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Abstract

In his world-famous paper of 1948, Shannon defined channel capacity as the
ultimate rate at which information can be transmitted over a communication
channel with an error probability that will vanish if we allow the blocklength to
get infinitely large. While this result is of tremendous theoretical importance,
the reality of practical systems looks quite different: no communication system
will tolerate an infinite delay caused by an extremely large blocklength, nor can
it deal with the computational complexity of decoding such huge codewords. On
the other hand, it is not necessary to have an error probability that is exactly
zero either, a small, but finite value will suffice.

Therefore, the question arises what can be done in a practical scheme. In
particular, what is the maximal rate at which information can be transmitted
over a communication channel for a given fixed maximum blocklength (i.e., a
fixed maximum delay) if we allow a certain maximal probability of error? In
this project, we have started to study these questions.

Block-codes with very short blocklength over the most general binary chan-
nel, the binary asymmetric channel (BAC), are investigated. It is shown that
for only two possible messages, flip-flop codes are optimal, however, depending
on the blocklength and the channel parameters, not necessarily the linear flip-
flop code. Further it is shown that the optimal decoding rule is a threshold rule.
Some fundamental dependencies of the best code on the channel are given.

In the special case of a Z-channel, the optimal code is derived for the cases
of two, three, and four messages. In the situation of two and four messages, the
optimal code is shown to be linear.

Keywords: Channel capacity, binary asymmetric channel (BAC), error prob-
ability, finite blocklengths, ML, optimal codes, Z-channel.
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1 Introduction

The analytical study of optimal communication over a channel is very difficult even
if we restrict ourselves to discrete memoryless channels (DMCs). Most known results
are derived using the mathematical trick of considering some limits, in particular,
usually it is assumed that the blocklength tends to infinity. The insights that have
been achieved in this way are considerable, but it still remains an open question
how far these asymptotic results can be applied to the practical scenario where the
blocklength is strongly restricted.

Shannon proved in his ground-breaking work [1] that it is possible to find an
information transmission scheme that can transmit messages at arbitrarily small
error probability as long as the transmission rate in bits per channel use is below
the so-called capacity of the channel. However, he did not provide a way on how to
find such schemes, in particular he did not tell us much about the design of codes
apart from the fact that good codes need to have large blocklength.

For many practical applications exactly this latter constraint is rather unfortu-
nate as often we cannot tolerate too much delay (e.g., inter-human communication,
time-critical control and communication, etc.). Moreover, the system complexity
usually will grow exponentially in the blocklength. So we see that having large
blocklength might not be an option and we have to restrict the blocklength to some
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reasonable size. The question now arises what can theoretically be said about the
performance of communication systems with such restricted blocksize.

For these reasons we have started to investigate the fundamental behavior of
communication in the extreme case of an ultra-short blocklength. We would like to
ask questions like: What performance can we expect from codes of fixed, very short
blocklength? What can we say about good design for such codes?

To simplify the problem, we currently focus on binary memoryless channels and
start with the simplest type of communication: a code with two to four equally likely
messages.

In the subsequent section we will review some basic definitions and channel mod-
els needed in the context of reliable communication. This section is mainly based
Shannon’s first land-mark paper [1]. In Section 3 we give some preliminary defini-
tions and results; Section 4 summarizes our results; and we conclude in Section 5.

2 Definitions

2.1 Discrete Memoryless Channel

The probably most fundamental model describing communication over a noisy chan-
nel is the so-called discrete memoryless channel (DMC). A DMC consists of a

• a finite input alphabet X ;

• a finite output alphabet Y; and

• a conditional probability distribution PY |X(·|x) for all x ∈ X such that

PYk|X1,X2,...,Xk,Y1,Y2,...,Yk−1
(yk|x1, x2, . . . , xk, y1, y2, . . . , yk−1)

= PY |X(yk|xk) ∀ k. (1)

Note that a DMC is called memoryless because the current output Yk depends only
on the current input xk. Moreover also note that the channel is time-invariant in
the sense that for a particular input xk, the distribution of the output Yk does not
change over time.

Definition 1. We say a DMC is used without feedback, if

P (xk|x1, . . . , xk−1, y1, . . . , yk−1) = P (xk|x1, . . . , xk−1) ∀ k, (2)

i.e., Xk depends only on past inputs (by choice of the encoder), but not on past
outputs. Hence, there is no feedback link from the receiver back to the transmitter
that would inform the transmitter about the last outputs.

Note that even though we assume the channel to be memoryless, we do not
restrict the encoder to be memoryless!

We now have the following theorem.

Theorem 2. If a DMC is used without feedback, then

P (y1, . . . , yn|x1, . . . , xn) =

n∏

k=1

PY |X(yk|xk) ∀n ≥ 1. (3)
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2.2 Coding for DMC

Definition 3. A (M, n) coding scheme for a DMC (X ,Y, PY |X) consists of

• the message set M = {1, . . . ,M} of M equally likely random messages M ;

• the (M, n) codebook (or simply code) consisting of M length-n channel input
sequences, called codewords;

• an encoding function f : M → X n that assigns for every message m ∈ M a
codeword x = (x1, . . . , xn); and

• a decoding function g : : Yn → M̂ that maps the received channel output
n-sequence y to a guess m̂ ∈ M̂. (Usually, we have M̂ = M.)

Note that an (M, n) code consist merely of a unsorted list of M codewords of
length n, whereas an (M, n) coding scheme additionally also defines the encoding
and decoding functions. Hence, the same code can be part of many different coding
schemes.

Definition 4. A code is called linear if the sum of any two codewords again is a
codeword.

Note that a linear code always contains the all-zero codeword.
The two main parameters of interest of a code are the number of possible mes-

sages M (the larger, the more information is transmitted) and the blocklength n

(the shorter, the less time is needed to transmit the message):

• we have M equally likely messages, i.e., the entropy is H(M) = log2 M bits
and we need log2 M bits to describe the message in binary form;

• we need n transmissions of a channel input symbol Xk over the channel in
order to transmit the complete message.

Hence, it makes sense to give the following definition.

Definition 5. The rate1 of a (M, n) code is defined as

R ,
log2 M

n
bits/transmission. (4)

It describes what amount of information (i.e., what part of the log2 M bits) is
transmitted in each channel use.

However, this definition of a rate makes only sense if the message really arrives
at the receiver, i.e., if the receiver does not make a decoding error!

Definition 6. Given that message M = m has been sent, let λm be the probability
of a decoding error of an (M, n) coding scheme:

λm , Pr[g(Y n
1 ) 6= m | Xn

1 = f(m)] =
∑

y∈Yn

p(y|x(m))I{g(y) 6= m}, (5)

where I{·} is the indicator function

I{statement} ,

{

1 if statement is true,

0 if statement is wrong.

1We define the rate here using a logarithm of base 2. However, we can use any logarithm as long

as we adapt the units accordingly.
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The maximum error probability λ(n) of an (M, n) coding scheme is defined as

λ(n) , max
m∈M

λm. (6)

The average error probability P
(n)
e of an (M, n) coding scheme is defined as

P (n)
e ,

1

M

M∑

m=1

λm. (7)

Moreover, sometimes it will be more convenient to focus on the probability of not
making any error, denoted success probability ψm:

ψm , Pr[g(Y n
1 ) = m | Xn

1 = f(m)] =
∑

y∈Yn

p(y|x(m))I{g(y) = m}. (8)

The definitions of maximum success probability ψ(n) and average success probability2

P
(n)
c are accordingly.
Note that for given a codebook C, we define the decoding region Di corresponding

to the m-th codewords, m = 1, 2, . . . ,M, as

Dm , {y : g(y) = m}. (9)

The most famous relation between code rate and error probability has been
derived by Shannon in his landmark paper from 1948 [1].

Theorem 7 (The Channel Coding Theorem for a DMC). Define

C , max
PX(·)

I(X;Y ) (10)

where X and Y have to be understood as input and output of a DMC and where the
maximization is over all input distributions PX(·).

