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Abstract—We study the design of recommender systems under
the constraint of item coverage. An item is covered if it is
recommended at least to a certain number of users. This situation
arises in settings where the items to be recommended stem
from different entities such as owners, producers or advertisers
with whom the recommendation engine has come into agreement
about item promotion through recommendation, in exchange for
some payment. It is therefore important to issue recommenda-
tions with breadth, in the sense that each item reaches a suffi-
ciently large portion of the user base through recommendation.
This constraint drastically changes the recommendation problem
since now the lists of items to be recommended to different users
become coupled. We formulate and study the recommendation
problem under the item coverage constraint, with the goal of
minimizing the cost of deviation from a nominal recommender
system which does not cater for item coverage. We show that the
linear-programming relaxation of the problem gives the optimal
integral solution, and we also propose a low-complexity heuristic
algorithm to solve large instances of the problem. Further, we
study the problem of guaranteeing item coverage while making
the incurred cost of deviation as balanced as possible across items
(and therefore across their owners) or across users. The plots
in the numerical results section demonstrate and quantify the
tradeoff between recommendation accuracy and item coverage
and that between cost imbalance across items and coverage.

Index Terms—Recommender systems, item coverage, mathe-
matical optimization.

I. INTRODUCTION

Recommender systems (RSs) arise in various settings and
aim to provide accurate personalized suggestions so as to aid
users in decision making. Their span covers settings such as
personalized suggestions to purchase or use various goods and
services, personalized search results, targeted advertising and
social-network related suggestions. Users become more and
more dependent on recommender systems in order to expedite
purchase of goods, selection of movies, decisions on where
to dine or spend their vacation and even decisions whom to
socialize with.

A number of recommendation algorithms and approaches
have been developed, which leverage item and/or user simi-
larities in order to generate a list of recommended items for
each user that is tailored to her preferences [1]. In traditional
recommender systems, the performance objective to be opti-
mized is the total recommendation accuracy, namely the mean
squared error between predicted and true ratings in the training
dataset. This user-centric performance objective quantifies the

quality of the recommendation service to end-users, and it
reflects a kind of social-welfare metric for them.

However, more often than not, RSs are embedded compo-
nents in larger online services, e.g. an online retail store or
a social media site, and a number of entities other than the
end-users are interested in the results of the recommendation
algorithm. These entities may be the item owners, producers,
providers or advertisers, and they may have agreements with
the recommendation engine about item promotion and specific
user outreach through recommendation, in exchange for some
payment. The items may be restaurants, hotels, books or
other sponsored items for which their owners have paid to
have them appear in recommended lists of items of a certain
number of users. For example, a hotel chain owner offers
some remuneration to a recommendation engine, and the latter
should issue recommendations such that this chain appears in
the recommended lists of items of some users. Other examples
are an online retail store that sells books of different publishers
or products of different firms, or a media provider which
recommends movies of different producer and distribution
companies.

In such scenarios, a different RS approach than the tra-
ditional one is required. The need to ensure a certain user
outreach is critical to fulfil in light of the agreements between
the recommendation engine and item owners, as it determines
the revenue of the site to which the RS is embedded. This
requirement for item coverage changes drastically the rec-
ommendation algorithm as well. In a typical recommender
system, the lists of recommended items are uncoupled across
different users, and the only criterion for recommendation
is accuracy, i.e. the mean squared error. However the item
coverage constraint makes the lists of recommended items to
different users coupled among themselves, and therefore the
recommendation of certain items to some users influences the
set of items to be recommended to other users.

In this work, we study the design of RSs under the con-
straint of guaranteeing sufficient item coverage. An item is
said to be covered if it is recommended to at least a certain
number or percentage of users e.g. 5% of users. A RS with
high coverage spreads items across a wide spectrum of users
and hence can better facilitate their adoption or purchase. If the
items belong to different owners, item coverage makes sense
for the profitability of the platform when agreements such as



the ones above are enforced. This setting is also reminiscent
of pay-per-impression advertising, where advertisers pay the
advertising engine to project ads a certain number of times to
users. However in RSs, the unique chellenge that cannot be
ignored is the tradeoff between accuracy and item coverage.
The contributions of our work are as follows.

