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Abstract

Many geophysical and environmental problems depend on estimating a spa-
tial process that has nonstationary structure. A nonstationary model is proposed
based on the spatial field being a linear combination of a multiresolution (wavelet)
basis functions and random coefficients. The key is to allow for a limited some
number of correlations among coefficients and also to use a wavelet basis that is
smooth. When approximately 6 % nonzero correlations are enforced, this repre-
sentation gives a good approximation to a family of Matern covariance functions.
This sparseness is important not only for model parsimony but also has implica-
tions for the efficient analysis of large spatial data sets. The covariance model
is successfully applied to ozone model output and results in a nonstationary but
smooth estimate.

1 Introduction

Many scientific problems involve geophysical/biological spatial processes are that non-
stationary. Such applications cover a wide range of disciplines ranging from meteoro-
logical and ocean measurements, to environmental pollutants, to disease incidence.
A statistical problem in all of these areas is to estimate the spatial covariance func-
tion without imposing unreasonable restrictions on its form. In this work we propose

a multiresolution (wavelet) model that can adapt to heterogeneous spatial correlation
patterns and also lends itself to efficient computational algorithms for analyzing large
spatial data sets.

As a motivating example in this work we consider the daily average surface (ambi-
ent) ozone concentration for a Midwest region of the the US. Based on heterogeneous
spatial factors, such as the sources of the precursors to ozone and different meteorolog-
ical conditions, one expects that the covariance function for the ozone field will vary
varying depending on spatial location. Some issues for ozone pollution are in making
spatial predictions at locations where measurements are not made and also attaching a
measure of uncertainty to these predictions. The uncertainty measures, such as a pre-
diction standard error, are useful not only for inferences for a given set of data but also
to guide thinning, augmenting or designing monitoring networks for the future.

A heuristic principle is that although spatial predictions may not be sensitive to
the assumed covariance function the implied standard errors by different covariance
models can vary widely. For this reason it is important to have accurate models for
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the covariance structure. Beyond pointwise error estimates, there is a growing interest
in geophysical sciences to use realizations of a spatial field consistent with observed
data that reproduce the stochastic features of the field. In a statistical context it is
natural to construct ensembles of possible fields by sampling from the posterior, or
conditional distribution, of the spatial field given the observed data. (This is also known
as conditional simulation in geostatistics.) The validity of this conditional distribution
will depend on how well the spatial process has been modeled and for this reason
accounting for nonstationary structure is important.

Past work on estimating nonstationary spatial fields has included moving window
kriging using a stationary covariance (e.g. [4]), nonlinear deformation of the geo-
graphic coordinates ([10]) or variable convolution of a stationary process ([5]). More
recently, change of support models have demonstrated the potential for incorporating
nonstationary structure ([2]) and a method that is similar in spirit to the approach in this
paper is the use of empirical orthogonal functions (e.g. [11]). These methods all have
advantages and drawbacks and, while we will focus on a different approach, it should
be noted that a collateral benefit of multiresolution model may be simply to provide a
compact representation for some of the kinds of models cited above. The chief advan-
tage is that the subsequent use of the covariance function for spatial analysis is efficient
using a multiresolution representation. It should be noted that some of the ideas in this
paper derive from more theoretical treatments from the work of Donoho and Mallat
([1], [7]) but we have made some extensions that have practical import.

The next section presents a standard spatial model and discusses the main idea of
this paper representing the spatial process and sum of fixed basis function with sparsely
correlated random coefficients. Section 3 considers spatial processes using multireso-
lution bases and presents a peculiar wavelet (the W-transform [6]) that we have found
useful. The next section gives some results for the approximation properties of the mul-
tiresolution for standard families of covariances. Section 5 estimates a nonstationary
multiresolution model for daily ozone in the Midwest.

2 Spatial Models

We assume that(x), is the value of a random field, e.g. ozone concentration at loca-
tion =, and with covariance function

k(z,z') = COV (2(x), 2(z"))

Throughout this paper we will assume that a mean zero, Gaussian process and so
the covariance function completely describes its stochastic properties. The covariance
kernel has the eigenvalue/eigenfunction decomposition of the form

k(z,z') = Z Ap(z)p(a’)



that holds for all covariance functions both stationary and nonstationary. Moreover, the
actual process can be represented as

f@) =3 VAoi(e)

where{a, } are independent random variables, distributé@, 1). The basic idea of

this paper is to use a wavelet basis in place of the eigenfunctions and relax the condition
on{«,} to allow some correlation among these coefficients. The main contribution is
how to estimate these covariances among the coefficients. In order to implement the
models and to compute examples it is useful to rephrase this problem for a discrete set
of points.