Then for every R < C there exists a sequence of (2nR, n) coding schemes with
maximum error probability λ(n) → 0 as the blocklength n gets very large.

Conversely, any sequence of (2nR, n) coding schemes with maximum error prob-
ability λ(n) → 0 must have a rate R ≤ C.

So we see that C denotes the maximum rate at which reliable communication is
possible. Therefore C is called channel capacity.

Note that this theorem considers only the situation of n tending to infinity and
thereby the error probability going to zero. However, in a practical system, we
cannot allow the blocklength n to be too large because of delay and complexity. On
the other hand it is not necessary to have zero error probability either.

So the question arises what we can say about “capacity” for finite n, i.e., if
we allow a certain maximal probability of error, what is the smallest necessary
blocklength n to achieve it? Or, vice versa, fixing a certain short blocklength n,
what is the best average error probability that can be achieved? And, what is the
optimal code structure for a given channel?
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Figure 1: Binary symmetric channel (BSC).

X Y

00 1

11

ǫ

1− ǫ

Figure 2: Z-channel.

2.3 Channel Model

In the following we will concentrate on the special cases of binary DMCs, i.e., we
restrict our channel alphabets to be binary.

The best known example of a binary DMC is the binary symmetric channel
(BSC) shown in Figure 1. Another important special case of a binary DMC is the
Z-channel shown in Fig 2.

The most general binary channel is a butterfly-channel with crossover probabili-
ties that are not identical. In reference to the BSC we call this channel model binary
asymmetric channel (BAC), see Figure 3. Both BSC and Z-channel are special cases
of the BAC.

00

11

ǫ0

ǫ1

1− ǫ0

1− ǫ1

X Y

Figure 3: Binary asymmetric channel (BAC).

A BAC is specified by two parameters: ǫ0 denoting the probability that a 0 is
changed into a 1 and ǫ1 denoting the probability that a 1 is changed into a 0.

For symmetry reasons and without loss of generality we can restrict the values
of these parameters as follows:

0 ≤ ǫ0 ≤ ǫ1 ≤ 1, (11)

2The subscript “c” stands for “correct.”
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ǫ0 ≤ 1− ǫ0, (12)

ǫ0 ≤ 1− ǫ1. (13)

Note that in the case where ǫ0 > ǫ1 we simply can flip all zeros to ones and vice-versa
to get an equivalent channel with ǫ0 ≤ ǫ1. For the case where ǫ0 > 1 − ǫ0, we can
flip the output Y , i.e., change all output zeros to ones and ones to zeros, to get an
equivalent channel with ǫ0 ≤ 1− ǫ0. Note that (12) can be simplified to ǫ0 ≤

1
2 . And

for the case where ǫ0 > 1− ǫ1, we can flip the input X to get an equivalent channel
that satisfies ǫ0 ≤ 1− ǫ1.

We have depicted the region of possible choices of the parameters ǫ0 and ǫ1 in
Figure 4. The region of interesting choices given by (11) and (12) is denoted by Ω.

ǫ0

ǫ1

Ω

1

1

1
2

1
2

ǫ0 + ǫ1 = 1
(completely
noisy)

ǫ0 = ǫ1 (BSC)

ǫ0 = 0
(Z-channel)

Figure 4: Region of possible choices of the channel parameters ǫ0 and ǫ1 of a BAC.
The shaded area corresponds to the interesting area according to (11), (12) and (13).

Note that the BAC includes all well-known binary channel models: if ǫ0 = ǫ1,
we have a BSC; and if ǫ0 = 0, we have a Z-channel. In the case when ǫ0 = 1− ǫ1 we
end up with a completely noisy channel of zero capacity: given Y = y, X = 0 and
X = 1 are equally likely, i.e., X ⊥⊥ Y .

3 Preliminaries

3.1 Capacity of the BAC

As mentioned above, without loss of generality, we only consider BACs with 0 ≤
ǫ0 ≤ ǫ1 ≤ 1. The capacity of a BAC is given by

CBAC =
ǫ0

1− ǫ0 − ǫ1
·Hb(ǫ1)−

1− ǫ1

1− ǫ0 − ǫ1
·Hb(ǫ0)+ log2

(

1 + 2
Hb(ǫ0)−Hb(ǫ1)

1−ǫ0−ǫ1

)

(14)

bits, where Hb(·) is the binary entropy function defined as

Hb(p) , −p log2 p− (1− p) log2(1− p).
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The input distribution P ∗
X(·) that achieves this capacity is given by

P ∗
X(0) = 1− P ∗

X(1) =
1− ǫ1(1 + z)

(1− ǫ0 − ǫ1)(1 + z)
(15)

with

z , 2
Hb(ǫ0)−Hb(ǫ1)

1−ǫ0−ǫ1 . (16)

3.2 Error Probability of the BSC

Consider the situation of a BSC and assume that we transmit the m-th codeword
xm, 1 ≤ m ≤ M, and that we receive y. The maximum likelihood (ML) decision is
then

g(y) , arg max
1≤i≤M

PY|X(y|xi). (17)

The average probability of error can be computed as

Pe =
1

M
(1− ǫ)n

∑

y

M∑

i=1
i 6=g(y)

(
ǫ

1− ǫ

)dH(xi,y)

(18)

where dH(·, ·) is the Hamming distance.
Note that if we want to find the best average error probability, we need to check

through all possible codes (including both linear and nonlinear codes). The com-
plexity of such a search grows exponentially fast in n: for M = 4 and

• for n = 3 there are
(
8
4

)
= 70 different codes;

• for n = 4 there are
(
16
4

)
= 1820 different codes;

• for n = 5 there are
(
32
4

)
= 35960 different codes, etc.

It turns out that for a given BSC, blocklength n, and number of message M,
there is a vast amount of different codes (linear and nonlinear) that are all optimal.
This is not really surprising because the BSC is strongly symmetric.

3.3 Error Probability of the BAC

To simplify our notation we introduce dαβ(xi,y) to be the number of positions j

where x
(j)
i = α and y(j) = β, where as usual xi, i ∈ {1, 2, . . . ,M}, is the sent

codeword and y is the received sequence.
The conditional probability of the received vector given the sent codeword can

now be written as

PY|X(y|xi) = (1− ǫ0)
d00(xi,y) · ǫ

d01(xi,y)
0 · ǫ

d10(xi,y)
1 · (1− ǫ1)

d11(xi,y). (19)

Note that we can express these different dαβ ’s as follows:

d11(xi,y) =
1

2
wH(xi + y − |xi − y|), (20)

d10(xi,y) = wH(I{xi − y > 0}), (21)

d01(xi,y) = wH(I{y − xi > 0}), (22)

d00(xi,y) = n− d11(xi,y)− d10(xi,y)− d01(xi,y), (23)
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where wH(x) is the Hamming weight of x.
The average error probability of a code C over a BAC (assuming equally likely

messages) can be expressed as

Pe(C) =
1

M
(1− ǫ0)

n
∑

y

M∑

i=1
i 6=g(y)

(
ǫ0

1− ǫ0

)d01(xi,y)( ǫ1

1− ǫ0

)d10(xi,y)(1− ǫ1

1− ǫ0

)d11(xi,y)

(24)

=
1

M

M∑

i=1

∑

y
g(y) 6=i

PY|X(y|xi), (25)

where g(y) is the ML decision (17) for the observation y.
Note that a closer investigation shows that some of these optimal codes are linear,

but some are not.

