability argument. Put simply, an algorithm is stable if the effect of removing
or replacing a single data point is small. We will do a deep dive on stability
in our chapter on generalization, but we will have a first encounter with the
idea here.

The perceptron is stable because it makes a bounded number of mistakes.
If we remove a data point where no mistake is made, the model doesn’t
change at all. In fact, it’s as if we had never seen the data point. This lets us
relate the performance on seen examples to the performance on examples
in the training data on which the algorithm never updated.

Vapnik and Chervonenkis presented the following stability argument in
their classic text from 1974, though the original argument is likely a decade
older.4 Their main idea was to leverage our assumption that the data are
i.i.d., so we can swap the roles of training and test examples in the analysis.

Theorem 2. Let Sn denote a training set of n i.i.d. samples from a distribution D
that we assume has a perfect linear separator. Let w(S) be the output of the

13

perceptron on a dataset S after running until the hyperplane makes no more margin
mistakes on S. Let Z = (X, Y) be an additional independent sample from D. Then,
the probability of making a margin mistake on (X, Y) satisfies the upper bound

P[Yw(Sn)
TX < 1] ≤ 1

n + 1ESn+1

[
2 + D(Sn+1)

2

γ(Sn+1)2

]
.

Proof. First note that

P[YwTX < 1] = E[1{YwTX < 1}] .

Let Sn = (Z1, ..., Zn) and with Zk = (Xk, Yk) and put Zn+1 = Z = (X, Y).
Note that these n + 1 random variables are i.i.d. draws from D. As a purely
analytical device, consider the “leave-one-out set”

S−k = {Z1, . . . , Zk−1, Zk+1, ..., Zn+1} .

Since the data are drawn i.i.d., running the algorithm on S−k and evaluating
it on Zk = (Xk, Yk) is equivalent to running the algorithm on Sn and
evaluating it on Zn+1. These all correspond to the same random experiment
and differ only in naming. In particular, we have

P[Yw(Sn)
TX < 1] =

1
n + 1

n+1

∑
k=1

E[1{Ykw(S−k)TXk < 1}] .

Indeed, we’re averaging quantities that are each identical to the left hand
side. But recall from our previous result that the perceptron makes at most

m =
2 + D((Z1, . . . , Zn+1))

2

γ((Z1, . . . , Zn+1))2

margin mistakes when run on the entire sequence (Z1, . . . , Zn+1). Let i1, . . . , im
denote the indices on which the algorithm makes a mistake in any of its
cycles over the data. If k 6∈ {i1, . . . , im}, the output of the algorithm remains
the same after we remove the k-th sample from the sequence. It follows
that such k satisfy Ykw(S−k)Xk ≥ 1 and therefore k does not contribute
to the summation above. The other terms can at most contribute 1 to the
summation. Hence,

n+1

∑
k=1

1{Ykw(S−k)TXk < 1} ≤ m ,

and by linearity of expectation, as we hoped to show,

P[Yw(Sn)
TX < 1] ≤ E[m]

n + 1
.

14

We can turn our mistake bounds into bounds on the empirical risk
and risk achieved by the perceptron algorithm by choosing the loss func-
tion loss(〈w, x〉, y) = 1{〈w, x〉y < 1}. These bounds also imply bounds on
the (empirical) risk with respect to the zero-one loss, since the prediction
error is bounded by the number of margin mistakes.

Chapter notes

Rosenblatt developed the perceptron in 1957 and continued to publish on
the topic in the years that followed.5, 6 The perceptron project was funded
by the US Office of Naval Research (ONR), who jointly announced the
project with Rosenblatt in a press conference in 1958, that lead to the New
York Times article we quoted earlier. This development sparked significant
interest in perceptrons research throughout the 1960s.

The simple proof the mistake bound we saw is due to Novikoff.3 Block
is credited with a more complicated contemporaneous proof.7 Minsky and
Papert attribute a simple analysis of the convergence guarantees for the
perceptron to a 1961 paper by Papert.8

Following these developments Vapnik and Chervonenkis proved the
generalization bound for the perceptron method that we saw earlier, relying
on the kind of stability argument that we will return to in our chapter on
generalization. The proof of Theorem 2 is available in their 1974 book.4

Interestingly, by the 1970s, Vapnik and Chervonenkis must have abandoned
the stability argument in favor of the VC-dimension.

