
The VCL Cluster Platform 2011

1

The VirtualCL (VCL)

Cluster Platform

http://www.MOSIX.org/txt_vcl.html

The VCL Cluster Platform 2011

2

Background
Most applications that utilize OpenCL

TM

devices
(CPUs, GPUs, Phi, accelerators), run their kernels only on local
devices, in the same computer where the applications run.

The VCL cluster platform is a wrapper for OpenCL that allows most
unmodified applications to transparently utilize many OpenCL devices in a
cluster as if all the devices are on the local computer.

Main features:
– Supports OpenCL device from all vendors.

– Provides a shared pool of devices to users of several hosting nodes.

• There is no need to coordinate which devices are allocated to each user.

• Applications can even be started from workstations without OpenCL devices.

Motivation: ease the development and running of parallel applications.

Targeted for:
– Parallel applications that can utilize many devices concurrently.

– Many users that share a pool of devices, e.g. in a cloud.

2

The VCL Cluster Platform 2011

3

The VCL Runtime Model

VCL is designed to run applications that combine a CPU

process with parallel computations on many OpenCL

devices.

The CPU process runs on a single “hosting” node.

– Responsible for the administration and overall program flow.

• May perform some computation.

• Can be multi-threaded, to utilize locally available cores.

OpenCL Kernels run on cluster-wide devices:

– Location of devices is transparent to the process.

3

The VCL Cluster Platform 2011

4

The VCL Programming Paradigm

Combines the benefits of the OpenMP and MPI approaches.

The CPU programmer benefits from reduced programming
complexity of a single computer - availability of shared-memory,
multi-threads and lower level parallelism (as in OpenMP).

Kernels: independent programs that can run on cluster-wide
devices (like in MPI).

Outcome:
– VCL benefits applications that utilize many devices concurrently.

– The VCL model is particularly suitable for applications that can
make use of shared-memory on many-core computers.

4

The VCL Cluster Platform 2011

5

The VCL Components

VCL consists of 3 components:

– The VCL library.

– The broker routing and arbitration daemon.

– The backend server daemon.

5

The VCL Cluster Platform 2011

6

The VCL Library

The VCL library allows most unmodified OpenCL applications to
transparently utilize any number of OpenCL devices.

• Manages the data-base of OpenCL objects.

• Can work with any OpenCL device.

Since network latency is the main limiting factor
when communicating with remote devices:
– The VCL library optimizes the network traffic by minimizing the

number of round trips required to perform OpenCL operations.

• Multiple buffers are sent together.

• Kernels are sent together with their parameters.

• Queues and events are handled on the hosting node.

6

The VCL Cluster Platform 2011

7

The Broker

Routing and Arbitration Daemon:

– Collects current information about available devices in the
cluster.

– Matches requests for devices by the VCL library with available
cluster devices.

– Responsible for authentication and access permissions.

– Routes messages between the VCL library and the backend
server daemon.

• Separates applications from the network layers, to prevent blocking.

7

The VCL Cluster Platform 2011

8

The Backend Server Daemon

– Reserves devices for contexts of VCL library clients.

• For security, only one client per device.

– Performs operations on behalf of the VCL library clients.

– Uses any standard OpenCL SDK (on the node where it runs).

– Continuously reports device availability to the brokers.

8

The VCL Cluster Platform 2011

9

Example: Process Using Local GPUs

9

CPU Process
uses local & remote devices

Hosting node

GPU Devices

Backend daemon

VCL Library

Broker

The VCL Cluster Platform 2011

10

Process Using Remote GPUs

10

CPU Process
uses local & remote devices

Hosting node

GPU Devices

Backend daemon

VCL Library

Broker

Remote node

GPU Devices

Backend daemon

Broker

The VCL Cluster Platform 2011

11

Process Using Local and Remote GPUs

11

CPU Process
uses local & remote devices

Hosting node

GPU Devices

Backend daemon

VCL Library

Broker

Remote node

GPU Devices

Backend daemon

Broker

The VCL Cluster Platform 2011

12

VCL Overhead to Start a Kernel

12

Buffer

Size

Native

time

(ms)

VCL Overhead

on

Local device

VCL Overhead

on Remote

Device

4KB 96 (96)+35 (96)+113

16KB 100 (100)+35 (100)+ 111

64KB 105 (105)+35 (105)+ 106

256KB 113 (113)+36 (113)+ 105

1MB 111 (111)+34 (111)+ 114

4MB 171 (171)+ 36 (171)+ 114

16MB 400 (400)+36 (400)+ 113

64MB 1,354 (1,354)+33 (1,354)+ 112

256MB 4,993 (4,993)+37 (4,993)+ 111

Average Overhead Δ = 35μs Δ = 111μs

Runtime (ms) vs. Buffer size to run
1000 pseudo kernels.