• We formulate and study the recommendation problem
under the item coverage constraint, with the goal of
minimizing the cost of deviation from a nominal RS that
does not cater for item coverage. The cost of deviation
is defined as the sum of differences between ratings for
items recommended to a user according to the nominal
RS, and ratings for items recommended through the new
coverage-aware approach under consideration.

• We show that the linear-programming relaxation of the
problem above gives the optimal integral solution, and
we also propose a low-complexity heuristic algorithm to
solve large instances of the problem.

• We also study the problems of guaranteeing item cov-
erage while making the incurred cost of deviation as
balanced as possible across items (and therefore across
their owners) or across users.

• We quantify through the plots in the numerical results
section the tradeoff between recommendation accuracy
and item coverage, and the tradeoff between cost imbal-
ance across items and item coverage.

The paper is organized as follows. In section II, we present
the model and state the problems, and in section III we
show how to solve the problems through a linear-programming
relaxation of the mathematical optimization problem, as well
as through a greedy algorithm. In section IV we present
numerical results, in section V we present an overview of
related work, and in section VI we conclude the paper.

II. MODEL AND PROBLEM STATEMENT

A. Model

Consider a set U of K users and a set I of n items available
for recommendation. There exists a baseline RS, e.g. a latent-
factor based or collaborative-filtering (CF) one, through which
ratings riu are predicted for each item i that user u has not
experienced yet. Let LB(u) ⊂ I be the subset of top-L items
that the baseline system recommends to user u. Namely LB(u)
is the list of recommended items to user u according to the
baseline RS, and L is the length of the list, i.e. the number
of items recommended to each user. We assume L is fixed
regardless of the recommender algorithm.

In this work, the emphasis is on designing a RS with item
coverage. Item coverage refers to the fact that each item
appears in the list of recommended items of a certain number
of users. We give the following definition.

Definition 1. For given positive integer d and a given RS A,
an item i satisfies the d-coverage constraint or it is d-covered,
if it is recommended to at least d users. That is, item i should
appear in the lists of at least d users.

We then say that RS A leads to d-item coverage, or that all
items are d-covered.

For example, a movie from a certain producer can be d-
covered for d in the order of some hundreds of users.

Our goal is to come up with a recommendation algorithm A
such that in the new lists of recommended items {LA(u)}u∈U ,
each item is d-covered. In the sequel, we drop the subscript
A, and we denote the sought lists of each user u as {L(u)}.

Each position l = 1, . . . , L in the list L(u) of recommended
items to a user u is associated with a weight wl

u which
quantifies user u behavior in terms of clicking/viewing an item
when it appears in the l-th position. For a user u, let f lu be
the rating of the item that appears in the l-th position of list
LB(u) of the baseline RS.

Assume that an item i is recommended to a user u in
position l = 1, . . . , L in the list L(u) and substitutes the item
that was recommended in that position in the baseline RS.
The cost of ratings deviation or cost of substitution is defined
as the absolute difference of ratings between these two items,
namely

cliu = |riu − f lu| . (1)

B. Problem P1: Item coverage with minimum deviation cost
from baseline RS

First, we are interested in constructing a possibly new
recommendation list L(u) for each user u so that each item
is d-covered. Let xliu be the binary variable such that xliu = 1
if item i is recommended to user u at position l in list L(u),
and 0 otherwise. Let x = (xliu : i ∈ I, u ∈ U , l = 1, . . . , L)
denote the overall item recommendation policy. We define the
coverage of an item i as follows:

Covi(x) =

K∑
u=1

L∑
l=1

xliu . (2)

When recommending items to users at different positions
in their lists, we need to keep the substitution cost as small
as possible. Namely, we aim at recommending to each user
u at a position l in list L(u) an item that has a rating as
close as possible to the rating of the item that the baseline
RS would recommend in this position. Then, the deviation
from the baseline system would be small, and therefore the
disturbance to the user would be small as well. In addition, a
certain amount of deviation should count more if it occurs at
a higher position in the list, i.e. for small values of l, since the
items in these positions usually get more user attention. For a
user u, this deviation cost in terms of total absolute difference
in item ratings from the baseline RS is

