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Abstract. This paper introduces incremental symmetry breaking constraints for
graph search problems which are complete and compact. We show that these
constraints can be computed incrementally: A symmetry breaking constraint for
order n graphs can be extended to one for order n + 1 graphs. Moreover, these
constraints induce a special property on their canonical solutions: An order n
canonical graph contains a canonical subgraph on the first & < n vertices for
every 1 < k < n. This facilitates a “generate and extend” paradigm for parallel
graph search problem solving: To solve a graph search problem ¢ on order n
graphs, first generate the canonical graphs of some order £ < n. Then, compute
canonical solutions for ¢ by extending, in parallel, each canonical order k graph
together with suitable symmetry breaking constraints. The contribution is that the
proposed symmetry breaking constraints enable to extend the order k canonical
graphs to order n canonical solutions. We demonstrate our approach through its
application on two hard graph search problems.

1 Introduction

Graph search problems deal with existence and enumeration of simple graphs with cer-
tain properties which are invariant under isomorphism. One of the most famous graph
search problems is the search for Ramsey (s, ¢;n) graphs which seeks order n graphs
with no clique of size s and no independent set of size ¢ [21]. The set of Ramsey
(4,5;24) graphs was determined only recently [2]. Such problems are often highly
challenging due to large number of symmetries in graphs representation, and enormous
search space. For graph search problems, any isomorphic graph, obtained by permuting
the vertices of a (non) solution, is also a (non) solution which is symmetric.

Ultimately, symmetry breaking is about restricting the search to a reduced space
which considers a single graph from each isomorphism class. If symmetries are elimi-
nated, the size of the search space is significantly reduced, and it can be explored more
efficiently because paths that lead to symmetric (non-)solutions are avoided.

Symmetry breaking in constraint programming and satisfiability solving is often
achieved by introducing symmetry breaking constraints [25, 6, 23] which are satisfied
by at least one member of each isomorphism class. A symmetry breaking constraint
is called complete if it is satisfied by exactly one member from each class and partial
otherwise. Ideally, a symmetry breaking constraint should be compact in size, and com-
plete. This enables solvers to avoid symmetries without imposing an overhead due to
the size of the constraint.



Computing compact and complete symmetry breaking constraints is, most often,
intractable [6]. For graph search problems, it is unknown if there exists a complete
symmetry breaking constraint that is polynomial in the size of the graph. The well-
known lex-leader approach [22], selects the smallest member of each class, with respect
to a lexicographic ordering, as a canonical representative. Testing if a given graph is a
lex-leader canonical representative is known to be co-NP complete [18]. Hence, it is
unlikely that there exists a polynomial size symmetry breaking constraint that identifies
lex-leader canonical representatives.

In theory, a complete lex-leader symmetry breaking constraint should impose one
lexicographic order constraint for every symmetry. As an example, for order 10 graphs
this translates to 10! = 3,628,800 constraints. In practice many of the these constraints
are redundant. Itzhakov and Codish [14] compute a complete symmetry breaking con-
straint for order 10 graph search problems consisting of only 7,853 lexicographic order
constraints instead of all 10! constraints. Codish ef al. [4] show that a further reduction
is made when expressing the symmetry breaking constraint using the implications de-
rived from the AND-decomposition of the lexicographic order constraints [9]. In their
approach, symmetry breaking constraints are more compact and faster to compute. They
compute, for the first time, a complete and compact symmetry breaking constraint for
order 11 graph search problems.

This paper introduces incremental symmetry breaking constraints for graph search
problems which are complete, compact and have two special properties: First, the sym-
metry breaking constraint for graphs of order n can be extended to one for graphs of
order n + 1. Second, if an order n graph satisfies the symmetry breaking constraint,
then so does its subgraph on the first £ < n vertices.

The first property implies that symmetry breaking constraints can be computed in-
crementally. The second property facilitates a “generate and extend” paradigm for par-
allel graph search problem solving. In this approach, to solve a graph search problem ¢
on order n graphs, we first generate the canonical graphs of some order k£ < n. We then
compute canonical solutions for ¢ by extending, in parallel, each canonical graph of or-
der k, applying a corresponding symmetry breaking constraint for order n graphs. The
crucial point is that the symmetry breaking constraints we introduce are consistent with
these order k& canonical subgraphs. We show that this generate and extend paradigm can
be effectively applied for order n < 12 graph search problems.

