Invasive plant species are a significant global problem, with the potential to alter structure an... more Invasive plant species are a significant global problem, with the potential to alter structure and function of ecosystems and cause economic damage to managed landscapes. An effective course of action to reduce the spread of invasive plant species is to identify potential habitat incorporating changing climate scenarios. In this study, we used a suite of species distribution models (SDMs) to project habitat suitability of the eleven most abundant invasive weed species across road networks of Montana, USA, under current (2005) conditions and future (2040) projected climates. We found high agreement between different model predictions for most species. Among the environmental predictors, February minimum temperature, monthly precipitation, solar radiation, and December vapor pressure deficit accounted for the most variation in projecting habitat suitability for most of the invasive weed species. The model projected that habitat suitability along roadsides would expand for seven specie...
Journal of Applied Meteorology and Climatology, 2019
Water balance influences the distribution, abundance, and diversity of plant species across Earth... more Water balance influences the distribution, abundance, and diversity of plant species across Earth’s terrestrial system. In this study, we examine changes in the water balance and, consequently, the dryland extent across eight ecoregions of the north-central United States by quantifying changes in the growing season (May–September) moisture index (MI) by 2071–99, relative to 1980–2005, under three high-resolution (~4 km) downscaled climate projections (CNRM-CM5, CCSM4, and IPSL-CM5A-MR) of high-emission scenarios (RCP8.5). We find that all ecoregions are projected to become drier as based on significant decreases in MI, except four ecoregions under CNRM-CM5, which projects relatively more moderate warming and much greater increases in precipitation relative to the other two projections. The mean projected MI across the entire study area changes by from +4% to −33%. The proportion of dryland (MI < 0.65) is projected to increase under all projections, but more significantly under th...
Covering about 40% of Earth’s land surface and sustaining at least 38% of global population, dryl... more Covering about 40% of Earth’s land surface and sustaining at least 38% of global population, drylands are key crop and animal production regions with high economic and social values. However, land use changes associated with industrialized agricultural managements are threatening the sustainability of these systems. While previous studies assessing the impacts of agricultural management systems on biodiversity and their services focused on more diversified mesic landscapes, there is a dearth of such research in highly simplified dryland agroecosystems. In this paper, we 1) summarize previous research on the effects of farm management systems and agricultural expansion on biodiversity and biodiversity-based ecosystem services, 2) present four case studies assessing the impacts of management systems on biodiversity and ecosystem services across highly simplified dryland landscapes of the Northern Great Plains (NGP), USA, 3) discuss approaches to sustain biodiversity-based ecosystem se...
Drawing on a long history in macroecology, correlation analysis of microbiome datasets is becomin... more Drawing on a long history in macroecology, correlation analysis of microbiome datasets is becoming a common practice for identifying relationships or shared ecological niches among bacterial taxa. However, many of the statistical issues that plague such analyses in macroscale communities remain unresolved for microbial communities. Here, we discuss problems in the analysis of microbial species correlations based on presence-absence data. We focus on presence-absence data because this information is more readily obtainable from sequencing studies, especially for whole-genome sequencing, where abundance estimation is still in its infancy. First, we show how Pearson's correlation coefficient (r) and Jaccard's index (J)-two of the most common metrics for correlation analysis of presence-absence data-can contradict each other when applied to a typical microbiome dataset. In our dataset, for example, 14% of species-pairs predicted to be significantly correlated by r were not predi...
The biogeographic distribution of plant species is inherently associated with the plasticity of p... more The biogeographic distribution of plant species is inherently associated with the plasticity of physiological adaptations to environ-mental variation. For semi-arid shrublands with a legacy of saline soils, characterization of soil water-tolerant shrub species is necessary for habitat restoration given future projection of increased drought magnitude and persistence in these ecosystems. Five dominant native shrub species commonly found in the Lower Rio Grande Valley, TX, USA, were studied, namely Acacia farnesiana, Celtis ehrenbergiana, Forestiera angustifolia, Parkinsonia aculeata and Prosopis glandulosa. To simulate drought condi-tions, we suspended watering of healthy, greenhouse-grown plants for 4 weeks. Effects of soil salinity were also studied by dosing plants with 10% NaCl solution with suspended watering. For soil water deficit treatment, the soil water potential of P. glandulosa was the highest (−1.20 MPa), followed by A. farnesiana (−4.69 MPa), P. aculeata (−5.39 MPa), F....