UDev Costu(x) =

n∑
i=1

L∑
l=1

wl
uc

l
iux

l
iu . (3)

If we consider the point of view of an item i, we can define
the total deviation for item i compared to the baseline RS as

IDev Costi(x) =

K∑
u=1

L∑
l=1

wl
uriu(xliu − I liu) . (4)
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where the indicator function I liu = 1 if item i appears in
the list of recommended items of user u at position l in
the baseline RS. This cost takes into account the relative
positions in recommendation lists of different users where item
i appears, and it also accounts for the case where item i may
not appear in the new list L(u) of a user u while it did so in
the baseline RS. Note that the notation UDev Costu(x) and
IDev Costu(x) describe the user (U) and item (I) deviation
cost respectively.

The requirement for item coverage changes drastically the
recommendation setting. In the baseline RS, the lists of
recommended items are constructed separately for each other
since lists are decoupled across different users, and the only
criterion for creating the lists of recommended items is to
minimize total accuracy i.e. the total mean squared error.
However the coverage constraint couples the way the different
lists of recommended items L(u) to users are constructed. The
problem can be formulated as follows:

min
x

K∑
u=1

UDev Costu(x) , (5)

subject to:
Covi(x) ≥ d ,∀ item i , (6)

n∑
i=1

xliu = 1, ∀ user u,∀ l = 1, . . . , L , (7)

and variables

xiu ∈ {0, 1} ∀ i ∈ I, u ∈ U . (8)

Constraint (6) says that each item should be recommended to
at least d users, while (7) says that one item must be allocated
at each position in the list of each user. We refer to the problem
(5)-(8) above as problem (P1).

Problem (P1) is an integer programming one, and for L = 1
it may be viewed as an instance of a generalized assignment
problem (GAP) which is known to be NP-Hard [2].

C. Problems P2 and P3: Item coverage with balanced devia-
tion cost

1) Balanced deviation cost across users: The approach we
discussed above aims to minimize the total cost of deviation
from the baseline RS while satisfying the constraints for item
coverage. However, the minimization of the total deviation
cost does not provide guarantees about individual deviation
costs incurred to the lists of recommended items to each user.
It may happen that a solution to the problem (P1) results in
uneven deviation costs across users in the sense that for some
users the substitution cost may be high while for others low.
It may also be possible that only few users bear the cost of
substitution, and thus for some users the new recommendation
would be less accurate than others.

Thus we would like to perform item coverage so that the
substitution cost is as balanced as possible across different
users. This cost balancing can be seen as an instance of treating

users in a fair manner in terms of recommendation accuracy.
This problem can be formulated as follows,

min
x

max
u

UDev Costu(x) (9)

subject to (6)-(8), and it is referred to as problem (P2).
2) Balanced deviation cost allocation across items: De-

viation cost balancing subject to guaranteeing item coverage
may be considered across items as well, and therefore across
their owners. Then, different items would be treated fairly in
terms of bearing the cost of deviation from the baseline RS
in order to provide d-coverage. This version of the problem is
plausible when the recommendation engine places emphasis
on fair treatment of item owners that have paid it in order
to guarantee coverage of their items, by providing as equal
recommendation accuracy as possible across different item
owners. This problem is formulated as

min
x

max
i

IDev Costi(x) (10)

subject to (6)-(8), and it is referred to as problem (P3).

III. SOLUTION APPROACHES

A. Solving the minimum deviation cost problem (P1)

1) Linear Programming (LP) relaxation for P1: In problem
(P1), we allow variables {xiu} to take continuous values
in [0, 1]. Then the relaxed problem (P1) becomes a Linear
Programming (LP) one, and we refer to the relaxed problem
as (P1’). Next, we write the constraints of the LP problem (6),
(7) and 0 ≤ xiu ≤ 1 for all i ∈ I and u ∈ U in the typical
form in LP, namely

Ax ≤ b, x ∈ R+ , (11)

where R+ is the set of positive real numbers. In this for-
mulation, x = (xliu : i ∈ I, u ∈ U , l = 1, . . . , L) is the
vector of continuous variables, A is the constraint matrix of
dimension (n+nKL)×nKL, and b is the vector of dimension
(n+ nKL) in which the first n entries are equal to −d, and
the next nKL entries are equal to 1. We have the following
definition:

Definition 2. A constraint matrix A of an LP problem is called
totally unimodular (TU) if every square submatrix of A has
determinant +1, −1 or 0.