2.1 The Discretized Model

Let z be the values of the field on a large, rectangular grid (and stacked as a vector).
This discretization is partly a computational device and should not influence the sta-
tistical analysis; we assume that the grid is chosen fine enough to resolve all relevant
spatial features. Throughout this discussion we denote the total number of grid points
asm.

Accordingly, let

S = COV(z) 1)

be the covariance matrix among grid points and to introduce some notation we parallel
the continuous representation ofgiven above. One can always find the eigenvec-
tor/eigenvalue decomposition far. ¥ = vDWU” , w7 = I andD diagonal. Here
the columns ofl are individual basis functions evaluated on the grid but stacked as a
single column vector. One also has the representatien ¥ Ha wherea is a vec-
tor of independentV (0, 1) random variables anf) = H?2. To emphasize the basic
idea in this work, the eigen decomposition suggests an alternative way of building the
covariance by specifying the basis functions and a mdirixHowever,¥ need not
be orthogonal andf? need not be diagonal. The primary constraint is that the im-
plied covariance matrix and corresponding spatial estimator be readily computable and
approximate a variety of standard models.

For most problemsn is big andX is a gigantic. Even for the small example re-
ported Section 5 of this worky = 482 and sox will have approximately 2.5M unique
elements! Dealing with such large matrices is discussed in the next section.

2.2  Why sparsity?

We end this section by a brief motivation for the kind of computational advantages pro-
vided by a multiresolution covariance model. In order to do so we review the equations
for the conditional multivariate normal. The basic Gaussian model discussed here can
be greatly extended, however we focus on the simplest case to isolate the main compu-
tational burden.



Consider an observational model
y=Kz+e (2

wherey is a vector ofn observations and is M N (0,02I). Then x m matrix K is
usually an incidence matrix of ones and zeroes with a single 1 in each row indicating
the position of each observation with respect to the grid.

The simplest spatial inference is to find the conditional normal distributioa of
giveny and this distribution has mean vector

2 =YKT(KLKT + o)y (3)
and covariance
2 =% -SKT(KSKT +¢°1)7'KX% (4)

2 can also be identified as the best linear unbiased (Kriging) estimate of

When matrices are large the conditional mean vector is most efficiently solved for
using approximate, iterative methods. These methods, such a conjugate gradient (see
[3]), do not demand the storage Bfbut do require that that one can multipfyyand
K by arbitrary vectors efficiently/& will typically be a matrix that is sparse and so
can be multiplied with a vector easily. Given a decompositibn= VH2U” effi-
cient multiplication hinges on the structure ¥fand H. Through the choice of a
multiresolution basis there are fast recursive algorithms for multiplyirand &7, If
H is also sparse then the chain is complete and so one can also mbltqkckly.
Computing the conditional covariance is difficult and we suggest a Monte Carlo strat-
egy that leverages an efficient algorithm for the conditional mean. uLbe gen-
erated asM N (0,X). Generate pseudo data vectgt = Ku + € and compute
u* =u—XKT(KLSKT + 0%I)~1y*. Simple matrix algebra will show that + w*
will be a sample from the right conditional distribution. Performing this several times
will give an ensemble of fields and, of course, finding the sample covariance across the
ensemble provides a Monte Carlo based estimate of the conditional covariance.

3 Multiresolution Bases

We will generate a basis for expanding the covariance using repeated translations and
scalings of a few fixed functions. Multiresolution methods in particular, regression
on wavelets, have received much recent attention in the statistics literature, especially
in their ability to provide estimates of functions that have discontinuities or varying
degrees of smoothness over their domain. The reader is referred to the review article
by Nason and Silverman [8] for more background and development. The local support
of these basis functions lends themselves to nonstationary fields because the stochastic
properties can also be controlled locally. Changing the variances and covariances of
groups od individual coefficients will only have a local impact onteh spatial field. From

a qualitative point of view this is the distinction of a multiresolution basis that facilitates
representing nonstationary structure.