In 1969, Minksy and Papert published their influential book “Percep-
trons: An introduction to computational geometry”.9 Among other results,
it showed that perceptrons fundamentally could not learn certain concepts,
like, an XOR of its input bits. In modern language, linear predictors cannot
learn parity functions. The results remain relevant in the statistical learning
community and have been extended in numerous ways. On the other hand,
pragmatic researchers realized one could just add the XOR to the feature
vector and continue to use linear methods. We will discuss such feature
engineering in the next chapter.

The dominant narrative in the field has it that Minsky and Papert’s book
curbed enthusiasm for perceptron research and their multilayer extensions,
now better known as deep neural networks. In an updated edition of their
book from 1988, Minsky and Papert argue that work on perceptrons had
already slowed significantly by the time their book was published for a lack
of new results:

One popular version is that the publication of our book so
discouraged research on learning in network machines that a

15

promising line of research was interrupted. Our version is that
progress had already come to a virtual halt because of the lack
of adequate basic theories, [. . .].

On the other hand, the pattern recognition community had realized that
perceptrons were just one way to implement linear predictors. Highleyman
was arguably the first to propose empirical risk minimization and applied
this technique to optical character recognition.10 Active research in the 1960s
showed how to find linear rules using linear programming techniques.11

Work by Aizerman, Braverman and Rozonoer developed iterative methods
to fit nonlinear rules to data.12 All of this work was covered in depth in the
first edition of Duda and Hart, which appeared five years after Perceptrons.

It was at this point that the artificial intelligence community first split
from the pattern recognition community. While the artificial intelligence
community turned towards more symbolic techniques in 1970s, work on
statistical learning continued in Soviet and IEEE journals. The modern view
of empirical risk minimization, of which we began this chapter, came out of
this work and was codified by Vapnik and Chervonenkis in the 1970s.

It wasn’t until the 1980s that work on pattern recognition, and with it
the tools of the 1960s and earlier, took a stronger foothold in the machine
learning community again.13 We will continue this discussion in our chapter
on datasets and machine learning benchmarks, which were pivotal in the
return of pattern recognition to the forefront of machine learning research.

16

Bibliography

1 Frank Rosenblatt. The perceptron: A probabilistic model for information
storage and organization in the brain. Psychological Review, pages 65–386,
1958.

2 Michael J. Kearns, Robert E. Schapire, and Linda M. Sellie. Toward
efficient agnostic learning. Machine Learning, 17(2-3):115–141, 1994.

3 Albert B. J. Novikoff. On convergence proofs on perceptrons. In Sympo-
sium on the Mathematical Theory of Automata, pages 615–622, 1962.

4 Vladimir Vapnik and Alexey Chervonenkis. Theory of Pattern Recognition:
Statistical Learning Problems. Nauka, 1974. In Russian.

5 Frank Rosenblatt. Two Theorems of Statistical Separability in the Perceptron.
United States Department of Commerce, 1958.

6 Frank Rosenblatt. Principles of Neurodynamics: Perceptions and the Theory of
Brain Mechanisms. Spartan, 1962.

7 Hans-Dieter Block. The perceptron: A model for brain functioning.
Reviews of Modern Physics, 34(1):123, 1962.

8 Seymour A. Papert. Some mathematical models of learning. In London
Symposium on Information Theory. Academic Press, New York, 1961.

9 Marvin Minsky and Seymour A. Papert. Perceptrons: An Introduction to
Computational Geometry. MIT Press, 2017.

10 Wilbur H. Highleyman. Linear decision functions, with application to
pattern recognition. Proceedings of the IRE, 50(6):1501–1514, 1962.

11 Olvi L. Mangasarian. Linear and nonlinear separation of patterns by
linear programming. Operations Research, 13(3):444–452, 1965.

12 M. A. Aizerman, E. M. Braverman, and L. I. Rozonoer. The Robbins-
Monro process and the method of potential functions. Automation and
Remote Control, 26:1882–1885, 1965.

17

13 Pat Langley. The changing science of machine learning, 2011.

18

	Sample versus population
	Supervised learning
	A first learning algorithm: The perceptron
	Connection to empirical risk minimization
	A word about surrogate losses

	Formal guarantees for the perceptron
	Mistake bound
	From mistake bounds to generalization

	Chapter notes