Theorem 1. ([3], Section 3.2) A matrix A is totally unimod-
ular (TU) if the following three conditions hold:
• its elements aij ∈ {+1,−1, 0} for all i, j,
• each column contains at most two nonzero elements, and
• there exists a partition of the set of rows in two subsets
M1 and M2 such that each column j with two nonzero
coefficients satisfies

∑
i∈M1

aij −
∑

i∈M2
aij = 0.

In our case, one can observe that matrix A of the LP
problem (P1’) above satisfies the three conditions of the
theorem, and therefore A is TU. Next, have the following
proposition, again from [3].
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Proposition 1. A LP problem with feasible set {Ax ≤ b, x ∈
R+} has an integral optimal solution for all integer vectors
b for which it has an optimal value, if and only if matrix A
is TU.

In our case, vector b is an integer vector. Therefore, the
optimal solution of the LP problem is integral, and since 0 ≤
xiu ≤ 1, the optimal solution of the LP is the optimal 0-1
solution. It follows that by solving the LP problem, we can
find the optimal solution to our original problem (P).

2) Greedy heuristic algorithm: The solution approach of
the previous subsection can be applied to solve small-to-
medium-sized problem instances. However, solving larger
instances becomes challenging since the complexity of the
Simplex method or any other method that is applied to solve
the LP problem quickly grows with the number of variables
and the number of constraints. Especially the worst-case
complexity of the Simplex method is exponential since the
number of vertices of the feasible solution set is exponential
in the number of variables.

In order to solve larger instances of the problem, a low-
complexity algorithm would be needed. To this end, we
consider the class of greedy algorithms. Before explaining the
rationale for our choice, we give a few definitions.

Definition 3. Consider a set of elements X and a set function
f : 2X → R, and let S ⊆ X and e ∈ X . The quantity
∆f(e | S) = f(S∪{e})−f(S) is called the discrete derivative
of f with respect to element e.

Definition 4. A set function f : 2X → R is called submodular
(supermodular) if for every A ⊆ B ⊆ X , and element e ∈ X ,
it is ∆f(e | A) ≥ ∆f(e | B) (∆f(e | A) ≤ ∆f(e | B)).

Equivalently, a set function is submodular (supermodular) if
for every A,B ⊆ X , it is f(A∩B)+f(A∪B) ≤ f(A)+f(B)
(f(A ∩ B) + f(A ∪ B) ≥ f(A) + f(B)).

Consider the objective (5) of problem (P). If we take L = 1
for simplicity and consider the set X of all possible item-user
pairs, we can rewrite the problem objective as

min
S⊆X

∑
p∈S

cp , (12)

where p = (i, u) and cp ≡ ciu.
The problem objective (5) belongs to a special class of

functions that are both submodular and supermodular, and they
are called modular functions [4]. For modular functions, it is
∆f(e | A) ≥ ∆f(e | B) for all A,B, and e 6∈ A ∪ B and
f(A ∩ B) + f(A ∪ B) = f(A) + f(B).

Greedy algorithms are known to provide certain worst-case
performance guarantees for submodular functions [4]. There-
fore, it makes sense to seek an efficient heuristic algorithm for
the problem among the class of greedy heuristic algorithms.

The algorithm starts by initializing the lists of recommended
items to each user u as LB(u), namely those of the baseline
RS. If all items are already d-covered with the baseline RS,
then this is the optimal solution to the problem and at zero
substitution cost. On the other hand, if no item is covered

Input: ∀u ∈ U , list LB(u) (baseline RS)
Result: Lists L(u), ∀u ∈ U
for u=1 to K do

Initialize L(u) = LB(u) ;
end
I1 = {i : Covi(·) > d} ;
I2 = {i : Coni(·) < d} ;
while I2 6= ∅ do

Perform substitution of item i′ with item i such that,

(i∗, i′∗, u∗, l∗) = arg min
i′∈I1,i∈I2

u∈U,l=1,...,L

cliu (14)

Replace item i′∗ in the list of user u∗ with i∗ and
update list L(u∗) = L(u∗) \ {i′∗} ∪ {i∗} ;

Update I1, I2 ;
end

Algorithm 1: Greedy algorithm for min-deviation-cost item
substitution

with the baseline RS, then the problem is not feasible. The
algorithm greedily makes item substitutions starting with the
lower-cost ones, until item coverage constraints are satisfied.

