

1

Dr Hilding Elmqvist
CEO Mogram AB and Technical Fellow Modelon AB

Prof Martin Otter
DLR, Institute of System Dynamics and Control

Modia – A Prototyping Platform for Next Generation
Modeling And Simulation Based on Julia

Outline

 Motivation - The Modia project

 Introduction to Modia language

 Modiator web app

 ModiaMedia

 Symbolic algorithms

 Summary

Jubilee Symposium 2019: Future Directions of System Modeling and Simulation

2

Modelica Challenges

 Modelica is powerful (equations, objects, connections)
 Although static, requiring recompilation if:

 An array dimension is changing
 A component class is changing
 A medium is changing

 Modelica algorithms and functions lack functionalities:
 Modern data structures
 Parallelization
 …

 It is possible to build complex system models, but:
 Sometimes hard to understand models (3D, media/fluid models, …)
 Translation should be faster
 Simulation should be faster

• Dynamic typing, Matlab-like notation

• Static typing, efficient, data structures (as C++)

• Multiple dispatch

• Metaprogramming

• for domain specific language extensions

• for symbolic processing

• Just-in-time compilation

Innovation platform - Modia

Based on modern language – Julia

Modia Equation-based modeling

Modiator 2D/3D model editor

ModiaMath Simulation environment

Modia3D 3D geometry and 3D mechanics

ModiaMedia Thermodynamic property models

Modelia Modelica model importer (partial)

Open source project consisting of several
Julia packages (github.com/ModiaSim)

Contributors:
Hilding Elmqvist, Toivo Henningsson, Martin Otter,
Andrea Neumayr, Oskar Åström, Chris Laughman

Jubilee Symposium 2019: Future Directions of System Modeling and Simulation

3

Connectors and Components - Electrical
@model Pin begin
 v=Float()
 i=Float(flow=true)
end

@model OnePort begin
 p=Pin()
 n=Pin()
 v=Float()
 i=Float()
@equations begin
 v = p.v - n.v # Voltage drop
 0 = p.i + n.i # KCL within component
 i = p.i
 end
end

@model Resistor begin # Ideal linear electrical resistor
 @extends OnePort()
 @inherits i, v
 R=1 # Resistance
@equations begin
 R*i = v
 end
end

connector Pin
 Modelica.SIunits.Voltage v;
 flow Modelica.SIunits.Current I;
end Pin;

partial model OnePort
 SI.Voltage v;
 SI.Current i;
 PositivePin p;
 NegativePin n;
equation
 v = p.v - n.v;
 0 = p.i + n.i;
 i = p.i;
end OnePort;

model Resistor
 parameter Modelica.SIunits.Resistance R;
 extends Modelica.Electrical.Analog.Interfaces.OnePort;
equation
 v = R*i;
end Resistor;

Modelica

Elmqvist/Henningsson/Otter 2017: Innovations for Future Modelica

Coupled Models - Electrical Circuit
@model LPfilter begin

 R = Resistor(R=100)

 C = Capacitor(C=0.001)

 V = ConstantVoltage(V=10)

@equations begin

 connect(R.n, C.p)

 connect(R.p, V.p)

 connect(V.n, C.n)

 end

end

model LPfilter

 Resistor R(R=100);

 Capacitor C(C=0.001);

 ConstantVoltage V(V=10);

 Ground ground;

equation

 connect(R.n, C.p);

 connect(R.p, V.p);

 connect(V.n, C.n);

 connect(V.n, ground.p);

end Lpfilter;

Modelica

ground

R=100

R

Jubilee Symposium 2019: Future Directions of System Modeling and Simulation

http://www.ep.liu.se/ecp/article.asp?issue=132%26article=76
http://www.ep.liu.se/ecp/article.asp?issue=132%26article=76

4

Modiator – web app

 Summer 2019 prototype

 Summer intern: Oskar Åström

 Joint project between Modelon and Mogram

 Cooperation with Martin Otter, DLR

 Modelica diagrams

 Exploring fundamentals
 CSG – Constructive Solid Modeling
 Shape parametrization

 Focus: 3D model composition and animation
 Modia3D
 Modelica…MultiBody

3D model composition

• Mechanism composition
• Introducing joints
• Parametrization
• Immediate kinematic

animation
• Exploded view

Jubilee Symposium 2019: Future Directions of System Modeling and Simulation

5

3D Animation

• Generate Modia3D model

 Determine properties from
geometries (mass, ...)