We demonstrate the application of incremental symmetry breaking constraints on
two hard graph search problems: enumeration of “totally magic-" [7, 10] and “word-
representable-" [16, 1] graphs. For both of these, state-of-the-art solutions apply a gen-
erate and test approach where each graph is tested for the corresponding property. Solv-
ing the instances for order 11 graphs involves huge resources and thousands of CPU
days. Moreover, this approach cannot be applied for larger graphs. We apply a generate
and extend approach with complete symmetry breaking constraints to provide solutions
which are significantly more efficient.

The computations described in this paper are performed using the finite-domain
constraint compiler BEE [20] which compiles constraints to a CNF formula, and solves
it applying an underlying SAT solver. We use Glucose 4.0 [3] as the underlying SAT
solver. All computations were performed on a cluster of servers, each with 56 Intel Xeon



E5-2620 cores and 256GB of RAM memory, clocked at 2 GHz. Each SAT instance is
run on a single thread. All running times reported are CPU times and specified in an
appropriate unit: (s) seconds, (h) hours, (d) days or (y) years.

The rest of this paper is structured as follows. Section 2 presents preliminary defi-
nitions and notation. Section 3 describes an incremental approach to compute column-
wise complete symmetry breaking constraints for graphs. Section 4 introduces a gen-
erate and extend paradigm for graph search problems. Section 5 demonstrates the ad-
vantage of our approach in the context of two hard graph search problems. Finally,
Section 6 concludes.

2 Preliminaries

Lexicographic Order Constraints: The lexicographic order constraint between two
vectors T = (x1,...,x,) and § = (y1,...,Yn), €ach consisting of n finite domain
variables, is denoted & <;.,, . The AND-decomposition of a lexicographic order con-
straint [9] can be expressed as follows:

T <iex §= [\ impi(,9) (1)
k=1

where each of the conjuncts impy(Z, 7) is called a k-length lex-implication and is de-
fined by:
k-1
impy (%) = ((/\ Ty =Yi) = Tp < Yk) @
i=1

Permutations: We denote by S, the group of all permutations on {1...n}. We repre-
sent a permutation 7 € S, as an array of size n where the number 1 < ¢ < 7n is mapped
to (7). For example: the permutation [2,3,1] € S3 maps as follows: {1 — 2,2 —
3,3—1}.

Graphs and Graph Orderings: The set of simple graphs on n vertices is denoted G,,.
The vertex set of a graph G = (V, E) of order n, is assumed to be V = {1,...,n}
and in abuse of notation its adjacency matrix representation is also denoted G. We
denote by R(G) and by C(G) the strings obtained by respectively concatenating the
rows and columns of the upper triangular part of the adjacency matrix of G. We denote
by G*) for k < n the induced subgraph of G on the vertex set {1,...,k}. This is the
upper left & x k corner of the adjacency matrix of G. An unknown graph of order n is
represented as an n X n adjacency matrix of Boolean variables which is symmetric and
has values false (denoted by 0) on the diagonal. All of the notations for given graphs,
such as C(G), R(G) and G¥), hold also for unknown graphs. For simplicity, unknown
graphs are also called graphs. For (possibly unknown) graphs G, H of the same order
and X € {R,C}, we denote the lexicographic order and the k-length lex-implication



constraints with respect to X by:

G <X, H=X(G) <jex X(H)

—lex

Permutations act on graphs in the natural way: viewing G € G,, as an adjacency ma-
trix and given a permutation = € S, then 7(G) is the adjacency matrix obtained by
mapping each element G; ; t0 Gr(j) ~(;) (for 1 < 4,5 < n). Two graphs G, H € G,
are called isomorphic if there exists a permutation 7 € S, such that G = w(H). Two
order n graphs G, H € G, are isomorphic if there exists a permutation ™ € S,,, such
that G = 7(H).