At each step of the algorithm, the idea is to choose to
substitute an already covered item in the list of recommended
items to a user with an uncovered one such that the substitution
cost is minimal among all possible eligible substitutions. At
each step, we keep track of the following sets of items, the
covered ones, I1 = {i : Covi(·) > d} and the uncovered
ones, I2 = {i : Covi(·) < d}. We pick an uncovered item i∗,
a covered item i′∗ a user u∗ and position l∗ as follows,

(i∗, i′∗, u∗, l∗) = arg min
i′∈I1,i∈I2

u∈U,l=1,...,L

cliu (13)

such that item i′ under substitution is currently at position l i.e.
f lu = ri′u. After selecting and performing the substitution of
item i′ with i, we update sets I1, I2. Care should be taken so
as not to make a covered item uncovered after a substitution.
We stop when either all items are covered i.e. I2 = ∅. The
sketch of the greedy algorithm is given above in Algorithm 1.

B. Solving the balanced deviation cost problems P2 and P3

In order to solve problem (P2), we define an auxillary real-
valued variable w = maxi UDev Costu(·). Then problem (P2)
is transformed to the following one, (P2’).

min
x,w

w (15)

subject to:
Covi(x) ≥ d ,∀ item i (16)

n∑
i=1

xliu = 1∀ user u, ∀ l = 1, . . . , L . (17)

w ≥ UDev Costu(x) ∀u ∈ U (18)

w ∈ R and xiu ∈ {0, 1} ∀ i ∈ I, u ∈ U . (19)
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Problem (P2’) is Mixed-Integer Linear Programming
(MILP) problem. We can again relax it to a LP problem
by allowing variables xiu to take continuous values in [0, 1].
However, it turns out that the constraint matrix of this LP
problem is not TU, and therefore the optimal solution of the LP
problem is not integral. In this case, the objective function (9)
evaluated at the optimal solution of the LP problem provides
a lower bound on the value of the objective function for the
original problem (P2’). An integral solution to (P2’) can be
obtained through rounding of the optimal solution of the LP
problem subject to feasibility constraints. A greedy heuristic
similar in nature to Algorithm 1 can be devised.

A similar rationale holds for the solution of problem (P3).

IV. NUMERICAL RESULTS

We conduct experiments on real-world datasets in order to
evaluate the performance of our algorithms in terms of recom-
mendation quality (accuracy) and item coverage metrics. We
have used an item-item Collaborative Filtering(CF) method
as a baseline RS to derive the initial recommendation lists for
users. We have implemented the baseline RS and our proposed
recommendation algorithms in Python.

A. Dataset

We experimented with the real-world dataset Movielens
100K [6] which contains the results of interaction between
individual users and movies. Specifically, each record of
the dataset has the following format: userId, movieId,
rating, timestamp; thus it contains information of in-
terest about the user and ratings she has given for each movie.

Ratings are on a 5-star scale, with half-star increments,
namely the set of ratings is {0.5, 1.0, 1.5, . . . , 5.0} stars. The
initial dataset contains 100, 000 ratings from 671 users and
9, 066 movies. We chose a subset of items and users that would
be suitable for our experimental study with regard to coverage
and cost constraints.

In order to facilitate the rating prediction process, we kept
in our subset those users that have rated at least two movies.
Also we excluded users that have given the same ratings for
all movies in the considered dataset, since the item-item CF
algorithm provides similar rating prediction for all movies in
the dataset; in the end, a subset of 635 users and 151 movies
were kept for our experiments. The range of values of d in
the plots are those for which the problem instance is feasible.
Clearly, different numbers of users and items would give a
different range of values of d for which the problem would be
feasible.