 3D mechanics algorithms
 Collision handling
 Fast translation

• Client/server communication
between web app and Julia

• Simulate
• Animate result in Modiator

Modelica Multibody 3D parametric preview

• Kinematic animation
• Parametric animation
• Spanning tree view
• Interpretation of Modelica AST
• Evaluation of Modelica expressions

Jubilee Symposium 2019: Future Directions of System Modeling and Simulation

6

ModiaMedia - Thermodynamic property models

using ModiaMedia

Medium = getMedium("N2") # dictionary

p = 1e5
T = 300.0
state = setState_pT(Medium, p, T) # construct
setState_pT!(state, 2*p, 2*T) # update

d = density(state # get other properties)
h = specificEnthalpy(state)

listMedia() # list all supported media
standardPlot(Medium) # plot Medium

• Much simpler and more powerful as Modelica.Media

• Fluid network: state propagated/updated along connection structure

 (Medium defined at one state instance)

Developers: Martin Otter (DLR), Hilding Elmqvist (Mogram), Chris Laughman (MERL); Paper at Modelica‘2019

Symbolic Algorithms

• For 𝟎 = 𝐟 𝐱 , 𝐱, 𝑡

• Can be used directly in current Modelica tools

Jubilee Symposium 2019: Future Directions of System Modeling and Simulation

http://www.ep.liu.se/ecp/article.asp?issue=157&article=060&volume=

7

Modelica translation today - flattening

 Object-oriented modeling approach
 allows building large models with millions of equations

 Semantic specification is based on flattening
 i.e. cloning variables and equations of each component instance

 And most tools also expands matrix equations

Negative consequences:
 A lot of memory is needed for variables and equations during translation
 Translation time is unnecessary long

 same analysis (flattening, symbolic processing, etc) is performed repeatedly for each
instance of a component

 C-code gets large and compilation takes long time

16

Remedy: Separate Translation

 Parts of the equations of a component
 are always executed in the same order and with the same causality

 independently of how the component is connected

 Such sequences of equations can be put into functions
 which are reused for all components of the same class

 less C-code gives shorter compilation time

 Finding such sequences can be made once for each model class
 faster translation and less memory use

17

Jubilee Symposium 2019: Future Directions of System Modeling and Simulation

8

Component Model Equations
DAE:

𝑓(𝑥 , 𝑥, 𝑐𝑝 , 𝑐𝑓 , 𝑢, 𝑦, 𝑣, 𝑝)=0
 𝑥 – differentiated variables
 𝑐𝑝 – potentials of the connectors
 𝑐𝑓 – flows and streams of the connectors
 u – inputs
 y – outputs
 v – other variables
 p – parameters
 dim(𝑓) = dim(𝑥)+dim(𝑐𝑝)+dim(𝑦)+dim(𝑣)

Generic environment of model:

 Generic environment needs to relate all connector variables

 𝑔(𝑐𝑝, 𝑐𝑓 , 𝑢, 𝑦)=0
 dim(𝑔) = dim(𝑐𝑓)+dim(𝑢)
 𝑔 has full incidence

 Might also contain derivatives

Model equations partitioning

 First blocks (always same causality, use function):
 𝑥 1, 𝑦1, 𝑣1 = 𝑓1(𝒙, 𝒑)

 Middle block (𝑓2 kept as equations):
 𝑔(𝑐𝑝, 𝑐𝑓 , 𝑢, 𝑦)=0

 𝑓2(𝒙 𝟏, 𝑥 2, 𝒙, 𝑐𝑝, 𝑐𝑓 , 𝑢, 𝒚𝟏, 𝑦2, 𝒗𝟏, 𝑣2, 𝒑)=0

 Last blocks (always same causality, use function):
 𝑥 3, 𝑦3, 𝑣3=𝑓3(𝒙 𝟏, 𝒙 𝟐, 𝒙, 𝒄𝒑, 𝒄𝒇, 𝒖, 𝒚𝟏, 𝒚𝟐, 𝒗𝟏, 𝒗𝟐, 𝒑)

f1

g, f2

f3

𝑐𝑝 , 𝑐𝑓 , 𝑢

Known variables marked in bold face

Perform BLT on f and g function incidences

Since g has full incidence, all g-equations
will appear in the same block

Jubilee Symposium 2019: Future Directions of System Modeling and Simulation

9

Example: Heat exchanger model

MSL BasicHX

 flow models close to connectors

 10 spatial segments

 50 dynamic states

 514 equations

 dim(f2) = 24

g

f3

f1

f2

name

Example: Multibody Robot model

MSL Robot with der(phi)

 With der(phi) in g(…)
to enable connecting dampers

 12 dynamic states

 391 equations

 dim(f2) = 0

 Modia3D is a manual
implementation of this approach

g

f3

world

x

y

a b

n={1,0,0}
r2

a b

n={1,0,0}
r3

a b

n={1,0,0}
r5

axis1

axis2

axis3

axis4

axis5

axis6

f1

Jubilee Symposium 2019: Future Directions of System Modeling and Simulation

10

Separate Translation - Summary

 Systematic method for splitting model equations into acausal and
causal partitions
 User does not need to consider which equations can be moved to functions

 Local index reduction is performed

 Global index reduction requires automatic differentiation of the functions

 Limited testing shows that substantial part of the equations can be
moved to separately compiled functions

 Less time and memory for both translation and simulation

 This approach could be combined into a generalized FMU.