Native: OpenCL library on local device.

Local = VCL on local device.

Remote = VCL on a remote device.

Outcome: a fixed overhead by VCL for
all buffer sizes.

The VCL Cluster Platform 2011

13

Selected SHOC Benchmark Runtimes

13

Application

Native

time

(Sec.)

VCL Times (Sec.)

Comments
Local Remote

KernelCompile 5.91 5.93 5.94 VCL only transfer source code

FFT 7.29 7.15 7.33 Small data, long compute - ideal for VCL

MD 14.08 13.66 13.80 Small data, long compute - ideal for VCL

Reduction 1.60 1.58 2.88 Moderate compute - moderate performance

SGEMM 2.11 2.13 2.43 Much data & compute - reasonable overhead

Scan 2.53 2.54 6.57 Large data, little compute – poor remote results

Sort 0.98 1.04 1.53 More compute – better results

Spmv 3.25 3.30 5.91 Huge data, significant compute - moderate result

Stencil2D 11.65 12.48 18.94 Huge data - bandwidth to remote device limiting factor

S3D 32.39 32.68 33.17 Small data, long compute - ideal for VCL

Outcome: more computing power, but network latency/bandwidth are limiting factors for I/O

intensive applications.

The VCL Cluster Platform 2011

14

SHOC - FFT Performance on a Cluster

256 MB buffer, 1000 – 8000 iterations on 1, 4 and 8 nodes,

each with 1GPU, connected by Infiniband*.

14

Number

of

Iterations

Native

time
(Sec.)

4 Nodes 8 Nodes

Time (Sec.) Speedup Time (Sec.) Speedup

1000 42.34 19.27 2.19 16.29 2.60

2000 82.25 30.11 2.73 22.03 3.73

4000 162.17 52.58 3.08 33.37 4.86

8000 321.91 97.53 3.29 55.95 5.74

__

*A. Barak, T. Ben-Nun, E. Levy, and A. Shiloh, ``A package for OpenCL based heterogeneous

computing on clusters with many GPU devices'‘, Proc. PPAAC, IEEE Cluster 2010.

The VCL Cluster Platform 2011

15

Personalized Medicine Example
Pinpoints a selected number of genes and their corresponding weights to

determine response to a clinical medication or treatment.

Requires parallel operations (t-test) on all permutations of genes of a group of patients*.

Program Runtime Speedup

High level package (CPU) ~40 hours 1

C++ code ~25 hours 1.6

Mix: C++ and OpenCL ~ 1.5 hours 26

Serial OpenCL - 1 GPU 30 min . 80

Parallel OpenCL - 2 GPUs 1:42 min. 1412

Parallel OpenCL - 4 GPUs 0:54 min. 2666

Outcome: GPU times makes it possible for day-to-day use, to run tests on much

larger groups of patients.

Program development: 2 months (by a CS student).

Optimizations: 8 months (with help of experts).

*Joint work with Y. and J. Smith, Hadassah Medical School

The VCL Cluster Platform 2011

16

VCL Support for SLURM

Provides a per-job private ad-hoc VCL cluster,

based on SLURM's allocation rather than

having a fixed cluster.

– Includes the necessary SLURM prologs and

epilogs to establish and destroy this private

cluster.

– Informs SLURM when VCL detects insufficient

OpenCL devices.

– Includes instructions for SLURM administrators

and users on how to incorporate VCL into

SLURM.

16

The VCL Cluster Platform 2011

17

VCL Support for MPI and Multitasking

Includes a pre-allocation option, to

prevent improper competition for

devices between ranks.

Includes an option to ban unwanted

devices, making them invisible to the

application.

17

The VCL Cluster Platform 2011

18

Other Benefits

Break down of VCL to independent components

allows the introduction of various runtime services:

– A single queue per application for all devices.