B. Experimental results

1) Item coverage with minimum deviation cost from base-
line RS: First, we study the performance of the item coverage
recommendation approach in problem (P1). The plot in Figure
1 shows the total deviation cost from the baseline RS versus
the d-coverage threshold in constraint (6), when L = 1 i.e.
only one item is recommended to each user. Namely, the
horizontal axis is d, viewed as the percentage of users to
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Fig. 1. Total substitution cost vs. the d−coverage threshold for L = 1 for
the LP-based approach that gives the optimal integral solution, and for the
greedy algorithm.
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Fig. 2. Total substitution cost vs. the d−coverage threshold for L = 5 for
the LP-based approach that gives the optimal integral solution, and for the
greedy algorithm.

which an item is recommended, and the vertical axis is the
total deviation cost for users due to item substitution. This is
given as

Total Cost =
∑
u∈U

UDev Costu(·)

We plot results for the LP approach that gives the optimal
solution and for the proposed greedy algorithm. Figure 1
shows that the total deviation cost increases as the d-coverage
threshold increases for both approaches. The LP solution
consistently gives much lower substitution cost than the greedy
approach, and this difference tends to increase as the value of
d increases. This is attributed to the fact that for larger values
of d, the constraints for item coverage become more stringent
to satisfy. Interestingly, the curves in the plot are convex ones,
which means that the differential deviation cost that guarantees
d-coverage increases as d increases.

Similar results can be observed in Figure 2, where we plot
results for L = 5. Again, the cost difference between the LP
solution and the greedy approach increases as d increases. As
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Fig. 3. Standard deviation of user costs vs. d-coverage threshold L = 1 for
the rounded Linear Programming approach (LP), the Integer Programming
GLPK package solution (IP) and the greedy approach.
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Fig. 4. Standard deviation of user costs vs. the d−coverage threshold for
L = 5 or the rounded Linear Programming approach (LP), the Integer
Programming GLPK package solution (IP) and the greedy approach.

expected, the cost difference between the LP solution and the
greedy approach decreases as L increases due to the higher
flexibility to recommend items. We can also observe that the
difference between the LP and the greedy approach is very
small for small values of d.

2) Item coverage with balanced deviation cost allocation:
The second part of our experiments refers to the item coverage
problem with as fair substitution costs across users as possible,
namely problem (P2). We use the variance of user costs
{UDev Costu}, for u ∈ U to measure how balanced the costs
incurred to different users are. This is computed as

var UDev Cost =
1

K

K∑
u=1

(UDev Costu − µ)2 (20)

where µ = 1
K

∑K
u=1 UDev Costu is the average of the

individual user deviation costs.
We plot the standard deviation σ as a metric to evaluate the

performance of the approach in terms of fair cost allocation,

σ =
√

var UDev Cost. We compare three approaches: (i) one
in which we solve the LP problem and we round the solution
to 0 or 1 subject to feasibility; we refer to that as the LP
appoach; (ii) one where we solve the problem with Integer
Programming through the GLPK solver of Python; we call
this the IP approach, and (iii) the greedy algorithm.

In Figures 3 and 4 we plot the standard deviation of user
costs for the three approaches above, as a function of the d-
coverage threshold, for L = 1 and for L = 5 respectively.
The IP solution gives more balanced solutions than the other
two approaches. In all cases, the standard deviation of user
costs increases as d increases, again due to the fact that the
item coverage constraint becomes harder to satisfy. For low
values of d, all three approaches (IP, LP and greedy) give
similar results, which for L = 5 reveal very balanced costs
across users. Also, the difference between the rounded LP and
the greedy approach decreases when L increases. For L =
5, the rounded LP and the greedy approaches have similar
performance, and both get quite close to the performance of
the IP solution.

V. RELATED WORK

A. Coverage, diversity and other metrics in RSs

RSs have been mostly researched from the point of view
of accuracy, namely the closeness of predicted item ratings to
true ones. However, accuracy is challenged as a representative
metric for RSs (see e.g. [5], [7]). An extended survey on
objectives beyond accuracy is presented in [8], where the
authors discuss various other plausible metrics (e.g. diversity,
serendipity, novelty) in RSs with the aim to recommend
diverse, novel or unexpected items to users. They also discuss
item coverage, i.e. recommending as many items as possible
to users and user coverage, i.e. issuing recommendations to
as many users as possible. Finally, they discuss optimization
and reranking policies for these metrics. Different definitions
of diversity in individual and group recommendations are
presented in [9]. Aggregate diversity of recommendations
across all users and different ranking approaches to achieve it
are studied in [10], whereby diversity gain is measured across
the lists of recommended items to all users.