3.4 Error (and Success) Probability of the Z-Channel

A special case of the BAC is the Z-channel where we have ǫ0 = 0. By symmetry,
assume that ǫ1 ≤

1
2 . Note that it is often easier to maximize the success probability

instead of minimizing the error probability. For the convenience of later derivations,
we now are going to derive its error and success probabilities:

Pc(C) =
1

M

M∑

i=1

∑

y
g(y)=i

(1− ǫ1)
wH(xi)

(
ǫ1

1− ǫ1

)d10(xi,y)

·I
{

if x
(j)
i = 0 =⇒ y(j) = 0, ∀ j

}

. (26)

The error probability formula is accordingly

Pe(C) =
1

M

M∑

i=1

∑

y
g(y) 6=i

(1− ǫ1)
wH(xi)

(
ǫ1

1− ǫ1

)d10(xi,y)

·I
{

if x
(j)
i = 0 =⇒ y(j) = 0, ∀ j

}

. (27)

Note that the capacity-achieving distribution for ǫ1 =
1
2 is

Pr[X = 1] =
2

5
. (28)

4 Main Results

4.1 Optimal Codes for the Case M = 2

We start with the definition of a special class of codes: flip-flop codes.

Definition 8. A code with two codewords (M = 2) is called flip-flop code if one
codeword is the flipped version of the other, i.e., if in each position where the first
codeword has a 1, the second has a 0, and vice-versa.
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In particular, we define the flip-flop code of type t as follows: for every
t ∈

{
0, 1, . . . ,

⌊
n
2

⌋}
, we have

C
(n)
2,t =

(
x1

x2

)

,

(
x
x̄

)

(29)

where

x1 = x , 00 · · · 0 11 · · · 1
︸ ︷︷ ︸

wH(x)=t

, (30)

x2 = x̄ , 11 · · · 100 · · · 0. (31)

Note that the parameter t is the Hamming weight of the first codeword x1.

Due to the memorylessness of the BAC, the order of the columns of any code is
irrelevant. We therefore can restrict ourselves without loss of generality to flip-flop
codes of type t to describe all possible flip-flop codes.

Also note that the only possible linear flip-flop code is C
(n)
2,0 . All other flip-flop

codes are nonlinear.
We are now ready for the following result.

Proposition 9. Consider the case M = 2, and fix the blocklength n. Then, irre-
spective of the channel parameters ǫ0 and ǫ1, on a BAC there always exists a flip-flop

code of type t, C
(n)
2,t , for some choice of parameter t, 0 ≤ t ≤

⌊
n
2

⌋
, that is optimal in

the sense that it minimizes the error probability.

Proof. See Appendix A.

This result is intuitively very pleasing because it seems to be a rather bad choice
to have two codewords with the same symbol in a particular position. However, the
proposition does not exclude the possibility that such a code might exist that also
is optimal.

We would like to point out that the exact choice of t is not obvious and depends
strongly on n, ǫ0, and ǫ1. As an example, the optimal choices of t are shown in
Figure 5 for n = 5. We see that depending on the channel parameters, the optimal
value of t changes. Note that on the boundaries the optimal choice is not unique:
for a completely noisy BAC (ǫ1 = 1 − ǫ0), the choice of the codebook is irrelevant
since the probability of error is 1

2 in any case. For a BSC, t = 0, t = 1, or t = 2 are
equivalent. And for a Z-channel we can prove that a linear code is always optimal.3

4.2 Optimal Codes for the Z-Channel

We next give the following generalization of the flip-flop code for M = 4 codewords.

Definition 10. A two-pair flip-flop code with M = 4 codewords consists of two
combined flip-flop codes. In particular, we define the two-pair flip-flop code of

type t to be the linear code that combines C
(n)
2,0 and C

(n)
2,t : for every t ∈

{
1, . . . ,

⌊
n
2

⌋}
,

we have

C
(n)
4,t =







x1

x2

x3

x4







,







0
x
x̄
1







(32)

3As seen next in Section 4.2, a linear code is also optimal for the Z-channel for the case M = 4.
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Figure 5: Optimal codebooks on a BAC: the optimal choice of the parameter t for
different values of ǫ0 and ǫ1 for a fixed blocklength n = 5.

where x is defined in (30). I.e., in C
(n)
4,t there are (n − t) columns (0 0 1 1)T and t

columns (0 1 0 1)T.

Based on this definition and the peculiar behavior of the Z-channel that ensures
that PY |X(1|0) = 0, it is now possible to prove the following lemma.

Lemma 11. For a Z-channel and for a given two-pair flip-flop code of type t, C
(n)
4,t ,

with 1 ≤ t ≤ ⌊n2 ⌋, the decoding regions of the codewords xi are

D
(n)
4,t,1 =

{

0(n)
}

, (33)

D
(n)
4,t,2 =

{

y(n) : y(n) = [0(n−t)y(t)] with wH(y
(t)) = t, t− 1, . . . , 1

}

, (34)

D
(n)
4,t,3 =

{

y(n) : y(n) = [y(n−t)0(t)] with

wH(y
(n−t)) = (n− t), (n− t)− 1, . . . , 1

}

, (35)

D
(n)
4,t,4 = {0, 1}n \

3⋃

i=1

D
(n)
4,t,i. (36)

Moreover,
∣
∣
∣D

(n)
4,t,1

∣
∣
∣ = 1, (37)

∣
∣
∣D

(n)
4,t,2

∣
∣
∣ =

t−1∑

d=0

(
t

d

)

= 2t − 1, (38)
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∣
∣
∣D

(n)
4,t,3

∣
∣
∣ =

(n−t)−1
∑

d=0

(
n− t

d

)

= 2(n−t)−1, (39)

∣
∣
∣D

(n)
4,t,4

∣
∣
∣ =

n−1∑

d=0

[(
n

d

)

−

(
n− t

d− t

)

−

(
t

d− (n− t)

)]

= 2n − 2t − 2n−t + 1. (40)

Note that the parameter d in the summations stands for the Hamming distance
between the received vector and the particular codeword d10(xi,y).

The success probability for a given C
(n)
4,t code is

4Pc

(
C
(n)
4,t

)
=

4∑

m=1

ψ
(n)
m,i (41)

= 1 +
t−1∑

d=0

(
t

d

)

(1− ǫ1)
t−d · ǫd1 +

(n−t)−1
∑

d=0

(
(n− t)

d

)

(1− ǫ1)
(n−t)−d · ǫd1

+
n−1∑

d=0

[(
n

d

)

−

(
(n− t)

d− t

)

−

(
t

d− (n− t)

)]

(1− ǫ1)
n−d · ǫd1, (42)

where the last term in the summation of RHS can also be written as

n−t∑

i=1

t∑

j=1

(
(n− t)

i

)(
t

j

)

(1− ǫ1)
i+j · ǫn−i−j

1 . (43)

Proof. Due to our construction of the two-pair flip-flop code of type t, we always
have that one codeword is the flipped version of one of the other, and by the ML
decoding rule (17), we only can decode a vector y to a codeword such that there
are no flips from 0 to 1. From PY |X(0|0) = 1, the first codeword will always be

transmitted to 0(n). Hence, D
(n)
4,t,1 only consists of the all-zero vector.

For any y ∈ D
(n)
4,t,2, given in (34),

max
{
Pn
Y |X(y|x1), P

n
Y |X(y|x2), P

n
Y |X(y|x3), P

n
Y |X(y|x4)

}

= max
{
0, Pn

Y |X(y|x2), 0, P
n
Y |X(y|x4)

}
(44)

= Pn
Y |X(y|x2) (45)

= (1− ǫ1)
t−dǫd1, (46)

where 1 ≤ d ≤ t− 1, since 0 < ǫ1 ≤
1
2 and wH(x4) = n > t ≥ wH(x2).

The same argument can be applied to the decoding region D
(n)
4,t,3, and D

(n)
4,t,4 must

be {0, 1}n \
⋃3

i=1D
(n)
4,t,i.

By Lemma 11, now we have the following theorem proving the optimal code
structure on the Z-channel for M = 4.

Theorem 12. Fix a blocklength n ≥ 2. Then on the Z-channel under four hypothe-
ses M = 4, the two-pair flip-flop code of type ⌊n2 ⌋ is optimal in ML-sense.