Example 1. The following depicts an unknown graph G and its permutation 7(G),

for 1 = [2,1,3,5,4], both represented as adjacency matrices of Boolean variables.
0 X1 T2 X3 T4 0 X1 s X7 Te
] 0 rs Teg X7 Xy 0 To T4 I3
G = xzo x5 0 x8 X9 7T(G) = x5 2 0 xg9 xg
3 Te T8 0 x10 T7 T4 T9 0 T10

T4 T7 Tg T10 0 Te T3 Ty T10 0
The strings R(G) and C(G) are obtained by respectively concatenating the rows
and the columns of the the upper triangular part of G.
R(G) = [z1,x2, 23, %4, T5, T6, T7, Tg, Tg, T10]

C(G) = [-rly$2733573337336733877347-T77-T97$10]

The constraints G < 7(G) and G <§_ 7(Q) are:

—lex —lex
[z1, 22, 23, T4, T5, T, T7, T8, To, T10] Siew
[$1,x5,1‘7,336,I2,I475L‘3,.’L‘9,$8,$10] and
[x1, %2, x5, X3, T6, T8, Ta, T7, To, T10] Siew

[:Llly T5,T2,T7,X4,T9,T6, T3, T8, 1’.10] .
These can be simplified respectively to:

(2, 23, T4, 8] <iex [T5,T7,T6, X9 and

[x2, 3, %6, T8] <iea [¥5, 77, T4, T .
The lex-implication constraint impZ (G, 7(Q)) is
(x1 =) A (22 = 25) = 23 < 7.

Given an isomorphism class of a graphs, a classic way to define the canonical rep-
resentative of the class is to take the smallest graph with respect to some order. In this
paper we consider two specific order relations and define a canonical representative in
the following way.

Definition 1 (LEXLEADER). We say that G € G,, is row-wise canonical if the follow-
ing constraint holds for X = R, and column-wise canonical if the following constraint
holds for X = C.

LEXLEADERX (G) = \ G <, 7(G)

—lex
TESy



The following property of column-wise canonical graphs is stated in [17].

Theorem 1 (column-wise canonical subgraphs).
If G € Gy, is column-wise canonical then G\¥) is also column-wise canonical for any
1<k<n.

The following example demonstrates that Theorem 1 does not hold for row-wise
canonical graphs.

Example 2. The following graph G (on the left) is row-wise canonical, while its sub-
graph G (bold text) is not; G (on the right) is the row-wise canonical isomorph of
GO,

G:

——000000
=) Jelololelo]

—=—0OMHO0000

=l =]=]=]=]
—O0ORFOO
[ =]=]=l=l=]
(=] Jelelol]
[=]e) HJololo]
COOHKO

Graph Search Problems: Graph search problems are about the search for a graph
that satisfies certain graph properties which are invariant under isomorphism. If G is
a solution to a graph search problem, then so is any G’ that is isomorphic to G. More
formally, an order n graph search problem is a predicate, ©(G), on an unknown order
n graph G, which is closed under isomorphism. A solution to ¢(G) is a satisfying
assignment for the variables of G.

Symmetry Breaking: We focus in this paper on two particular types of complete sym-
metry breaking predicates: row-wise and column-wise, that are satisfied exactly by the
row-wise and column-wise canonical graphs, respectively.

Consider the two predicates LEXLEADER x (G) for X € {R, C'} from Definition 1.
When G is an unknown graph, expressed in terms of Boolean variables, then Defini-
tion 1 can be viewed as specifying a conjunction of lexicographic order constraints over
these variables. Each of these two conjunctions specifies, a predicate that is true exactly
when its argument graph is respectively row-wise or column-wise canonical. Hence,
these predicates are complete symmetry breaking constraints. We can view the con-
straints in LEXLEADER x (G), either as a set of lexicographic order constraints, or as a
set of their corresponding lex-implications as specified by Equation 1. We denote these
sets, respectively by LEXLEADER” (G') and by LEXLEADER'?(G). For any symme-
try breaking predicate 1) defined as a conjunction of lexicographic order constraints (or
lex-implications), we define the size of i to be the number of lex-implications in the
AND-decomposition of these constraints.

Computing Compact Symmetry Breaking Constraints: For an unknown graph G,
for X € {R,C}, and for Y € {lex, imp}, the set of constraints LEXLEADERY (G)
(over the variables in G) is of size exponential in the size of G. However, many of
these constraints are redundant (implied by the others). One can compute an equivalent
set of irredundant constraints which is more concise. From here on, we call a set of



Algorithm 1 Compute a compact complete symmetry break for X € {R,C}, Y €
{lex, imp}
procedure SYMBREAK % (G)
Input: unknown order n graph G
Output: compact complete symmetry breaking constraint
¥ A}
while (3¢ € LexLeader¥ (G) st.1) =%~ ¢) do