In this section we give a qualitative description of the multiresolution bases. One
advantage of wavelet methods is the efficient computation due to the discrete wavelet
transform (DWT). Because of its discrete nature, the DWT only approximates the exact
translation and scaling of fixed functions. However, the approximation is accurate for
the coarser levels of resolution and the intuition of basis functions having a scale of
resolutions and local support is important for understanding their benefit.

3.1 A one-dimensional basis

Although the main practical interest is in two dimensional fields, for illustration and
some later examples we first give a qualitative description of a continuous multireso-
lution basis in one-dimension. We start with two templates, motheand fatherp
wavelets both defined 0, 1] and a coarsest level of resolution, say J. The W trans-
form wavelets used in this work are plotted in figure 1. The firflasis functions are
similar to the father wavelet translated foequally space locations. These are given

in the first row of Figure 2 forJ = 4. The father wavelet only appears in this figst

set and all subsequent basis functions are similar in form to the mother wavelet. Ac-
cordingly, the next/ basis functions are the mother wavelets translated in the same
manner ( second row of Figure 2). The next generation of basis functions has twice
the resolution and twice as many membeXg and is similar to a scaling and trans-
lation of the mother wavelet. The third row of Figure 2 shows this generation. This
cascade continues with the number of members in each subsequent generation and the
resolution increasing by a factor of two.

3.2 A two dimensional multiresolution basis

A two dimensional basis can be constructed through translations and scaling of four
template functions that replace the role of the father and mother wavelets from the one
dimensional case. To start, form the tensor products of the one-dimensional father and
mother wavelets functions to obtain four, two-dimensional functions with domain on
[0,1] x [0, 1]:

S(w1,72) = ¢(w1)P(x2)
H (21, 22) = ¥(x1)d(22)
V(21,22) = d(1)¢(22)
D(z1,22) = (1) (22)

These are plotted in Figure 3.

Here S, H,V, andD stand for smooth, horizontal, vertical and diagonal respec-
tively and the letterd?, V andD correspond to their ability to represent features in
these orientations.

The sequence of panels in Figure 4 are in analogy to the one dimensional basis
presented above. One starts with a coarsest sdate (1) and obtains approximates
translates of the fatheifather function,S, at a4 x 4 grid of locations. These functions
are depicted as image plots in upper right hand matrix in Figure 4 where each separate
image represents one two-dimensional basis function. The next 16 functions are similar
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Figure 1: Continuous versions of the Father (dashed) and Mother (solid) W-transform
wavelets
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Figure 2: Family of 32 basis functions based on an approximate translation and scaling
of the father and mother wavelets from Figure 1. Basis functions at the end points differ
shape due to boundary corrections.
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to translates off (Figure 2) and the remaining panels of Figure 4 complete the first
generation using’ andD for a total of 64 functions. Subsequent generations are based
only on the three templates functions derived from the mother wavelet and in analogy
to the one dimensional case involve scaling by a factor of two and translation. As an
example, Figure 5 depicts the 64 functions approximating translations and scalings of
H at the next level of resolution.

3.3 Discrete Wavelet transform

The discrete wavelet transform (DWT) is a fast computation method that can compute
the coefficients of a basis that approximates the exact multiresolution definition. In
the notation of the previous section, the DWT and its inverse can be used to rapidly
multiply ¥ and ¥ —! and their transposes by arbitrary vectors. The basis functions
comprising the columns o¥ are approximately equal to the exact translations and
dilations of the smooth and detail functions with the approximation improving as the
level of resolution decreases.

The key idea behind the DWT is recursion. At each step an image of size;say,
no is decomposed through finite length separable, linear filters into four submatrices of
smooth, horizontal, vertical and diagonal terms. The recursive form for the father and
mother wavelet functions given below provides the linear filter weights that are used
to transform the rows and columns of this image. The resulting bloek (i x ny/2
smoothed coefficients now becomes the “image” for the next step. The other three
blocks are the results for thg, IV and D components at this level of resolution. The
net result is a set of algorithms that are linear in the image size and are equivalent to
multiplication of a vector by?, it's inverse, or it's transpose. It should be noted that
standard DWT refers to the specific multiplication of a vectordby' and, for many
wavelet choicesy is an orthonormal matrix.