Note that the success probability formula is given in (41) where we choose t =
⌊n2 ⌋. Note further that this means that for the Z-channel always an optimal code
can be found that is linear.
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Proof of Theorem 12. Our proof is based on induction on n. Since 22 = 4 and there
are only four possible different rows when n = 2, the optimal code for n = 2 is

C
(2)
4,1 =







0 0
0 1
1 0
1 1






. (47)

Next assume that for blocklength n, C
(n)
4,⌊n

2
⌋ is optimal. Then, from Claim 13 below,

this assumption still holds for n+ 1. This then proves the theorem.

Claim 13. Let’s add one new column to the two-pair flip-flop code of type ⌊n2 ⌋,

C
(n)
4,⌊n

2
⌋, to generate a new code of length n+1. The optimal (in the sense of resulting

in the smallest probability of error) choice among all possible 2M−1−1 = 14 columns
is 





0
1
0
1






. (48)

Proof. Note that there are 14 possible columns that we could choose as the (n+1)-th
column:







0
0
0
1






,







0
0
1
0






,







0
1
0
0






,







1
0
0
0






,







1
1
0
0






,







1
0
1
0






,







1
0
0
1






,







0
1
1
0






,







0
1
0
1






,







0
0
1
1






,







0
1
1
1






,







1
0
1
1






,







1
1
0
1






,







1
1
1
0






. (49)

The choice of the all-zero or all-one column clearly is suboptimal because in this
case an optimal decoder will simply ignore the (n+ 1)-th received digit.

Hence, our new code is






[0 x1,n+1]
[x x2,n+1]
[x̄ x3,n+1]
[1 x4,n+1]







(50)

where xi,n+1 ∈ {0, 1} and the x is given in (30) with

t ,
⌊n

2

⌋

. (51)

Note that in the remainder of this proof t can be read as shorthand for ⌊n2 ⌋.
We now extend the decoding regions given by Lemma 11 by one bit:

[D
(n)
4,t,1 0] ∪ [D

(n)
4,t,1 1] =

{

[0(n) 0], [0(n) 1]
}

, (52)

[D
(n)
4,t,2 0] ∪ [D

(n)
4,t,2 1] =

{

y(n+1) : y(n+1) = [0(n−t) y(t) 0] or [0(n−t) y(t) 1] with

wH(y
(t)) = t, t− 1, . . . , 1

}

, (53)
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[D
(n)
4,t,3 0] ∪ [D

(n)
4,t,3 1] =

{

y(n+1) : y(n+1) = [y(n−t) 0(t) 0] or [y(n−t) 0(t) 1] with

wH(y
(n−t)) = (n− t), (n− t)− 1, . . . , 1

}

, (54)

[D
(n)
4,t,4 0] ∪ [D

(n)
4,t,4 1] =

{

y(n+1) : y(n+1) = [y(n) 0] or [y(n) 1] with y(n) ∈ D
(n)
4,t,4

}

.(55)

Observe that these new decoding regions retain the same success probability ψ
(n+1)
4,t,i =

ψ
(n)
4,t,i · 1, because

PY |X(0|xn+1,i) + PY |X(0|xn+1,i) = 1. (56)

However, it is quite clear that these new regions are in general not the optimal
decision regions anymore for the new code. So the question is how to fix them to
make them optimal again (and thereby also finding out how to optimally choose
xn+1,i).

Firstly note that if xn+1,i = 0, adding a 0 to the received vector y(n) will not
change the decision i because 0 is the correct outcome anyway. Similarly, if xn+1,i =
1, adding a 1 to the vector y(n) will not change the decision i.

Secondly, we claim that even if xn+1,i = 1, all received vectors y(n+1) ∈ [D
(n)
4,t,i 0]

still will be decoded to i. To see this, let’s have a look at the four cases separately:

• [D
(n)
4,t,1 0]: The decoding region [D

(n)
4,t,1 0] only contains one vector: the all-zero

vector. We have

Pn+1
Y |X

(
0(n+1)

∣
∣x

(n+1)
1 = 0(n)1

)
= ǫ1 ≥ Pn+1

Y |X

(
0(n+1)

∣
∣x

(n+1)
j

)
, ∀ j = 2, 3, 4,

(57)
independent of the choices of xj,n+1, j = 2, 3, 4. Hence, we decide for i = 1.

• [D
(n)
4,t,2 0]: All vectors in [D

(n)
4,t,2 0] contain ones in positions that make it impos-

sible to decode it as i = 1 or i = 3. On the other hand, i = 4 obviously is less
likely than i = 2, i.e., we decide i = 2.

• [D
(n)
4,t,3 0]: All vectors in [D

(n)
4,t,3 0] contain ones in positions that make it impos-

sible to decode it as i = 1 or i = 2. On the other hand, i = 4 obviously is less
likely than i = 3, i.e., we decide i = 3.

• [D
(n)
4,t,4 0]: Finally, all vectors in [D

(n)
4,t,4 0] contain ones in positions that make

it impossible to decode it as i = 1, i = 2, or i = 3. It only remains to decide
i = 4.

So, it only remains to investigate the decision made about the vectors in [D
(n)
4,t,i 1] if

xi,n+1 = 0. Note that we do not need to bother about [D
(n)
4,t,4 1] as it is impossible

to receive such a vector because for all y ∈ D
(n)
4,t,4

Pn
Y |X(y(n)|0(n)) = Pn

Y |X(y(n)|0(n−t)1(t)) = Pn
Y |X(y(n)|1(n−t)0(t)) = 0. (58)

For i = 1, 2, or 3, if xi,n+1 = 0, the received vectors in [D
(n)
4,t,i 1] will change to

another decoding region not equal to i because PY |X(1|0) = 0.

• [D
(n)
4,t,1 1]: If we assign these vectors (actually, it’s only one) to the new decoding

region D
(n+1)
4,t,2 , the conditional success probability is

Pc,2 =
∑

y(n)∈D
(n)
4,t,1

Pn+1
Y |X

(
[y(n) 1]

∣
∣ [0(n−t)1t 1]

)
· (x2,n+1 − x1,n+1)

+ (59)

= ǫt1(1− ǫ1) · (x2,n+1 − x1,n+1)
+, (60)
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where

(x)+ =

{

x if x ≥ 0,

0 if x < 0.
(61)

Note that x2,n+1 must be 1 if it shall be possible for this event to occur!

Similarly, we compute

Pc,3 =
∑

y(n)∈D
(n)
4,t,1

Pn+1
Y |X

(
[y(n) 1]

∣
∣ [1(n−t)0t 1]

)
· (x3,n+1 − x1,n+1)

+ (62)

= ǫ
(n−t)
1 (1− ǫ1) · (x3,n+1 − x1,n+1)

+; (63)

Pc,4 =
∑

y(n)∈D
(n)
4,t,1

Pn+1
Y |X

(
[y(n) 1]

∣
∣ [1(n) 1]

)
· (x4,n+1 − x1,n+1)

+ (64)

= ǫn1 (1− ǫ1) · (x4,n+1 − x1,n+1)
+. (65)

From ǫt1 ≥ ǫ
(n−t)
1 > ǫn1 we see that Pc,2 gives the highest increase, followed by

Pc,3 and then Pc,4. Hence, we should write them as follows:

Pc,2 = ǫt1(1− ǫ1) · (x2,n+1 − x1,n+1)
+, (66)

Pc,3 = ǫ
(n−t)
1 (1− ǫ1) · (x3,n+1 − x2,n+1 − x1,n+1)

+, (67)

Pc,4 = ǫn1 (1− ǫ1) · (x4,n+1 − x3,n+1 − x2,n+1 − x1,n+1)
+. (68)

• [D
(n)
4,t,2 1]: In this case only D

(n+1)
4,t,4 will yield a nonzero conditional success

probability:

Pc,4 =
∑

y(n)∈D
(n)
4,t,2

Pn+1
Y |X

(
[y(n) 1]

∣
∣ [1(n) 1]

)
· (x4,n+1 − x2,n+1)

+ (69)

=
t−1∑

d=0

(
t

d

)

(1− ǫ1)
t−dǫ

(n−t)+d
1 (1− ǫ1) · (x4,n+1 − x2,n+1)