Y < v U{c}
return Reduce())

irredundant constraints, compact. Luks [18] proves a result from which it follows that
unless P = NP, there is no polynomial-time algorithm that computes a compact lex-
leader symmetry breaking constraint for graph search problems. Nevertheless, we aim
to compute compact lex-leader symmetry breaking constraints for small graph search
problems. Algorithm 1 computes a compact complete symmetry breaking constraint for
G given X and Y. The symmetry breaking constraint is computed iteratively by adding
a constraint ¢ from LEXLEADERY (G), as long as it is not implied by the constraints
selected so far. In the implementation of Algorithm 1, the condition in the while-loop,
applies a SAT solver to identify the constraint ¢ which is not implied by the current set
of constraints . Possibly, when a new constraint is added, a constraint, already present,
becomes redundant. Therefore, the Algorithm applies an operation, Reduce(v)), to re-
move redundant constraints. For each constraint the test of redundancy is performed
using a SAT-solver. This algorithm generalizes the ones presented in [14] and in [4].

Example 3. Let G be the unknown order 5 graph detailed in Example 1. Algorithm 1
(with X = R, Y = lex) computes a compact row-wise symmetry breaking constraint
consisting of the following 7 lexicographic order constraints (after some simplifica-
tions) instead of the 120 constraints in LEXLEADER'S® (G).

[x1,26,27] < [T2,28,%9]

[x2,%5,%9] < [x3,%6,Z10]

[T1,22,23,24,25,26,27,28,29] < [5,21,27,T6,T2,T9,T8,T4,T3]

[#2,23,24,25,26,27,28,29,210] < [T4,T2,23,27,25,26,29,210,58]

[1,22,23,25,%6,L7,28,%9,210] < [€9,L10,7,28,L5,L2,L6,L3,L1]
[72,23,24,25,26,27,28,29,210] < [T7,25,26,T4,22,23,29,%10,73]
[#1,22,23,24,25,26,27,28,29,210] < [T6,21,27,25,23,L10,48,L4,L2,L9)

3 Incremental Computation of Symmetry Breaking Constraints

In this section we describe an incremental computation of compact column-wise sym-
metry breaking constraints for graphs. Our goal is to able to extend a given compact
column-wise symmetry breaking constraint ¢ for graphs of order k, with a set of con-
straints A such that ' = ¥ A A is a compact column-wise symmetry breaking con-
straint for graphs of order k 4+ 1. We show that we can achieve this goal when focusing
on column-wise symmetry breaking predicates. This ability to extend compact column-
wise symmetry breaking constraints facilitates an incremental approach to compute
them.



Theorem 2. Let G be an order k unknown graph and let 1) be a compact column-wise
symmetry breaking constraint for G~ Then, there exists A C LEXLEADER/ " (G)
such that 1p N A is a compact column-wise symmetry breaking constraint for G.

Proof. Let GG and 1) be as in the premise of the statement, and let
A* = {:Jc € LEXLEADER.™ (G) [ =5 = } ,

By construction, ¢ A A* is a column-wise symmetry breaking constraint for G. We
show that any redundant implication in ) A A* must be from A*. Hence, we can obtain
A C A* for which ¥ A A is a compact column-wise symmetry breaking constraint for
G. Let ¢ € 1 be redundant in ¢ A A*. Since 1 is compact, 1) — {c} is not a column-wise
symmetry breaking constraint for G(*~1). Hence, there exists an order k — 1 graph H
which is not column-wise canonical and for which (¢ — {c})(H) is true. By choice of
¢, (¥ — {c}) A A* is a column-wise symmetry breaking constraint for G' and hence,
by Theorem 1, also a column-wise symmetry breaking constraint for G(*~1). Hence,
((p = {c}) N A*)(H) is false which implies that A*(H) is false. So, A* contains an
implication x which is false, and hence depends only on variables from G(*~1) 2 € A*
implies that ¢ =%~ x. This means that ¥ not implies a lex-implication which depends
only on variables from G(*~1). The existence of such an implication contradicts the
assumption that 1 is a column-wise symmetry breaking constraint for G(*~1).