Index Reduction of Array Equations

 Structural algorithm to reduce DAE index to 0 (= solve state constraints)

 Often: Pantelides 1988.

 Map scalar equations → scalar equations
(array properties lost during transformation)

Core algorithm in Modelica tools

BLT Block 1 solve for

 𝐮 = −(𝑐𝑠 + 𝑑𝑠)𝐧 𝐮

BLT Block 2
 BLT Block 2.1

 𝐫 = 𝐧𝑠 𝑠, 𝐫

 BLT Block 2.2

 𝐫 = 𝐧𝑠
𝐯 = 𝐫 𝑠 , 𝐫 , 𝐯

 BLT Block 2.3

 𝐫 = 𝐧𝑠
𝐯 = 𝐫

𝑚𝐯 = 𝐟 + 𝑚𝐠+ 𝐮
𝟎 = 𝐧 ∙ 𝐟

𝑠 , 𝐫 , 𝐯 , 𝐟

New algorithm Otter, Elmqvist 2017 (section 3)

 Generalization of Pantelides 1988

 Map array equations → array equations

 More efficient machine code possible

𝐫 = 𝐧𝑠
𝐯 = 𝐫

𝑚𝐯 = 𝐟 + 𝑚𝐠 + 𝐮
0 = 𝐧 ∙ 𝐟
𝐮 = −(𝑐𝑠 + 𝑑𝑠)𝐧

Example

Jubilee Symposium 2019: Future Directions of System Modeling and Simulation

https://epubs.siam.org/doi/10.1137/0909014
http://www.ep.liu.se/ecp/article.asp?issue=132%26article=64

11

Tearing with retained solution space

𝟎 = 𝒈 𝒛
𝒛𝑒 ∶= 𝒈𝑒 𝒛𝑒, 𝒛𝑡
 0 = 𝒈𝑟 𝒛𝑒 , 𝒛𝑡

𝒛 = [𝒛𝑒, 𝒛𝑡]
solve explicitly as much

as possible, without

changing solution space

 Reduce the size of algebraic equation systems
 Reduce number of states

New algorithm:
 Otter, Elmqvist 1999 (unpublished) +
 Bender, Fineman, Gilbert, Tarjan 2016 (incremental cycle detection in DAGs)
 → Otter, Elmqvist 2017 (section 4.6)
 O(n) ≤ tearing ≤ O(nm)
 Example: Loop with 1 million equations → 1 equation (needs 2s)

𝑧1 = 𝑓1 𝑧4
𝑧2 = 𝑓2 𝑧1,𝑧5
𝑧3 = 𝑓3 𝑧2, 𝑧1
𝑧4 = 𝑓4 𝑧3, 𝑧2

Core algorithm in Modelica tools

 input: 𝑧4
output: 𝑟
𝑧1 ≔ 𝑓1 𝑧4
𝑧2 ≔ 𝑓2 𝑧1,𝑧5
𝑧3 ≔ 𝑓3 𝑧2, 𝑧1
𝑟 = 𝑧4 − 𝑓4 𝑧3, 𝑧2

Example

Exact Removal of Singularities

Modelica tools can fail on well-defined models:

 Structurally singular at compile-time

 Singular Jacobian at run-time

New algorithm Otter, Elmqvist 2017 (section 5)

 Extract all linear equations with Integer coefficients

from DAE system (e.g.: 0 = 𝑖1 + 𝑖2; 𝑢𝑟𝑒𝑙 = 𝑢2 − 𝑢1):

→ 𝐀 ∙ 𝒙 = 𝐁, 𝐀 ϵ ℤ𝑛𝑎1 𝑥 𝑛𝑎2, 𝐁 ϵ ℤ𝑛𝑎1 𝑥 𝑛𝑏2

 Remove all singularities exactly!!!

 Use as pre-processing step

− Remove redundant equation:

 -L2.n.i - V.n.i = 0

− Make potentials well-defined

by adding equation:

 L2.n.v = 0

− Make state constraints structurally

visible by replacing

 -R1.p.i - R2.p.i - L1.n.i = 0

with

 -L1.p.i + L2.p.i = 0

Example

Jubilee Symposium 2019: Future Directions of System Modeling and Simulation

https://dl.acm.org/citation.cfm?id=2756553
https://dl.acm.org/citation.cfm?id=2756553
https://dl.acm.org/citation.cfm?id=2756553
http://www.ep.liu.se/ecp/article.asp?issue=132%26article=64
http://www.ep.liu.se/ecp/article.asp?issue=132%26article=64
http://www.ep.liu.se/ecp/article.asp?issue=132%26article=64
http://www.ep.liu.se/ecp/article.asp?issue=132%26article=64
http://www.ep.liu.se/ecp/article.asp?issue=132%26article=64
http://www.ep.liu.se/ecp/article.asp?issue=132%26article=64