+ (70)

= ǫ
(n−t)
1

(
1− ǫt1

)
(1− ǫ1) · (x4,n+1 − x2,n+1)

+ (71)

=
(

ǫ
(n−t)
1 − ǫn1

)

(1− ǫ1) · (x4,n+1 − x2,n+1)
+. (72)

• [D
(n)
4,t,3 1]: Again, only D

(n+1)
4,t,4 will yield a nonzero conditional success proba-

bility:

Pc,4 =
∑

y(n)∈D
(n)
4,t,3

Pn+1
Y |X

(
[y(n) 1]

∣
∣ [1(n) 1]

)
· (x4,n+1 − x3,n+1)

+ (73)

=

(n−t)−1
∑

d=0

(
n− t

d

)

(1− ǫ1)
(n−t)−dǫt+d

1 (1− ǫ1) · (x4,n+1 − x3,n+1)
+ (74)

= ǫt1

(

1− ǫ
(n−t)
1

)

(1− ǫ1) · (x4,n+1 − x3,n+1)
+ (75)

=
(
ǫt1 − ǫn1

)
(1− ǫ1) · (x4,n+1 − x3,n+1)

+. (76)

From ǫt1 ≥ ǫ
(n−t)
1 > ǫn1 , we can therefore now conclude that the best solution for

the choice of xi,n+1 yielding the largest increase in success probability in (66), (67),
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(68), (72), and (76) is as follows:







x2,n+1 − x1,n+1 = 1

x4,n+1 − x2,n+1 = 0

x4,n+1 − x3,n+1 = 1

=⇒







x1,n+1 = 0

x2,n+1 = 1

x3,n+1 = 0

x4,n+1 = 1

(77)

This will cause an increase of

ǫt1(1− ǫ1) + (ǫt1 − ǫn1 )(1− ǫ1). (78)

Note that for n even with t = n
2 , adding the column (47) to the code C

(n)
4,n

2
will result

in a code that is equivalent to C
(n+1)

4,⌊n+1
2

⌋
by just exchanging the roles of the second

and third codeword and re-order the columns.
For n odd with t = ⌊n2 ⌋, adding the column (47) to the code C

(n)
4,⌊n

2
⌋ results in

C
(n+1)

4,n+1
2

.

Corollary 14. Fix t , ⌊n2 ⌋. Whenever there are three hypotheses M = 3, the

codebook C
(n)
3,t consisting of n− t columns





0
0
1



 (79)

and t columns arbitrarily chosen from










0
1
1



 ,





0
1
0










(80)

is optimal on the Z-channel. In particular, the success probability of this optimal
code is

3Pc(C
(n)
3,t ) = 1 +

t−1∑

d=0

(
t

d

)

(1− ǫ1)
t−d · ǫd1

+
n−1∑

d=0

[(
n

d

)

−

(
t

d− (n− t)

)]

(1− ǫ1)
n−d · ǫd1 (81)

= 1 +
t−1∑

d=0

(
t

d

)

(1− ǫ1)
t−dǫd1 +

(n−t)−1
∑

d=0

(
n− t

d

)

(1− ǫ1)
(n−t)−d · ǫd1. (82)

Proof. This can be proved by the same argument as used in Theorem 12. We observe
that 



0 0
0 1
1 1



 ≡





0 0
0 1
1 0



 (83)

are optimal codebooks for n = 2. An optimal way of extending these codes is then
to add the following columns





0
1
1



 or





0
1
0



 . (84)
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Corollary 15. Whenever there are two hypotheses M = 2, the optimal codebook for
the Z-channel is the flip-flop codebook of type 0.

Proof. Omitted.

Now we go back to the analysis of the optimal code on BAC for M = 2.

4.3 Optimal Decision Rule on BAC for M = 2

In any system with only two possible messages the optimal ML receiver can easily
be described by the log likelihood ratio (LLR):

LLR(y) , log

(
PY|X(y|x1)

PY|X(y|x2)

)

. (85)

If LLR(y) > 0, then the receiver decides for 1, while if LLR(y) < 0, it decides for 2.
In the situation of LLR(y) = 0, both decisions are equally good.

In the situation of a flip-flop code of type t, C
(n)
2,t , the LLR is given as

LLR
(n)
t (ǫ0, ǫ1, d) , (t− d) log

(
1− ǫ1

ǫ0

)

+ (n− t− d) log

(
1− ǫ0

ǫ1

)

, (86)

where d is defined to be the Hamming distance between the received vector and the
first codeword:

d , dH(x1,y). (87)

Note that 0 ≤ d ≤ n depends on the received vector, while t and n are code
parameters, and ǫ0 and ǫ1 are channel parameters.

Hence, the optimal decision rule can be expressed in terms of d.

Proposition 16. We list some properties of LLR
(n)
t (ǫ0, ǫ1, d):

1. If ǫ0 + ǫ1 = 1, then LLR
(n)
t (ǫ0, ǫ1, d) = 0 for all d.

2. LLR
(n)
t (ǫ0, ǫ1, d) is a decreasing function in d:

LLR
(n)
t (ǫ0, ǫ1, d) ≥ LLR

(n)
t (ǫ0, ǫ1, d+ 1), ∀ 0 ≤ d ≤ n− 1. (88)

3. For d ≤ t and d >
⌊
n
2

⌋
the LLR

(n)
t is always larger or smaller than zero,

respectively:

LLR
(n)
t (ǫ0, ǫ1, d)







≥ 0 for 0 ≤ d ≤ t,

≶ 0 for t < d ≤
⌊
n
2

⌋
, depending on ǫ0, ǫ1,

≤ 0 for
⌊
n
2

⌋
< d ≤ n.

(89)

4. LLR
(n)
t (ǫ0, ǫ1, d) is an increasing function in n, when we fix d, ǫ0, and ǫ1.

5. LLR
(n)
t (ǫ0, ǫ1, d) is an increasing function in t when we fix n, d, ǫ0, and ǫ1.

6. For 0 ≤ d ≤ n− 1,

LLR
(n+1)
t (ǫ0, ǫ1, d+ 1) < LLR

(n)
t (ǫ0, ǫ1, d). (90)
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Proof. Omitted.

From these properties we immediately obtain an interesting result about the
optimal decision rule.

Proposition 17 (Optimal Decision Rule has a Threshold). For a fixed flip-

flop code C
(n)
2,t and a fixed BAC (ǫ0, ǫ1) ∈ Ω, there exists a threshold ℓ, t ≤ ℓ ≤

⌊
n−1
2

⌋
,

such that the optimal ML decision rule can be stated as

g(y) =

{

1 if 0 ≤ d ≤ ℓ,

2 if ℓ+ 1 ≤ d ≤ n.
(91)

The threshold ℓ depends on (ǫ0, ǫ1), but similar channels will usually have the same
threshold. We define the region of channel parameters with identical threshold as
follows:

Ω
(n)
ℓ,t ,

{

(ǫ0, ǫ1)
∣
∣
∣LLR

(n)
t (ǫ0, ǫ1, ℓ) ≥ 0

}⋂{

(ǫ0, ǫ1)
∣
∣
∣LLR

(n)
t (ǫ0, ǫ1, ℓ+ 1) ≤ 0

}

.

(92)
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Figure 6: The log likelihood function depicted as a function of (ǫ0, ǫ1) for different
values of d. To simplify the plot, only ǫ0 is depicted with ǫ1 being a fixed function
of ǫ0. The solid blue lines depict the case n = 7, the dashed red lines n = 6. The
code is fixed to be t = 1. We see that for n = 7 and ǫ0 ∈ [0.136, 0.270] the threshold
is ℓ = 2.