In this work we concentrate on a basis derived from the W transform. Kwong and
Tang [6] proposed the father and mother wavelet functions based on simple families
of filter weights in the discrete wavelet transform (DWT). The reason for this choice
over more common wavelets is that they approximate the shape of common covariance
models and handle boundaries easily. We will refer to these as W wavelets and the
quadratic parents of this family are given in (Figure 1). Both are piece-wise quadratic
splines but unlike other popular wavelet bases are not orthogonal or compactly sup-
ported. What is common to most multiresolution bases is a recursive relationship that
defines the father and mother wavelets and also subsequently the discrete transform.
For example, the recursive equation that defihésthe relation

H(x) = T(6(20) + 302w — 1) +86(22 — 2) + (2 — )
and
P(z) = C(¢(27) +3¢(2z — 1) — 36(2x — 2) — ¢(2z — 3))
whereC' is a constant. The reader is referred to [6] for a development of the mul-

tiresolution basis that starts with the DWT. The W-wavelet is implemented in the Fields
package [9] for the Splus and R statistical environments.
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Figure 5: Second generation of 64 two dimensional basis functions based on the
motherxfather template. These functions have more resolution in the y coordinate.
There are 2 other sets of 64 basis functions in this generation corresponding to hori-
zontal (fathex mother) and diagonal (mothemother) resolutions.
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Given the DWT and its inverse for a particular wavelet family it is straight forward
to calculate the implied basis functions. One simply creates a unit vecteith a
one at the index of interest and evaluafes. In fact this is how the basis functions
displayed in Figures 3 through 5 were found.

4  Approximating other covariances

Before considering nonstationary models it is of interest to investigate how well the
multiresolution representation can approximate standard covariance models. The key
issue is enforcing sparsity in the covariance mafixgmong coefficients without it
losing the approximation properties.

Suppose is the covariance matrix for a spatial process then it is always true that

¥ =vDpv! = vH2uT (5)
for positive definite,D and square roatl. Also
D=v"1ygh)"! (6)

However, this decomposition is only useful if we can findfathat is close to diagonal.

As an example Figure 6 illustrates the structure of these matrices for a one di-
mensional grid ( 128 equally spaced points[onl] ) and an exponential covariance.
k(z,z') = exp—|z — 2’| /0 with § = 1/8. The plot (a) isX, (b) is a scaled version
of log10(|D]) and (c) the leading2 x 32 submatrix of D. The image (d) is the cor-
responding submatrix fof/. The main features are clear, the element®dall off
rapidly with scale and many off diagonal elements are zero. Most of the significant off
diagonal elements are associated with the coarsest scale basis function. Moreover, The
sparseness is amplified by considerig This example is motivation for keeping the
dominating elements aff but setting to zero small elements.

Another way to interpret the ability of the wavelet basis to nearly diagonalize
to examine a transformed basis that produces an exact diagonalization. Figure 7 plots
the normalized columns of the matnix4 in a similar format to Figure 2. These new
basis functions are only a minor modifications of the original wavelets and thus also
illustrate effective sparsity off.

4.1 Enforcing sparsity in H

In the spirit of threshold estimators used in wavelet regression and the initial ideas from
[1] we propose a threshholding to enforce sparsity/inBased on results that will be
given in the next section there are three parts stages to this strategy

¢ Retain all diagonal elements &f

e For the finest levels of resolution set all off diagonal elementq &b zero.

11
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Figure 6: Approximation to a 1-D stationary covariance function. Image (a) is a expo-
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e For the remaining elements, givén# ¢ and a threshold.

.- Mg i [Hij[>7
J 0 otherwise

Figure 8 reports results for approximating for the exponential covariance model
used above. Here we have choseto be the 98% and 97% quantiles fgi4; ;|} The
approximate covariance matrix is reconstructed and three rows of this matrix are plotted
along with the true covariance values. Given 97% decimatioH ofhe agreement is
striking but there are some inaccuracies in the peak height and some ringing for the
larger amount of decimation.