12

No dynamic state selection

Free Body Rotation (with quaternions)

𝝎 = 2

𝑞4 𝑞3 −𝑞2
−𝑞3 𝑞4 𝑞1
𝑞2 −𝑞1 𝑞4

−𝑞1
−𝑞2
−𝑞3

∙ 𝒒

𝝉 𝑡 = 𝑰𝝎 + 𝝎 × 𝑰
1 = 𝒒𝑻𝒒

Modelica tools transform 𝟎 = 𝐟1 (𝐱, 𝐱, 𝑡)

(conceptually) to index 0 form: 𝒙 𝑟𝑒𝑑 = 𝐟2(𝐱𝑟𝑒𝑑 , 𝑡)

 Sparseness of 𝐟1 might get lost

 Might require dynamic state selection

(𝐱𝑟𝑒𝑑 changed during simulation; might not work well)

𝜕𝐟𝑑
𝜕𝐱 𝑟𝑒𝑑
𝜕𝐟𝑐
𝜕𝐱𝑟𝑒𝑑

 is regular
𝐟𝑑 𝒙 𝑟𝑒𝑑 , 𝐱𝑟𝑒𝑑 , 𝑡

𝐟𝑐 𝐱𝑟𝑒𝑑 , 𝑡
= 𝟎

Transform to special index 1 form

New proposal Otter, Elmqvist 2017

 Sparseness is not changed

 No dynamic state selection

− Directly integrate equations
(already in special index 1 form)

− Initialization/events:
• new 𝐱𝑟𝑒𝑑: use Dirac impulse

• new 𝒙 𝑟𝑒𝑑: use
𝑑

𝑑𝑡
1 = 𝒒𝑻𝒒

Example

No dynamic state selection - examples

𝝎 = 2

𝑞4 𝑞3 −𝑞2
−𝑞3 𝑞4 𝑞1
𝑞2 −𝑞1 𝑞4

−𝑞1
−𝑞2
−𝑞3

∙ 𝒒

𝝉 𝑡 = 𝑰𝝎 + 𝝎 × 𝑰
1 = 𝒒𝑻𝒒

Body attached with spherical joint to ground
(= 7 equations)

Modia about 40 % faster as a Modelica tool:
• Modelica: index 0 DAE, changing states, DASSL, 4000 model calls
• Modia : index 1 DAE, fixed states , IDA , 2700 model calls

16 free flying bodies à 13 states = 208 states
≈ 200 possible collision pairs

Jubilee Symposium 2019: Future Directions of System Modeling and Simulation

http://www.ep.liu.se/ecp/article.asp?issue=132%26article=64
http://www.ep.liu.se/ecp/article.asp?issue=132%26article=64
http://www.ep.liu.se/ecp/article.asp?issue=132%26article=64

13

Multi-mode systems with impulses

0 = if engaged then 𝜔𝑟𝑒𝑙 else 𝜏1

ideal clutch

Dirac impulse

Previous multi-mode attempts of limited use:

 Changing structure can lead to index change + Dirac impulse

 Not supported by Modelica tools

New proposal
Benveniste, Caillaud, Elmqvist, Ghorbal, Otter, Pouzet 2019
 Multi-Mode DAE Models: Challenges, Theory and Implementation

Requirement: Special index 1 form linear in derivatives (+ other req.)

0 =
𝑨 𝒙, 𝑡 𝒙 + 𝒃 𝒙, 𝑡

𝒇𝑐 𝒙, 𝑡

(= 𝒇𝑑(𝒙 , 𝒙, 𝑡))

Compute 𝒙+ from 𝒙− at 𝑡𝑒𝑣𝑒𝑛𝑡:

0 =
𝑨 𝒙+, 𝑡𝑒𝑣𝑒𝑛𝑡 (𝒙+ − 𝒙−)

𝒇𝑐 𝒙+, 𝑡𝑒𝑣𝑒𝑛𝑡
→ 𝒙+ implicit Euler ℎ → 0

If index 0 ↔ 1: without re-compilation

Example

or

(hard)

Summary

 Modelica needs better scalability
 since users need to simulate more and more complex product designs

 The Modia project provides freedom for innovation

 Several new algorithms have been designed and tested
 could be integrated in Modelica tools

 New user experiences are evaluated

Jubilee Symposium 2019: Future Directions of System Modeling and Simulation

https://link.springer.com/content/pdf/10.1007/978-3-319-91908-9_16.pdf
https://link.springer.com/content/pdf/10.1007/978-3-319-91908-9_16.pdf
https://link.springer.com/content/pdf/10.1007/978-3-319-91908-9_16.pdf