In Figure 6 an example of this threshold behavior is shown. For ǫ0 ∈ [0.136, 0.270]

we see that LLR
(7)
1 (ǫ0, 1−2ǫ0, d) ≥ 0 for d = 0, d = 1, and d = 2, while LLR

(7)
1 (ǫ0, 1−

2ǫ0, d) < 0 for d ≥ 3. Hence, ℓ = 2.
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4.4 Optimal Codes for a Fixed Decision Rule on BAC for M = 2

Our original goal was to find the optimal code for a given channel (ǫ0, ǫ1). This
now corresponds to finding an optimal t. Unfortunately, this still is difficult because
the changes between the different regions in Figure 5 are caused by two different

effects: either the optimal code C
(n)
2,t remains fixed, but the threshold ℓ changes, or

the optimal choice of t changes. Hence, we have two different optimization problems:
finding the optimal decision rule for a given code (i.e., the optimal threshold ℓ) and
finding the optimal code for a given decision rule (i.e., the optimal t). To gain a
clearer picture, we will next concentrate on the second optimization only: we fix a
decision rule, i.e., we fix a threshold ℓ irrespective of t or (ǫ0, ǫ1), and then try to
find the optimal code t.

The following lemma investigates the error probability of two flip-flop codes of
type t and t+ 1, respectively, for a fixed decision rule ℓ.

Lemma 18. Fix a blocklength n, a channel (ǫ0, ǫ1) ∈ Ω, and a decision rule threshold
ℓ. Then for any integer t, 0 ≤ t ≤ ⌊n2 ⌋, the roots of

2Pe(C
(n)
2,t )ℓ − 2Pe(C

(n)
2,t+1)ℓ (93)

are identical to the roots of

LLR
(n−1)
t

(

ǫ0, ǫ1, d
(n−1) = ℓ

)

. (94)

Moreover, for a fixed ǫ0, there exists at most one ǫ1 ≤ 1
2 such that (93) equals to

zero; and for a fixed ǫ1 ≤
1
2 , there exists at most one ǫ0 such that (93) equals to zero.

Proof. See Appendix B.

From Proposition 16 we know that LLR
(n−1)
t (ǫ0, ǫ1, d) has at most one root.

Therefore, we can now easily state some conditions on t such that C
(n)
2,t is optimal.

Theorem 19. Fix blocklength n. Under a particular fixed decision rule ℓ, the flip-
flop codebooks of type t is optimal if (ǫ0, ǫ1) belong to

{

(ǫ0, ǫ1)
∣
∣
∣LLR

(n−1)
t (ǫ0, ǫ1, ℓ) > 0 ∧ LLR

(n−1)
t−1 (ǫ0, ǫ1, ℓ) < 0

}

. (95)

If the region is empty, then t is not optimal for any channel.

Proof. See Appendix B.

Now we have the exact associated region of channels of an optimal flip-flop code
of type t. It says that while ǫ0 ≤ min{ǫ1, 1 − ǫ1}, the error probability formulas
between t and t+ 1 have at most one crossing point as ǫ0 increases or ǫ1 decreases.
For an illustration see Figure 7.

Example 20 (Applcation of Theorem 19). We will now illustrate Theorem 19 by
an example. Fix n = 7, ℓ(n) = 2, ǫ1 = 0.5, and let ǫ0 increase. See Figure 8.

Starting with t = 3, we check that

LLR
(6)
2 (ǫ0, ǫ1, 2) > 0, (96)

for all (ǫ0, ǫ1), i.e., Pe(C
(7)
2,2) < Pe(C

(7)
2,3).
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Figure 7: Optimal codebooks on a BAC for a fixed decision rule: for all possible
(ǫ0, ǫ1) this plot shows the optimal choice of the code parameter t. The blocklength
is n = 7 and the decision rule is ℓ = 2.

Next, choose t = 2:

LLR
(6)
1 (ǫ0, ǫ1, 2) < 0 (97)

for small ǫ0, i.e., the code C
(7)
2,2 is optimal for those ǫ0. When increasing ǫ0 further, as

soon as LLR
(6)
1 (ǫ0, ǫ1, 2) = 0, there is a change again and we choose t = 1. Finally,

the last change happens at the root of LLR
(6)
0 (ǫ0, ǫ1, 2) = 0.

So there are three optimal codes in the region of Ω:

• t = 2 is optimal in
{

ǫ0

∣
∣
∣LLR

(6)
2 (ǫ0, ǫ1, 2) > 0 ∧ LLR

(6)
1 (ǫ0, ǫ1, 2) < 0

}

;

• t = 1 is optimal in
{

ǫ0

∣
∣
∣LLR

(6)
1 (ǫ0, ǫ1, 2) > 0 ∧ LLR

(6)
0 (ǫ0, ǫ1, 2) < 0

}

;

• t = 0 is optimal in
{

ǫ0

∣
∣
∣LLR

(6)
0 (ǫ0, ǫ1, 2) > 0

}

.

5 Discussion & Conclusion

We have investigated very short block-codes with two messages on the most general
binary channel, the binary asymmetric channel (BAC). We have shown that in
contrast to capacity that always can be achieved with linear codes, the best codes
in the sense that they achieve the smallest average probability of error for a fixed
blocklength, often are not linear.

We have proven that in the case of only two messages M = 2, the optimal codes
must be flip-flop codes of type t, where the optimal t depends on the channel and
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Figure 8: The error probability of all possible flip-flop codes C
(n)
t as a function of the

channel parameter ǫ0. The blocklength is chosen to be n = 7, and ǫ1 = 1
2 is fixed.

The decision rule is fixed to ℓ = 2. For a particular ǫ0, the optimal code is the one
with the smallest error probability value.
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the blocklength. We have then investigated the optimal decision rule and proven
that it is a threshold rule.

In the special case of a Z-channel, we have shown that the optimal codes are
two-pair flip-flop codes for the case of M = 4, and derivatives of it for M = 3.

The derivation of the optimal coding scheme is difficult because two independent
effects interfere with each other: the optimal choice of the code t for a fixed decision
rule ℓ, and the optimal choice of the decision rule ℓ for a fixed code t.
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A Appendix: Derivation of Proposition 9

Assume that the optimal code for blocklength n is not a flip-flop code. Then the
code has a number m of positions where both codewords have the same symbol. The
optimal decoder will ignore these m positions completely. Hence, the performance
of this code will be identical to a flip-flip code of length n−m.

We therefore only need to show that increasing n will always allow us to find
a new flip-flop code with a better performance. In other words, Proposition 9 is
proven once we have shown that

Pe

(
C
(n−1)
2,t

)
≥ max

{

Pe

(
C
(n)
2,t

)
, Pe

(
C
(n)
2,t+1

)}

. (98)

Here we have used the following notation:

C
(n−1)
2,t =

(
x(n−1)

x̄(n−1)

)

(99)

is a length-(n− 1) flip-flop code of some type t, and

C
(n)
2,t =

(
[x(n−1) 0]

[x̄(n−1) 1]

)

, C
(n)
2,t+1 =

(
[x(n−1) 1]

[x̄(n−1) 0]

)

(100)

are two length-n flip-flop codes derived from C
(n−1)
2,t .

As shown in Proposition 17, the optimal decision rule for any flip-flop code is a
threshold rule with some threshold ℓ: the decision rule for received y only depends
on d such that

g(y) =

{

x if 0 ≤ d ≤ ℓ,

x̄ if ℓ+ 1 ≤ d ≤ n,
(101)

where we use g(·) to denote the ML decoding rule.
The threshold satisfies 0 ≤ ℓ ≤ ⌊n−1

2 ⌋. Note that when ℓ = ⌊n−1
2 ⌋, the decision

rule is equivalent to a majority rule. Also note that when n is even and d = n
2 ,

the decisions for x and x̄ are equally likely, i.e., without loss of generality we then
always decode to x̄.