As a final illustration we consider a one dimensional nonstationary model obtained
by deformation. We apply a logistic-like deformation of the interiéall] plotted in
Figure 4.1 to the stationary exponential covariance used previously. This results in the
nonstationary covariance matrix where there are short range correlations in the middle
of the interval and longer ranges near either end point.

Again we decimaté! by 98 % and 97 % and reconstruct to assess the approxima-
tion (Figure 10). Here the wavelet approximation does well in tracking individual rows
of the covariance matrix even with changing shape and range.

4.2 Approximating the Matern covariance family

The two one-dimensional examples given above help to give some intuition concerning
the W-transforms approximation and sparsity properties. However, a more useful com-
parison is for covariances associated with two dimensional spatial processes. In this
section we provide more deliberate comparisons for the Matern family. One key result
is a universal mask for sparsity that facilitates estimating these models from data.

The Matern covariance family is indexed by the parametgmoothness) angl
(range) and has the form

k(x, @) = yp(lJa — 2'|])

where

v
q)u,e = Z%Ky(er)
and K is a modified Bessel function of order A Gaussian process with this covari-
ance will haver derivatives that exist in the mean square sense and the pardgmeter
controls the correlation range. Two important special cases are the exponential covari-
ance whenv = .5 and the Gaussian, obtained as a limivas: cc.
For numerical results we considerlé x 16 grid of locations on[0, 1] x [0, 1]
with the coarsest generation having 16 basis functions for the each of the 4 tensor
products from Figure 3 and are centered ot & 4 grid. The covariance models
were generated according to the smoothness paramgtérs and4 and with range
parametersl 25, .25, .5 and.75 giving a total of12 different covariance functions. The
wavelet approximation was computed for 98% and 97% decimation and the results are

14
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summarized in Figure 11. Here each boxplot is based on 256 values and summarizes
the root mean squared errors (RMSE) for each row of the difference between the actual
covariance matrix and the wavelet approximation. Large values tend to be located at
the edges of the domain. Keeping in mind that the covariance models have marginal
variance of 1 these RMSE are small relative to the size of the correlations. We see some
degradation in the approximation for small ranges and the exponential model. This
behavior may be related to the choicelof 4 father wavelets setting the coarsest scale

and also because the shape of the W-wavelets are closer to Gaussian than exponential
at their peak.

Another important aspect of this study is investigating how the positions of the
nonzero elements in the decimat&dmatrix vary among the different models. For
case with 98% decimation the intersection of all nonzero elements across the 12 models
amounts to a total of 3.3% nonzero elements and for 97% decimation there are 5.6%
nonzero elements. These results suggest that one can restrict the modélsofer
limited set of elements and still have a good approximation to a wide range of models.

5 Covariance estimates from data

In many geophysical applications the spatial fields are observed over time and one can
exploit (approximate) temporal replication to estimate sample covariances. In this work
we focus on this case and also for gridded data with the goal of deriving estimators
that avoid intensive nonlinear optimization and scale to large problems. In general,
fitting nonstationary covariance models from a single field, or small number of, fields,
observed at irregular points is a difficult problem. We give a possible strategy in the
discussion for irregularly spaced observations.

5.1 Sample estimates oif

Assume that independent copies of the field are observediottiere points and leZ

be anm x T' matrix with each column being the stacked vectocerfiterecbbservations

(i.e. mean zero) at a single time. Accordingly from the relationship at 1 each column
of Z has covarianc&. With gridded data and (independent) replications over time,
one can get sample estimates of the elements.diVe expect that for most problems

m >> T and so the basic idea is to try to work with matrices of ongdex 7' instead

of m x m. We have the sample covariance as

S=01/Tz2zZ"
and so
D=(1/T)(¥ ' 2)(¥ ' 2)"

This form motivates estimating via the singular value decomposition(@f —* Z).
Let VAUT = (I ~1Z) whereV andU are orthogonal matrices anda7" x T'diagonal
matrix of nonnegative singular values. Setting

H=VA?VT,

17
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it now follows thatD = H2. Based on the numerical results from Section 4.2 one
is lead to a small number of nonzero elementdfthat have good approximation
properties across a whole covariance family. This sparseness guarantees that we do not
have to consider many off-diagonal elements of and the entires that are nonzero can be
computed efficiently based dii andA'/2. Note that here also we are only working
with matrices of ordem x T'notm x m.