Invasive plant species are a significant global problem, with the potential to alter structure an... more Invasive plant species are a significant global problem, with the potential to alter structure and function of ecosystems and cause economic damage to managed landscapes. An effective course of action to reduce the spread of invasive plant species is to identify potential habitat incorporating changing climate scenarios. In this study, we used a suite of species distribution models (SDMs) to project habitat suitability of the eleven most abundant invasive weed species across road networks of Montana, USA, under current (2005) conditions and future (2040) projected climates. We found high agreement between different model predictions for most species. Among the environmental predictors, February minimum temperature, monthly precipitation, solar radiation, and December vapor pressure deficit accounted for the most variation in projecting habitat suitability for most of the invasive weed species. The model projected that habitat suitability along roadsides would expand for seven specie...
Journal of Applied Meteorology and Climatology, 2019
Water balance influences the distribution, abundance, and diversity of plant species across Earth... more Water balance influences the distribution, abundance, and diversity of plant species across Earth’s terrestrial system. In this study, we examine changes in the water balance and, consequently, the dryland extent across eight ecoregions of the north-central United States by quantifying changes in the growing season (May–September) moisture index (MI) by 2071–99, relative to 1980–2005, under three high-resolution (~4 km) downscaled climate projections (CNRM-CM5, CCSM4, and IPSL-CM5A-MR) of high-emission scenarios (RCP8.5). We find that all ecoregions are projected to become drier as based on significant decreases in MI, except four ecoregions under CNRM-CM5, which projects relatively more moderate warming and much greater increases in precipitation relative to the other two projections. The mean projected MI across the entire study area changes by from +4% to −33%. The proportion of dryland (MI < 0.65) is projected to increase under all projections, but more significantly under th...
Covering about 40% of Earth’s land surface and sustaining at least 38% of global population, dryl... more Covering about 40% of Earth’s land surface and sustaining at least 38% of global population, drylands are key crop and animal production regions with high economic and social values. However, land use changes associated with industrialized agricultural managements are threatening the sustainability of these systems. While previous studies assessing the impacts of agricultural management systems on biodiversity and their services focused on more diversified mesic landscapes, there is a dearth of such research in highly simplified dryland agroecosystems. In this paper, we 1) summarize previous research on the effects of farm management systems and agricultural expansion on biodiversity and biodiversity-based ecosystem services, 2) present four case studies assessing the impacts of management systems on biodiversity and ecosystem services across highly simplified dryland landscapes of the Northern Great Plains (NGP), USA, 3) discuss approaches to sustain biodiversity-based ecosystem se...
Drawing on a long history in macroecology, correlation analysis of microbiome datasets is becomin... more Drawing on a long history in macroecology, correlation analysis of microbiome datasets is becoming a common practice for identifying relationships or shared ecological niches among bacterial taxa. However, many of the statistical issues that plague such analyses in macroscale communities remain unresolved for microbial communities. Here, we discuss problems in the analysis of microbial species correlations based on presence-absence data. We focus on presence-absence data because this information is more readily obtainable from sequencing studies, especially for whole-genome sequencing, where abundance estimation is still in its infancy. First, we show how Pearson's correlation coefficient (r) and Jaccard's index (J)-two of the most common metrics for correlation analysis of presence-absence data-can contradict each other when applied to a typical microbiome dataset. In our dataset, for example, 14% of species-pairs predicted to be significantly correlated by r were not predi...
The biogeographic distribution of plant species is inherently associated with the plasticity of p... more The biogeographic distribution of plant species is inherently associated with the plasticity of physiological adaptations to environ-mental variation. For semi-arid shrublands with a legacy of saline soils, characterization of soil water-tolerant shrub species is necessary for habitat restoration given future projection of increased drought magnitude and persistence in these ecosystems. Five dominant native shrub species commonly found in the Lower Rio Grande Valley, TX, USA, were studied, namely Acacia farnesiana, Celtis ehrenbergiana, Forestiera angustifolia, Parkinsonia aculeata and Prosopis glandulosa. To simulate drought condi-tions, we suspended watering of healthy, greenhouse-grown plants for 4 weeks. Effects of soil salinity were also studied by dosing plants with 10% NaCl solution with suspended watering. For soil water deficit treatment, the soil water potential of P. glandulosa was the highest (−1.20 MPa), followed by A. farnesiana (−4.69 MPa), P. aculeata (−5.39 MPa), F....
Uploads
Papers by Arjun Adhikari