So let the threshold for C
(n−1)
2,t be ℓ(n−1). We will now argue that the threshold

for C
(n)
2,t and C

(n)
2,t+1 according to (100) must satisfy

ℓ(n−1) ≤ ℓ(n) ≤ ℓ(n−1) + 1. (102)
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Consider firstly the code C
(n)
2,t and assume by contradiction for the moment that

ℓ(n) < ℓ(n−1). Then pick a received y(n−1) with d(n−1) = ℓ(n−1) that (for the code

C
(n−1)
2,t ) is decoded to x(n−1). The received length-n vector y(n) = [y(n−1) 0] has

d(n) = ℓ(n−1) > ℓ(n), i.e., it will be now decoded to x̄(n). This however is a contra-

diction to the assumption that the ML decision for the code C
(n−1)
2,t was x(n−1).

Secondly, again considering code C
(n)
2,t , assume by contradiction that ℓ(n) >

ℓ(n−1) + 1. Pick a received y(n−1) with d(n−1) = ℓ(n−1) + 1 that (for the code

C
(n−1)
2,t ) is decoded to x̄(n−1). The received length-n vector y(n) = [y(n−1) 1] has

d(n) = ℓ(n−1) + 2 < ℓ(n) + 1, i.e., it will be now decoded to x(n). This however

is a contradiction to the assumption that the ML decision for the code C
(n−1)
2,t was

x̄(n−1).
The same arguments also hold for the other code C

(n)
2,t+1. Hence, we see that there

are only two possible changes with respect to the decoding rule to be considered.

We will next use this fact to prove that Pe

(
C
(n−1)
2,t

)
≥ Pe

(
C
(n)
2,t

)
.

The error probability is given by

Pe =
1

2

∑

y
g(y)=x̄

PY|X(y|x) +
1

2

∑

y
g(y)=x

PY|X(y|x̄). (103)

For C
(n−1)
2,t this can be written as follows:

2Pe

(
C
(n−1)
2,t

)
=

∑

y(n−1)

ℓ(n−1)+1≤d(n−1)≤n−1

Pn−1
Y |X

(
y(n−1)

∣
∣x(n−1)

)

+
∑

y(n−1)

0≤d(n−1)≤ℓ(n−1)

Pn−1
Y |X

(
y(n−1)

∣
∣ x̄(n−1)

)
(104)

=
∑

y(n−1)

ℓ(n−1)+1≤d(n−1)≤n−1

Pn−1
Y |X

(
y(n−1)

∣
∣x(n−1)

)
PY |X(1|0)

+
∑

y(n−1)

ℓ(n−1)+1≤d(n−1)≤n−1

Pn−1
Y |X

(
y(n−1)

∣
∣x(n−1)

)
PY |X(0|0)

+
∑

y(n−1)

0≤d(n−1)≤ℓ(n−1)

Pn−1
Y |X

(
y(n−1)

∣
∣ x̄(n−1)

)
PY |X(1|1)

+
∑

y(n−1)

0≤d(n−1)≤ℓ(n−1)

Pn−1
Y |X

(
y(n−1)

∣
∣ x̄(n−1)

)
PY |X(0|1) (105)

=
∑

y(n−1)

ℓ(n−1)+2≤d(n)≤n

Pn
Y |X

(
[y(n−1) 1]

∣
∣x(n)

)

+
∑

y(n−1)

ℓ(n−1)+1≤d(n)≤n−1

Pn
Y |X

(
[y(n−1) 0]

∣
∣x(n)

)

+
∑

y(n−1)

1≤d(n)≤ℓ(n−1)+1

Pn
Y |X

(
[y(n−1) 1]

∣
∣ x̄(n)

)
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+
∑

y(n−1)

0≤d(n)≤ℓ(n−1)

Pn
Y |X

(
[y(n−1) 0]

∣
∣ x̄(n)

)
. (106)

Here, in (105) we use the fact that PY |X(1|0) + PY |X(0|0) = 1 and PY |X(1|1) +
PY |X(0|1) = 1; and in (106) we combine the terms together using the definition of

C
(n)
2,t according to (24).

We can now distinguish the two cases (102):

(i) If the decision rule is unchanged, i.e., ℓ(n) = ℓ(n−1), we only need to take care
of the third summation in (106) that contains some terms that will now be
decoded differently:

∑

y(n−1)

1≤d(n)≤ℓ(n−1)+1

Pn
Y |X

(
[y(n−1) 1]

∣
∣ x̄(n)

)

=
∑

y(n−1)

d(n)=ℓ(n−1)+1

Pn
Y |X

(
[y(n−1) 1]

∣
∣ x̄(n)

)

+
∑

y(n−1)

1≤d(n)≤ℓ(n−1)

Pn
Y |X

(
[y(n−1) 1]

∣
∣ x̄(n)

)
. (107)

Since we have assumed that ℓ(n) = ℓ(n−1), we know that for all y(n−1) with
d(n−1) = ℓ(n−1) the length-n received vector [y(n−1) 1] has d(n) = ℓ(n−1) + 1 =
ℓ(n) + 1 and will be decoded to x̄(n). Hence we must have

Pn
Y |X

(
[y(n−1) 1]

∣
∣x(n)

)

Pn
Y |X

(
[y(n−1) 1]

∣
∣ x̄(n)

) ≤ 1. (108)

Hence, we have

2Pe

(
C
(n−1)
2,t

)
≥

∑

y(n−1)

ℓ(n−1)+2≤d(n)≤n

Pn
Y |X

(
[y(n−1) 1]

∣
∣x(n)

)

+
∑

y(n−1)

ℓ(n−1)+1≤d(n)≤n−1

Pn
Y |X

(
[y(n−1) 0]

∣
∣x(n)

)

+
∑

y(n−1)

d(n)=ℓ(n−1)+1

Pn
Y |X

(
[y(n−1) 1]

∣
∣x(n)

)

+
∑

y(n−1)

1≤d(n)≤ℓ(n−1)

Pn
Y |X

(
[y(n−1) 1]

∣
∣ x̄(n)

)

+
∑

y(n−1)

0≤d(n)≤ℓ(n−1)

Pn
Y |X

(
[y(n−1) 0]

∣
∣ x̄(n)

)
(109)

=
∑

y(n)

ℓ(n−1)+1≤d(n)≤n

Pn
Y |X

(
y(n)

∣
∣x(n)

)

+
∑

y(n)

0≤d(n)≤ℓ(n−1)

Pn
Y |X

(
y(n)

∣
∣ x̄(n)

)
(110)

= 2Pe

(
C
(n)
2,t

)
. (111)
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(ii) If the decision rule is changed such that ℓ(n) = ℓ(n−1)+1, we need to take care
of the second summation in (106) that contains some terms that will now be
decoded differently:

∑

y(n−1)

ℓ(n−1)+1≤d(n)≤n−1

Pn
Y |X

(
[y(n−1) 0]

∣
∣x(n)

)

=
∑

y(n−1)

d(n)=ℓ(n−1)+1

Pn
Y |X

(
[y(n−1) 0]

∣
∣x(n)

)

+
∑

y(n−1)

ℓ(n−1)+2≤d(n)≤n−1

Pn
Y |X

(
[y(n−1) 0]

∣
∣x(n)

)
. (112)

Since we have assumed that ℓ(n) = ℓ(n−1) + 1, we know that for all y(n−1)

with d(n−1) = ℓ(n−1) + 1 the length-n received vector [y(n−1) 0] has d(n) =
ℓ(n−1) + 1 = ℓ(n) and will be decoded to x(n). Hence we must have

Pn
Y |X

(
[y(n−1) 0]

∣
∣x(n)

)

Pn
Y |X

(
[y(n−1) 0]

∣
∣ x̄(n)

) ≥ 1. (113)

The rest of the argument now is analogous to case (i).

This proves that Pe

(
C
(n−1)
2,t

)
≥ Pe

(
C
(n)
2,t

)
. The remaining proof of Pe

(
C
(n−1)
2,t

)
≥

Pe

(
C
(n)
2,t+1

)
is similar and omitted.