LEXLEADER(,"” direct incremental
n size size time | A-size A-time size time | speedup
3 18 3 0.00s 3 0.00s 3 0.00s 1.00
4 144 11 0.04s 7 0.01s 10 0.01s 4.00
5 1,200 23 0.07s 10 0.07s 20 0.08s 0.87
6 10,800 43 0.79s 22 0.72s 42 0.80s 0.98
7 105,840 130 8.61s 83 8.39s 125 9.19s 0.93
8 1,128,960 484  92.73s 342 75.26s 467 84.45s 1.09
9 13,063,680 2,845 799.54s 2,369 511.09s 2,836 595.54s 1.34
10 163,296,000 | 25,193 3.73h | 22,436 1.94h 25272 2.10h 1.77
11 2,195,424,000 | 289,698  12.39d | 264,845 5.48d 290,117 5.56d 2.22

Table 1. Computation of compact column-wise symmetry breaking constraints for order 3 <
n < 11 graphs using direct and incremental approach.

Algorithm 2 applies an incremental approach to compute a compact set of con-
straints equivalent to LEXLEADER(, "’ (G). The input is an unknown graph G, the out-
put is a compact column-wise symmetry breaking constraint expressed in terms of
the variables in G. When execution enters the outer for-loop at line 5 with a value
1 < k < n we have already computed a compact column-wise symmetry breaking
constraint 1 for order k£ — 1 graphs. At this stage, the goal of the k-th iteration of the
for-loop is to compute a set of constraints A such that ¢ A A is column-wise sym-

metry breaking constraint for order k graphs. The while-loop at lines 7-8 computes



Algorithm 2 Incremental computation of compact column-wise symmetry breaking
constraints

1: procedure SYMBREAKINCREMENTAL(G)

2: Input: unknown order n graph G
3 Output: compact column-wise symmetry breaking constraint for G
4 P+ {}
5 for k:=1tondo
6: A+~ {}
7
8
9

imp (k)
N e
A AU{c}
1) < Reduce(yp U A)
10: return

a set A corresponding to A* in the proof of Theorem 2. The condition in the while-
loop at line 7 asks if there exists a constraint ¢ which is a witness to the fact that
¥ A A is not yet column-wise for k. Such a witness (if one exists) is to be found in
LEXLEADER. (G (k)). In the implementation, to determine if 1)A A is not yet column-
wise for k, we seek a value ¢, an order k graph H, and a permutation 7 € S}, such that
i = (WANA)(H) A—imp;(C(H),C(w(H))) holds. If 1); holds then the constraint we
add to A is ¢ = imp;(C(G®), C(x(G*)))). Otherwise, 1) A A is column-wise for k
and we exit the while-loop. The key step in the implementation is to encode the search
for 1); as a SAT instance. By Theorem 2 (and its constructive proof), all redundant
constraints removed at line 9 are removed from A.

Table 1 details the time to compute compact column-wise symmetry breaking con-
straints expressed in terms of lex-implications for order n graphs. The Table compares
the direct computation (using Algorithm 1) and the incremental computation (using Al-
gorithm 2). All of the symmetry breaking constraints computed (direct and incremental)
were verified by checking that the constraint for order n graphs renders the exact set of
column-wise canonical order n graphs as solutions.

The column labeled LEXLEADER. details the size of the LEXLEADER.™ con-
straint. The two columns labeled “direct” detail the computation (size and time) of the
the column-wise symmetry breaking constraint by application of Algorithm 1. The four
columns labeled “incremental” detail the computation by application of Algorithm 2.
The columns A-size and A-time detail the size and computation time to extend the
symmetry breaking constraint from the previous row. The columns size and time detail
aggregated size and time. The column labeled speedup details the ratio between the
direct and aggregated incremental computation times.

The table clearly indicates that compact column-wise symmetry breaking constraints
are much smaller than their Lex Leader " (G) counterparts which are logically equiv-
alent. This is in line with the results of previous works [14, 4]. The table indicates that
the incremental computation is more efficient (up to 2.2 times faster) and that the sizes
of the constraints (direct and incremental) are similar.



4 Generate and Extend

This sections introduces a “generate and extend” paradigm for graph search problems
which derives from the incremental properties of column-wise symmetry breaking con-
straints. To solve an order n graph search problem ¢ (), one can first generate all order
k < m canonical graphs (for a suitable value of k). Then, one can pose, for each order
k canonical graph G’, the question: does there exist a graph G € G,, which extends G’
such that (G holds? Basically this means, fixing the variables of the subgraph G (*)
to the values of G’ before applying a constraint (or SAT) solver on ¢(G). The graph
search problem: extend G’ to a solution of ¢(G) is denoted ¢(G/G").