Ge et.al. [11] argue further in favor of coverage and
serendipity as evaluation metrics for RSs. They consider
two definitions of coverage, (i) prediction coverage, which
measures the percentage of items for which the system makes
a recommendation, and (ii) catalog coverage, defined as the
percentage of available items that are recommended to a
user. They discuss how these metrics are related to and can
complement accuracy. A different version of the coverage
problem is studied in [12], where user types (tastes) change
over time, and the problem is to accommodate as many of
user types as possible. A multi-armed bandit approach is used
to select the items to recommend each time.

In [13], the authors deal with the problem of selecting k
products that cover the largest number of customers so that
they maximize the chances that a customer purchases products.
The problem takes as input user subsets where each subset has
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purchased a product, and it is modeled as a maximum coverage
one. Another aspect of diversity and coverage is introduced
in [14] with respect to different genres of items that appear
in recommendation lists. Genre coverage ensures that each
genre is represented in a recommendation list, while genre
redundancy implies that all genres are represented.

B. Notions of fairness in RSs

Fairness in RSs has recently attracted interest. Fairness
is mostly studied in the context of group recommendations,
whereby a set of items needs to be recommended to a group
of users so that each group member is satisfied in a fair
manner. Serbos et.al [15] explore two definitions of fairness,
(i) fairness proportionality, namely ensuring that each user
likes a sufficient number of items in her recommendation
list compared to items not in the list, and (ii) envy-freeness,
namely that each user likes a sufficient number of items in her
list most than other users. They study the problem of finding
the fairest package for a group of users by modeling it as a
coverage problem. In [16], the authors investigate the problem
of optimizing both user utility and utility fairness in group
recommendations, and they propose a general multi-objective
optimization framework based on Pareto efficiency.

In the position paper [17], different sides of fairness are
discussed, related to customers (C-fairness), product providers
(P-fairness) or both (CP-fairness). P-faireness could also be
viewed through the lens of diversity-aware RSs (e.g. [18]) that
aim to maintain a certain level of accuracy while ensuring that
recommendation lists are diverse.

C. Our work in perspective

Price and profit awareness in RSs need to be addressed
whenever recommended items incur monetary gains for the
online platform in which the recommendation engine is em-
bedded, as discussed in the position paper [19]. Relevance
of recommended items to users needs to be balanced against
potential profits stemming from user clicks. In this paper, we
advocate this latter perspective. Different from existing works
in the literature, we present a systematic framework and the
associated mathematical optimization problems that aim to
provide guarantees on item coverage so that items appear in
the lists of recommended items of a certain number of users.

VI. CONCLUSION

We studied the problem of guaranteeing item coverage in
RSs with the goal to have minimum deviation cost in terms of
ratings of recommended items to users compared to a baseline
RS, and to have these costs allocated evenly across users
and across items. Our works paves the way for a novel and
systematic approach, driven by mathematical optimization for
performing recommendations under item coverage constraints.
For the problem of minimizing total deviation cost, we show
that a LP relaxation gives the optimal recommendation. For
the problem of balancing deviation costs across users or items,
LP solution rounding or a greedy approach would work well.

The employed optimization-driven framework is generic
and could be applied to provide guarantees in terms of other
metrics in RSs such as novelty, diversity or serendipity. These
cases would require appropriate modifications in problem
formulation. Finally the notion of fairness in RSs deserves
further investigation. In this work, fairness was viewed as
minimizing the maximum deviation cost across users or across
items. In RSs, the training dataset that is used to predict ratings
is composed out of contributions of ratings of different users.
A further possibility for fair user treatment for the RS would be
to provide recommendation accuracy to a user commensurate
to her contribution in the system in terms of number of rated
items. The total recommendation accuracy is the cost of the
RS as a whole, and different approaches could be applied for
fair cost allocation across users, using perhaps notions from
cooperative game theory.
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