The influence of fluid on the lock gate structure in a dam-reservoir system subjected to sinusoid... more The influence of fluid on the lock gate structure in a dam-reservoir system subjected to sinusoidal excitation is investigated. The gate’s material is considered homogeneous, isotropic, prismatic, and elastic, and the gate is analysed using Mindlin’s plate theory. The fluid is considered non-viscous, incompressible, and has an irrotational flow field. The method of separation of variables with the Fourier half range cosine series is used to solve the fluid domain’s Laplace equation. The fluid’s infinite length is curtailed near the gate, controlling the calculations without affecting the results too much. Both the domains are interacted with each other by transferring the fluid’s pressure to the gate and the gate’s acceleration to fluid. At the fluid’s free surface, undisturbed and linearised, conditions are considered. The Newmark-beta time integration approach is used to solve the forced vibration equations using developed FORTRAN computer code. A study has been performed to assess the dynamic pressure variation due to fluid. The present results may be valuable if the lock gate is subjected to any terrible natural phenomena.
ABSTRACTThe effect of fluid on the natural frequencies of a vertical rectangular lock gate is inv... more ABSTRACTThe effect of fluid on the natural frequencies of a vertical rectangular lock gate is investigated. The fluid is assumed to be inviscid and incompressible having an irrotational flow field. The far boundary of fluid domain is truncated near the lock gate structure by solving the Laplace equation using Fourier half range cosine series expansion. The formulation of lock gate structure is governed using Mindlin’s plate theory. The coupled interaction between the fluid domain and the lock gate structure is established using finite element method (FEM) and a computer code is written using FORTRAN. Convergence study and validation of the formulation are carried out to minimise the computational error. The natural frequencies of lock gate coupled with and without fluid are determined for undisturbed and linearised free surface conditions. By varying extent of fluid domain, the effect on the natural frequencies of lock gate is evaluated. The results of natural frequencies obtained may be useful to the designer when the reservoir lock gate structure is exposed to the natural disasters.
Journal of Engineering Mechanics-asce, Jun 1, 2012
ABSTRACT This paper presents some of the interesting effects arising from the nonlinear motion of... more ABSTRACT This paper presents some of the interesting effects arising from the nonlinear motion of the liquid-free surface, due to sloshing, in a partially filled rigid container subjected to forced excitation. A two-dimensional meshless local Petrov-Galerkin method is used for the numerical simulation of the problem. A local symmetric weak form (LSWF) for nonlinear sloshing of liquid is developed, and a truly meshless method, based on LSWF and moving least squares (MLS) approximation, is presented for the solution of the Laplace equation with the requisite time-dependent boundary conditions. The MLS approximation with linear basis as well as Gaussian type weight function is employed in the computation. At every instant of time, velocity potential is computed at each node and the nodal positions are updated. The choice of a suitable scaling parameter value in the MLS approximation is discussed in this study. The effectiveness of the developed algorithm is demonstrated through a few numerical examples. The accuracy and stability of the numerical method introduced are verified from the comparison with the existing reference solutions. DOI: 10.1061/(ASCE)EM.1943-7889.0000367. (C) 2012 American Society of Civil Engineers.
... A three-dimensional finite element analysis was carried out for the numerical simulation of t... more ... A three-dimensional finite element analysis was carried out for the numerical simulation of the ... A simple experimental set-up was designed and fabricated to conduct experiments for ... Celebi and Akyildiz [13] presented a nonlinear liquid sloshing inside a partially filled rectangular ...
The influence of fluid on the lock gate structure in a dam-reservoir system subjected to sinusoid... more The influence of fluid on the lock gate structure in a dam-reservoir system subjected to sinusoidal excitation is investigated. The gate’s material is considered homogeneous, isotropic, prismatic, and elastic, and the gate is analysed using Mindlin’s plate theory. The fluid is considered non-viscous, incompressible, and has an irrotational flow field. The method of separation of variables with the Fourier half range cosine series is used to solve the fluid domain’s Laplace equation. The fluid’s infinite length is curtailed near the gate, controlling the calculations without affecting the results too much. Both the domains are interacted with each other by transferring the fluid’s pressure to the gate and the gate’s acceleration to fluid. At the fluid’s free surface, undisturbed and linearised, conditions are considered. The Newmark-beta time integration approach is used to solve the forced vibration equations using developed FORTRAN computer code. A study has been performed to asses...
The study presents the design forces of simply supported single-cell reinforced concrete (RC) cur... more The study presents the design forces of simply supported single-cell reinforced concrete (RC) curved box-girder bridges using a finite element method (FEM) based CSiBridge v.20 software. An existing model has been used to validate the present modelling approach. Models subjected to vertical loading, i.e., dead load (DL) and Indian road congress live load (LL), are considered for investigation. An intensive parametric study examines the maximum values of bending moment (BM), shear force (SF), torsional moment (TM), and vertical deflection (VD) in both girders of bridges. The influences of curve angle and span are considered in the study. The effect of curve angle, up to 12°, is negligible on forces and deflections, and thus such bridges can be analysed as a straight one. Finally, non-dimensional equations are derived for evaluating forces and deflections, so that one may predict these quantities for curved bridges based on straight bridge’s results. Engineers and designers may consid...