Once the elements df are found one can:

e Further decimate them
e smooth across "spatially adjacent” entries.
e shrink toward a stationary model

In the example in the next section we simply use decimation although we believe that
smoothing entries may be important for large problems.

6 Example with Surface Ozone

We use a numerical experiment based on the Regional Oxidant Model (ROM) and
analyze daily average ozone produced by the output. ROM is an atmospheric chemistry
model and simulates ozone formation and transport based on sources of pollution and
meteorological conditions. The data used in this study48 & 48 grid centered on
lllinois and Ohio where each grid box is approximatéyx 16 miles in size. Output is
available for 79 days using meteorology from in June-August 1987, this was a period
of high summer ozone. For back ground on this model and its comparison to data see
[?].

Ambient average daily ozone has a correlation range of the order of 300 miles and
so it is reasonable to start with3ax 3 grid of father wavelets as the coarsest level
of resolution. This division is also facilitates the recursive algorithm because then the
remaining factor of 48 is 16, a power of 2. In this example we simply decimated the
leading12 x 12 block of H by 90% and retained diagonal elements for the remaining
levels. A refinement of this could be to smooth the diagonal elements in the finer levels.

The resulting covariance function appears to be nonstationary but smoothly varying
and is illustrated in Figure 12. Each member of the panel fixes a location and plots the
covariance or correlation surface with that point. In terms of matrix notation we plot
four separate rows of the estimated maftixaving first reformed the row vectors as
images. The top left hand location (a)is a rural area of lllinois and has a covariance
that is long ranged to the west but with low variability. The location in (d) is near more
urban areas in Michigan. It has higher variability but also a longer correlation range
than the locations in the bottom corners of the domain. Another interesting distinction
is that the location (c) (near St Louis) has more isotropic contours. Although more
extensive analysis of this data set is beyond the scope of this example it should be
noted that the correlations tend to have longer range west of the locations. This might
be due to the general motion of weather systems, and the corresponding transport of
ozone, from west to east.
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Figure 12: Estimated covariance surface at 4 sample locations. The image plots indi-
cate the covariance between points in the domain and the point location denoted by an
+. Contours indicate the locus of points where the correlation is at .5.
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7 Discussion

We have shown that wavelets provide flexible methods for introducing nonstationary
spatial structure and can also reproduce standard spatial models. Due to the efficiency
of the discrete wavelet transform and also the enforced sparseness in the covariance
matrix among coefficients these models are also amenable to large spatial problems.
The example with using ROM output is surprising in how a regular basis can produce
nonstationary but smooth covariance patterns. A key extension of this methods is to
irregular locations and we end this paper by suggesting an approach to this problem
when temporal replicates of the field are available.

When data is not observed on a complete grid it one can not take advantage of the
DWT for matrix multiplication of the basis functions. Also there are problems with
many elements off simply not being identifiable. A formal approach is to write out
a full Bayesian model for the field including a hierarchical modelfband then at-
tempt to sample from the posterior using Markov chain Monte Carlo. We think this
approach may be productive for moderate size problems but will not be easy to imple-
ment for many important large geophysical data sets. Here we suggest an algorithmic
approach that has less of a statistical foundation but is more direct. Given spatial data
at irregularly spaced locations and observed at several times, one starts by fitting a
simple possibly stationary model to the sample covariances. It may be useful translate
this model into the wavelet approximation format to facilitate computation. Given this
starting covariance model at each time point one samples the conditional distribution
of the field on a regular grid given the observed data. Given these gridded samples of
the field one now fits a model t& based on the ideas from this paper. At this point
because there is now “data” on a complete grid, the DWT can be used for matrix multi-
plications of¥. A further elaboration of this strategy is to now use the multiresolution
based covariance to extend the data to a grid and reestimate the malelfbe basic
idea of extrapolating irregularly spaced data to a regular grid and then using the DWT
is not new. However, one crucial difference is that we propossatoplefrom the
conditional distribution rather than use the posterior mean. This will have the effect of
enforcing the starting covariance model in regions where direct covariance information
is limited.

Clearly there are many open statistical questions posed by the covariance model
in this paper and we hope that their merits in flexibility and practicality spur more
research.
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