• Improves the overall utilization.

– Scheduling: assign the next kernel to the best available
device.

• Optimizations: if possible, a kernel is assigned to a device that
already holds its input buffers.

– Buffer management: allocation and release of buffers on
devices and tracking of their available memory.

– Task dependencies: a task may run once all its input memory
buffers updated by preceding tasks.

18

The VCL Cluster Platform 2011

19

Optimizations and Extensions

Direct loading of memory objects from remote files –

no need to read data via the hosting node.

SuperCL – a mini-programming language for performing

multiple OpenCL operations on remote devices without

involving the host in between.

The Many GPUs Package (MGP)*:

– C++ and OpenMP extensions to transparently utilize

many devices.

* A. Barak, T. Ben-Nun, E. Levy, and A. Shiloh, ``A package for OpenCL based heterogeneous computing on

clusters with many GPU devices'‘, Proc. PPAAC, IEEE Cluster 2010.

19

The VCL Cluster Platform 2011

20

Before SuperCL

20

Hosting node Remote node

Application

Latency due to

several round-trips

Kernel 1 running

Kernel 2 running

Kernel N running

File

system

Input data from

file-system

Output data to

file-system

The VCL Cluster Platform 2011

21

SuperCL

A mini-programming language for reducing network overheads.

– Run a sequence of kernels and/or memory-object operations in

a single library call.

– Direct file I/O to/from OpenCL memory-object, so that the data

needs not pass through the host.

– Asynchronous transfer of data with the host, to prevent waiting

on latency.

– Wide range of logic/control available for complex high-level

algorithms at the remote end, thus relieving the host CPU.

– Open-end research for further optimizations and

extensions for running applications on multiple nodes.

21

The VCL Cluster Platform 2011

22

With SuperCL

22

Hosting node Remote node

Application

One round trip

Input data from

file-system

Kernel 2 running

Kernel 1 running

Kernel N running

Output data to

file-system

File

system

The VCL Cluster Platform 2011

23

Extensions of the C++ and OpenMP API’s

High-level language extensions for managing parallel jobs

on many GPUs:

– Devices are automatically handled by VCL.

– Supports advanced features such as scatter-gather
and profiling of kernel times.

Example: the Scatter-Gather API allows buffers to be
divided into disjoint segments that can be transparently
scattered to multiple devices.

Geared for tasks that need to perform:

– Subdivision of arrays (matrices).

– Boundary exchanges.

– Gather (merge disjoint arrays).

23

The VCL Cluster Platform 2011

24

Scatter-Gather Example

GPU

GPU

GPU

Stencil2D, a 9-point weighted average application from SHOC.
•MPI implementation - uses grid-blocks: ~655 lines-of-code.

•OpenMP implementation uses stripes (easier to manage and scale-up).

• Only 64 lines.

24

Hosting node GPU nodes

The VCL Cluster Platform 2011

25

Scatter

GPU

GPU

GPU

Stripes are sent to different GPUs.

-Useful to run large matrices that do not fit in a single GPU
or even in the hosting node.

25

Hosting node GPU nodes

The VCL Cluster Platform 2011

26

Exchange

GPU

GPU

GPU

Direct boundary exchanges between GPU nodes

26

Hosting node GPU nodes

The VCL Cluster Platform 2011

27

Gather

GPU

GPU

GPU

Stripes are gathered from GPUs to the hosting node.

- Or to a file.

27

Hosting node GPU nodes

The VCL Cluster Platform 2011

28

8kX8k (256MB) matrix vs.

number of iterations.

SHOC times (single GPU, no

buffer net transfer, no

boundary exchanges)

vs.

OpenMP with 2, 4 and 8

stripes, each on a different

node, including transfer of

buffers over the network

and boundary exchanges.

Scatter-Gather Performance - Stencil2D

28

The VCL Cluster Platform 2011

29

Conclusions

Heterogeneous computing can dramatically

increase the speedup of many applications.

– Due to the programming complexity, it is necessary to

develop tools for debugging, monitoring, program

optimizations, scheduling, resource management and

make it easy to run.

VCL makes it easier to run applications on clusters

with many OpenCL devices.

– Scalability depends on the tradeoff between

compute vs. communication.

29