The influence of fluid on the lock gate structure in a dam-reservoir system subjected to sinusoid... more The influence of fluid on the lock gate structure in a dam-reservoir system subjected to sinusoidal excitation is investigated. The gate’s material is considered homogeneous, isotropic, prismatic, and elastic, and the gate is analysed using Mindlin’s plate theory. The fluid is considered non-viscous, incompressible, and has an irrotational flow field. The method of separation of variables with the Fourier half range cosine series is used to solve the fluid domain’s Laplace equation. The fluid’s infinite length is curtailed near the gate, controlling the calculations without affecting the results too much. Both the domains are interacted with each other by transferring the fluid’s pressure to the gate and the gate’s acceleration to fluid. At the fluid’s free surface, undisturbed and linearised, conditions are considered. The Newmark-beta time integration approach is used to solve the forced vibration equations using developed FORTRAN computer code. A study has been performed to assess the dynamic pressure variation due to fluid. The present results may be valuable if the lock gate is subjected to any terrible natural phenomena.
ABSTRACTThe effect of fluid on the natural frequencies of a vertical rectangular lock gate is inv... more ABSTRACTThe effect of fluid on the natural frequencies of a vertical rectangular lock gate is investigated. The fluid is assumed to be inviscid and incompressible having an irrotational flow field. The far boundary of fluid domain is truncated near the lock gate structure by solving the Laplace equation using Fourier half range cosine series expansion. The formulation of lock gate structure is governed using Mindlin’s plate theory. The coupled interaction between the fluid domain and the lock gate structure is established using finite element method (FEM) and a computer code is written using FORTRAN. Convergence study and validation of the formulation are carried out to minimise the computational error. The natural frequencies of lock gate coupled with and without fluid are determined for undisturbed and linearised free surface conditions. By varying extent of fluid domain, the effect on the natural frequencies of lock gate is evaluated. The results of natural frequencies obtained may be useful to the designer when the reservoir lock gate structure is exposed to the natural disasters.
Journal of Engineering Mechanics-asce, Jun 1, 2012
ABSTRACT This paper presents some of the interesting effects arising from the nonlinear motion of... more ABSTRACT This paper presents some of the interesting effects arising from the nonlinear motion of the liquid-free surface, due to sloshing, in a partially filled rigid container subjected to forced excitation. A two-dimensional meshless local Petrov-Galerkin method is used for the numerical simulation of the problem. A local symmetric weak form (LSWF) for nonlinear sloshing of liquid is developed, and a truly meshless method, based on LSWF and moving least squares (MLS) approximation, is presented for the solution of the Laplace equation with the requisite time-dependent boundary conditions. The MLS approximation with linear basis as well as Gaussian type weight function is employed in the computation. At every instant of time, velocity potential is computed at each node and the nodal positions are updated. The choice of a suitable scaling parameter value in the MLS approximation is discussed in this study. The effectiveness of the developed algorithm is demonstrated through a few numerical examples. The accuracy and stability of the numerical method introduced are verified from the comparison with the existing reference solutions. DOI: 10.1061/(ASCE)EM.1943-7889.0000367. (C) 2012 American Society of Civil Engineers.
... A three-dimensional finite element analysis was carried out for the numerical simulation of t... more ... A three-dimensional finite element analysis was carried out for the numerical simulation of the ... A simple experimental set-up was designed and fabricated to conduct experiments for ... Celebi and Akyildiz [13] presented a nonlinear liquid sloshing inside a partially filled rectangular ...
The influence of fluid on the lock gate structure in a dam-reservoir system subjected to sinusoid... more The influence of fluid on the lock gate structure in a dam-reservoir system subjected to sinusoidal excitation is investigated. The gate’s material is considered homogeneous, isotropic, prismatic, and elastic, and the gate is analysed using Mindlin’s plate theory. The fluid is considered non-viscous, incompressible, and has an irrotational flow field. The method of separation of variables with the Fourier half range cosine series is used to solve the fluid domain’s Laplace equation. The fluid’s infinite length is curtailed near the gate, controlling the calculations without affecting the results too much. Both the domains are interacted with each other by transferring the fluid’s pressure to the gate and the gate’s acceleration to fluid. At the fluid’s free surface, undisturbed and linearised, conditions are considered. The Newmark-beta time integration approach is used to solve the forced vibration equations using developed FORTRAN computer code. A study has been performed to asses...
The study presents the design forces of simply supported single-cell reinforced concrete (RC) cur... more The study presents the design forces of simply supported single-cell reinforced concrete (RC) curved box-girder bridges using a finite element method (FEM) based CSiBridge v.20 software. An existing model has been used to validate the present modelling approach. Models subjected to vertical loading, i.e., dead load (DL) and Indian road congress live load (LL), are considered for investigation. An intensive parametric study examines the maximum values of bending moment (BM), shear force (SF), torsional moment (TM), and vertical deflection (VD) in both girders of bridges. The influences of curve angle and span are considered in the study. The effect of curve angle, up to 12°, is negligible on forces and deflections, and thus such bridges can be analysed as a straight one. Finally, non-dimensional equations are derived for evaluating forces and deflections, so that one may predict these quantities for curved bridges based on straight bridge’s results. Engineers and designers may consid...
Uploads
Papers by Priyaranjan Pal