B Appendix: Proof of Lemma 18 and Theorem 19

We derive the the error probability expressions for C
(n)
2,t and C

(n)
2,t+1 based on C

(n−1)
2,t

by adding a column (0 1)T or (1 0)T, respectively. Let the threshold for C
(n−1)
2,t be

ℓ(n−1). Then we know from (102) that ℓ , ℓ(n) = ℓ(n−1) or ℓ(n−1) + 1, depending on
the particular values of n, t, ǫ0, and ǫ1. Let’s first assume that ℓ = ℓ(n−1):

2Pe

(
C
(n)
2,t

)

ℓ=ℓ(n−1) =
∑

y(n−1)

ℓ(n−1)+1≤d(n−1)≤n−1

Pn
Y |X

(
[y(n−1) 0]

∣
∣ [x(n−1) 0]

)

+
∑

y(n−1)

ℓ(n−1)≤d(n−1)≤n−1

Pn
Y |X

(
[y(n−1) 1]

∣
∣ [x(n−1) 0]

)

+
∑

y(n−1)

0≤d(n−1)≤ℓ(n−1)

Pn
Y |X

(
[y(n−1) 0]

∣
∣ [x̄(n−1) 1]

)

+
∑

y(n−1)

0≤d(n−1)≤ℓ(n−1)−1

Pn
Y |X

(
[y(n−1) 1]

∣
∣ [x̄(n−1) 1]

)
(114)

=
∑

y(n−1)

ℓ(n−1)+1≤d(n−1)≤n−1

Pn−1
Y |X

(
y(n−1)

∣
∣x(n−1)

)
(1− ǫ0 + ǫ0)

+
∑

y(n−1)

d(n−1)=ℓ(n−1)

Pn−1
Y |X

(
y(n−1)

∣
∣x(n−1)

)
ǫ0
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+
∑

y(n−1)

0≤d(n−1)≤ℓ(n−1)−1

Pn−1
Y |X

(
y(n−1)

∣
∣ x̄(n−1)

)
(ǫ1 + 1− ǫ1)

+
∑

y(n−1)

d(n−1)=ℓ(n−1)

Pn−1
Y |X

(
y(n−1)

∣
∣ x̄(n−1)

)
ǫ1 (115)

and similarly

2Pe

(
C
(n)
2,t+1

)

ℓ=ℓ(n−1) =
∑

y(n−1)

ℓ(n−1)+1≤d(n−1)≤n−1

Pn
Y |X

(
[y(n−1) 1]

∣
∣ [x(n−1) 1]

)

+
∑

y(n−1)

ℓ(n−1)≤d(n−1)≤n−1

Pn
Y |X

(
[y(n−1) 0]

∣
∣ [x(n−1) 1]

)

+
∑

y(n−1)

0≤d(n−1)≤ℓ(n−1)

Pn
Y |X

(
[y(n−1) 1]

∣
∣ [x̄(n−1) 0]

)

+
∑

y(n−1)

0≤d(n−1)≤ℓ(n−1)−1

Pn
Y |X

(
[y(n−1) 0]

∣
∣ [x̄(n−1) 0]

)
(116)

=
∑

y(n−1)

ℓ(n−1)+1≤d(n−1)≤n−1

Pn−1
Y |X

(
y(n−1)

∣
∣x(n−1)

)
(1− ǫ1 + ǫ1)

+
∑

y(n−1)

d(n−1)=ℓ(n−1)

Pn−1
Y |X

(
y(n−1)

∣
∣x(n−1)

)
ǫ1

+
∑

y(n−1)

0≤d(n−1)≤ℓ(n−1)−1

Pn−1
Y |X

(
y(n−1)

∣
∣ x̄(n−1)

)
(ǫ0 + 1− ǫ0)

+
∑

y(n−1)

d(n−1)=ℓ(n−1)

Pn−1
Y |X

(
y(n−1)

∣
∣ x̄(n−1)

)
ǫ0. (117)

Subtracting (117) from (115) yields

2Pe

(
C
(n)
2,t

)

ℓ=ℓ(n−1) − 2Pe

(
C
(n)
2,t+1

)

ℓ=ℓ(n−1)

=
∑

y(n−1)

d(n−1)=ℓ(n−1)

Pn−1
Y |X

(
y(n−1)

∣
∣x(n−1)

)
ǫ0 +

∑

y(n−1)

d(n−1)=ℓ(n−1)

Pn−1
Y |X

(
y(n−1)

∣
∣ x̄(n−1)

)
ǫ1

−
∑

y(n−1)

d(n−1)=ℓ(n−1)

Pn−1
Y |X

(
y(n−1)

∣
∣x(n−1)

)
ǫ1 −

∑

y(n−1)

d(n−1)=ℓ(n−1)

Pn−1
Y |X

(
y(n−1)

∣
∣ x̄(n−1)

)
ǫ0

(118)

=
∑

y(n−1)

d(n−1)=ℓ(n−1)

(

Pn−1
Y |X

(
y(n−1)

∣
∣ x̄(n−1)

)
− Pn−1

Y |X

(
y(n−1)

∣
∣x(n−1)

))

(ǫ1 − ǫ0) (119)

=
∑

y(n−1)

d(n−1)=ℓ(n−1)

Pn−1
Y |X

(
y(n−1)

∣
∣ x̄(n−1)

)

(

1−
Pn−1
Y |X

(
y(n−1)

∣
∣x(n−1)

)

Pn−1
Y |X

(
y(n−1)

∣
∣ x̄(n−1)

)

)

(ǫ1 − ǫ0) (120)
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=
∑

y(n−1)

d(n−1)=ℓ(n−1)

Pn−1
Y |X

(
y(n−1)

∣
∣ x̄(n−1)

) (

1− eLLR
(n−1)
t (ǫ0,ǫ1,ℓ(n−1))

)

(ǫ1 − ǫ0) (121)

=
(

1− eLLR
(n−1)
t (ǫ0,ǫ1,ℓ(n−1))

)

(ǫ1 − ǫ0)
∑

y(n−1)

d(n−1)=ℓ(n−1)

Pn−1
Y |X

(
y(n−1)

∣
∣ x̄(n−1)

)
. (122)

Similarly, we can derive this difference in the case when ℓ = ℓ(n−1) + 1:

2Pe

(
C
(n)
2,t

)

ℓ=ℓ(n−1)+1
− 2Pe

(
C
(n)
2,t+1

)

ℓ=ℓ(n−1)+1

=
∑

y(n−1)

d(n−1)=ℓ(n−1)+1

(

Pn−1
Y |X

(
y(n−1)

∣
∣ x̄(n−1)

)
− Pn−1

Y |X

(
y(n−1)

∣
∣x(n−1)

))

(ǫ1 − ǫ0) (123)

=
(

1− eLLR
(n−1)
t (ǫ0,ǫ1,ℓ(n−1)+1)

)

(ǫ1 − ǫ0)
∑

y(n−1)

d(n−1)=ℓ(n−1)+1

Pn−1
Y |X

(
y(n−1)

∣
∣ x̄(n−1)

)
. (124)

Hence, we see that unless ǫ0 = ǫ1, in which case the difference is always zero,

2Pe

(
C
(n)
2,t

)

ℓ
− 2Pe

(
C
(n)
2,t+1

)

ℓ
can only be zero if

LLR
(n−1)
t (ǫ0, ǫ1, ℓ) = 0. (125)

From the definition of the log likelihood ratio in (86) we see that if we fix ǫ0, then
there exists at most one ǫ1 such that (125) is satisfied. The same is true if we fix ǫ1
and search for an ǫ0.

Moreover, note that if

LLR
(n−1)
t (ǫ0, ǫ1, ℓ) > 0, (126)

then
Pe

(
C
(n)
2,t

)

ℓ
< Pe

(
C
(n)
2,t+1

)

ℓ
. (127)

As we know from Proposition 16 that LLR
(n−1)
t (ǫ0, ǫ1, ℓ) is increasing in t, this

means that if both (126) and

LLR
(n−1)
t−1 (ǫ0, ǫ1, ℓ) < 0 (128)

are satisfied, the code C
(n)
2,t is optimal for the given channel (ǫ0, ǫ1) and blocklength

n under the fixed decision rule ℓ.
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