For example, there are 1044 order 7 canonical graphs. To solve an order n graph
search problem ¢(G), one can seek solutions, in parallel, for the problems ¢(G/G’) to
extend each G’ from these 1044 graphs.

specialized simplified
n time avg size max size avg size max size
8| 047h 7.38 19 33.55 222
9| 3.51h 26.57 75 225.15 1,792
10 | 24.06h 107.43 675 | 2,943.92 18,836
11| 6.71d 873.03 15,433 | 58,561.44 257,121
12 | 65.68d 10,717.07 294,220 - -

Table 2. Computation of compact column-wise symmetry breaking constraints for order 8 <
n < 12 graphs extending order 7 column-wise canonical graphs.

The question is: how to break symmetries when solving ©(G/G’)? There are two
issues: (1) Given a graph G’ € G, how to break symmetries and obtain only non-
isomorphic solutions of ¢(G/G"); and (2) Given a pair of graphs G', G” € Gy, how to
ensure that solutions in ¢(G/G") are not isomorphic to those in ¢(G/G"). The beauty
of column-wise symmetry breaking constraints is that they address both issues.

If G' of order k is column-wise canonical, then G’ is consistent with a column-
wise symmetry breaking constraint ¢ of order n (k < n). Therefore 1 can be applied
when solving ¢(G/G’) and all solutions are column-wise canonical. Given column-
wise canonical graphs G',G” € Gy, the solutions for ¢(G/G’) and ¢(G/G") are
column-wise canonical, and hence, by definition, they can not be isomorphic.

When solving graph search problems of the form ¢(G/G’) for a given column-
wise canonical G’ € Gy, we can apply the column-wise symmetry breaking constraints
(direct or incremental) described in Table 1. Alternatively, we can compute a specialized
column-wise symmetry breaking constraint for each G’. These are considerably smaller
and facilitate the computation of compact column-wise symmetry breaking constraints
for order 12 graph search problems. This is done by application of Algorithm 2 after
fixing the values corresponding to G’ in the unknown graph G.

Table 2 details the computation of compact column-wise symmetry breaking con-
straints for graph search problems of the type ©(G/G’) where G’ is one of the 1044
order 7 column-wise canonical graphs and G is of order 7 < n < 12. The three



columns labeled “specialized” detail the computation of specialized column-wise sym-
metry breaking constraint for all order 7 column-wise canonical graphs. We detail the
total computation time (for all 1044 cases) and the average and maximal size of the
individual symmetry breaking constraints. The two columns labeled “simplified” detail
the size (average and maximal) of the symmetry breaking constraints obtained from the
symmetry breaking constraints described in Table 1 by removing implications which
become true due to G'.

Specialized symmetry breaking constraints are considerably smaller than the sim-
plifications of the general counterparts described in Table 1. For example when n = 11
the general symmetry breaking constraint consists of 289,698 implications while the
average (maximal) size of the specialized symmetry breaking constraints is only 873
(15,433). This means that each of the 1044 instances involve much smaller symmetry
breaking constraints. The row for n = 12 details 1044 specialized symmetry breaking
constraints for order 12 graphs. These cannot be computed by simplifying a general
symmetry breaking constraint. This is the first time that a complete and compact lex-
leader symmetry breaking constraint for graphs with 12 vertices has been computed,
albeit distributed over 1044 cases.

The symmetry breaking constraints described in Table 2 apply when extending order
7 canonical graphs to order n canonical solutions. It follows from Theorem 1 that these
same constraints can also be applied when extending order k£ > 7 canonical graphs
to canonical solutions of order n. In our experiments (in Section 5), when extending a
canonical order k& > 7 graph G’ to an order n solution, we apply the symmetry breaking
constraint computed for G'(7).

S Two Applications of Generate and Extend

In this section we apply a generate and extend approach to solve two hard graph search
problems: enumeration of “totally magic-" [7,10] and “word-representable-" [16, 1]
graphs. For both of these problems, state-of-the-art solutions apply a generate and test
approach where each non-isomorphic order n graph is tested for the corresponding
property. Each such test is not trivial. Determining if a given graph is word-representable
is NP-complete[13]. For totally magic graphs, the complexity is unknown. Yet state-
of-the-art methods are exponential. Solving the instances for n = 11 involves huge
resources and thousands of cpu days. Moreover, this approach cannot be applied for
larger graphs. We apply the proposed generate and extend paradigm with column-wise
symmetry breaking constraints and demonstrate that this approach is significantly more
efficient.

Totally Magic Graphs: The n vertex graph search problem ¢, () (G) is about the
search for a totally magic graph G with n vertices [7, 10]. A graph G = (V, E), with
|V| = nand |E| = m, is totally magic if there exist a one-to-one labeling A : VUE —
{ 1,...,n4+m } and two integer values h, k such that:

vertex magic constraint: the sum of the labels of each node and its incident edges
is h; and



edge magic constraint: the sum of the labels of each edge and its endpoints is k.

Figure 1 depicts a totally magic graph with 9 vertices. The sum of the labels of each
node and its incident edges is 25. The sum of the labels of each edge and its endpoints

is 26.
3 10 13 7 1 5
12 2 4 6 .T.T.
9 1 17
11 15

Fig. 1. An order 9 totally magic graph.

A relaxation of ¢y, (,,) weakens the definition to consider the vertex and edge magic
constraints with arithmetics modulo p and also specifies the number of edges, m, in the
solutions. We denote the relaxed problem by ‘me(n,m)' Any graph which is totally
magic is also totally magic modulo p [7, 15]. So, we can test the solutions of the relaxed
problem to identify the totally magic graphs.

Totally magic graphs are extremely rare. There are only 6 such graphs with 11 or
less vertices. The only known totally magic graphs, with > 11 vertices, are composed
of an odd number of triangles, or of an even number of triangles with a path of length
2. It is unknown if there exist other totally magic graphs with > 11 vertices.

In previous work, Jdger et al. [15] enumerate all totally magic graphs with n < 11
vertices. Their approach is based on an enumeration of all non-isomorphic graphs with
n vertices and testing each graph. These tests are based on, among other criteria, the
elimination of graphs which are not totally magic modulo p < 7. Jiger et al. [15] report
a total of 13,595 cpu days to show that there do not exist any order 11 totally magic
graphs.

We apply a constraint based approach where for each instance we consider the cor-
responding constraint model that expresses the totally magic constraints in conjunction
with suitable symmetry breaking constraints.

We first applied a direct approach to solve instances of the form (;,,(,)(G) and
sﬁ?m(n,m) (G@). For both types of instances we found solutions only when n < 9 (with
a 48 hours time-out). We then applied a generate and extend approach focusing on the
relaxed form 47 | (n.m) (G/@G") which enabled us to enumerate all totally magic graphs
of order n < 12.

Table 3 details a two step computation of totally magic order n graphs. In the first
step we apply a generate and extend approach to compute all solutions of (pi‘lm(n,m)
(for all possible values of m). In the second step we test each solution of the relaxed
problem to check if it is totally magic.

Each order n instance of the relaxed problem corresponds to a pair (G, m) where
G’ is one of the order 7 column-wise canonical graphs and m is the number of edges
in the solution. We impose a 24 hour timeout on each instance. An instance (G’,m)
which timed out is further refined to a set of instances of the form (G”,m) where G”



step 1: generate and step 2: test the
extend for gpfm(n) @fm(n) solutions
n solutions time | solutions time
8 1,777 3.44m 0 28.82s
9 37,542 2.16h 2 0.48h
10 | 1,507,843 4.63d 0 2.58d
11 | 91,397,498 | 550.74d 0 425.62d

Table 3. A two step computation of totally magic graphs for 9 < n < 11 vertices.

is an order 8 column-wise canonical graph which extends G’. Such time-outs were
encountered only for the case n = 11 (in 164 of the 36,540 instances).

For the first step, Table 3 details (left side) the total number of gpfm (n,m) solutions
and the aggregated computation time (including the cost of the 24 hour time-outs). For
the second step, Table 3 details (right side) the computation time for the tests on the
solutions from the first step. To this end, we apply a series of tests similar to those
described in [15].

Table 3 indicates for n = 10 and 11 total computation times of 7.21 and 976.36
(days) in contrast to the 21.70 and 13,595 (days) reported in [15]. One can view the first
step (generate and extend) as a filter to the second step. For example, instead of testing
all 1,018,997,864 order 11 graphs for the total magic property, as in [15], we only have
to test 91,397,498 which is less than 9% of them.

Word Representable Graphs: A simple graph G = (V, E) is called word-representable
if there exits a word w € V* containing each letter of the alphabet V' such that for every
i,7 € V, i and j alternate in w if and only if (7, j) € F [16]. In this case we say that G
is represented by w. For example, the graph depicted in Figure 2 is word-representable.

Fig. 2. A word-representable graph (represented by the word 1413243).

Akgiin et al. [1] compute the number of connected non-word-representable order
n < 11 graphs. They adopt a generate and test approach, testing each non-isomorphic
connected graph of the corresponding order. The test is performed using the constraint
solver Minion [12]. To this end, they specify a constraint model based on the equiv-
alence of word representable graphs and so-called, semi-transitive graphs [16]. They
report 1100 cpu days of computation time to accomplish this task for order 11 graphs.

We denote the graph search problem to find connected order n word-representable
graphs by ©,,(n). We adopt the same constraint model used by Akgiin et al. [1], to-
gether with constraints to ensure connectivity, and with column-wise symmetry break-
ing constraints.



We first applied a direct constraint based approach to solve instances of the form
©uwr(n)(G). This approach works well to find solutions for n < 10. We then apply a
generate and extend paradigm to enumerate solutions of ,,,.(,)(G/G"). In this way we
succeed to enumerate all connected word-representable graphs for order n < 12. This
is the first time that a solution for n = 12 is reported.

Table 4 details the generate and extend approach and compares its computation
times with those of the generate and test approach described by Akgiin ef al. [1]. To
comply with their results, we present the corresponding numbers of connected and of
connected non-word-representable graphs. The first three columns detail the order, n,
and the numbers of connected graphs and connected non-word-representable graphs.
For the generate and extend paradigm, with 9 < n < 12, we extend each order k
column-wise canonical graph to the set of its extensions which are canonical connected
word-representable graphs. The total computation times are detailed in the table. For the
generate and test paradigm we specify (right most column) the computation times de-
tailed in [1]. The generate and extend computations are orders of magnitude faster than
the corresponding generate and test computations. We note that for order 11 graphs, the
results reported in [1] are in error: (1) the correct number of order 11 connected graphs
is as specified in Table 4 (see sequence A001349 in [24]); and (2) the correct number
of connected non-word-representable graphs is as specified in Table 4 (we found 2124
more connected word-representable graphs and verified that they are connected, word-
representable, and all non-isomorphic). For n = 12 the generate and extend approach
was applied using Clasp 3.1.3 [11]. The generate and test approach is not able to handle
this case.

g&e g&t
| n [ # connected | # non-word-rep. [ k [ time time
8 11,117 929 || 7| 5.80s 26s
9 261,080 54,957 || 7| 1.55m 29m
10 11,716,571 4,880,093 || 8 | 1.41h 74h
11 1,006,700,565 650,853,916 || 9 | 4.04d || 1,100d
12 | 164,059,830,476 | 135,950,114,622 || 9 | 6.40y —

Table 4. Numbers of connected non-word-representable graphs computed using a generate and
extend (g & e) approach, and a generate and test (g & t) approach.

6 Conclusion

This paper introduces incremental symmetry breaking constraints for graph search prob-
lems. We start from the notion of column-wise canonicity introduced in [17] where the
authors show that the subgraphs of an order n canonical graph on the first & < n
vertices is also canonical. We build on this property in two ways. First we show that
column-wise symmetry breaking constraints can be computed incrementally. Then,
we introduce a generate and extend paradigm where canonical solutions of an order



n graph search problem can be obtained using column-wise symmetry breaking con-
straints by extending canonical graphs of order £ < n. We compute, for the first time,
a complete and compact lex-leader symmetry breaking constraint for order 12 graphs.
We demonstrate the superiority of our generate and extend approach through two hard
graph search problems and provide the previously unknown number of order 12 non-
word-representable graphs.

There is a large body of work on methods for generation of non-isomorphic combi-
natorial objects [19,5]. Still, there remain many open graph search problems which
involve surprisingly small graphs. The results obtained in this paper suggest that a
constraint-based approach combined with strong symmetry breaking methods will lead
to breakthroughs for many of these problems.

Many graph search problems are hereditary: order n solutions can be obtained by
extending order k£ < n solutions. The generate and extend approach can take advantage
of this property by extending order k canonical solutions instead of all order k£ canonical
graphs.

The techniques presented in this paper can be adapted for other combinatorial ob-
jects, such as matrix search problems [8].

The symmetry breaking constraints described in this paper can be obtained by re-
quest from the authors. The symmetry breaking constraints are “solver independent”.
They can be applied in conjunction with any constraint solver to restrict the search to
canonical solutions of a given graph search problem.
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