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Abstract 

This review summarizes the evidence from cross-country, macro-level studies on the way 

demographic factors and processes—specifically, population, age structure, household size, 

urbanization, and population density—influence carbon emissions and energy consumption. 

Analyses employing time-variant data have produced great variance in population elasticity 

estimations—sometimes significantly greater than one, sometimes significantly less than one; 

whereas, cross-sectional analyses typically have estimated population elasticities near one. 

Studies that have considered age structure typically have used standard World Bank definitions, 

and mostly have found those variables to be insignificant. However, when researchers have 

considered levels of disaggregation that approximate life-cycle behavior like family size, they 

have uncovered relationships that are complex and nonlinear. Average household size has a 

negative relationship with road energy use and aggregate carbon emissions. Urbanization appears 

positively associated with energy consumption and carbon emissions. Higher population density 

is associated with lower levels of energy consumption and emissions. 
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1. Introduction: review parameters and outline 

As the interest has increased in how energy consumption and its resulting carbon 

emissions impact climate, and thus people, so too has the interest in how population and 

population processes impact energy consumption and carbon emissions. The availability of 

yearly, national-level data (from sources like the World Bank, International Energy Agency, and 

the Carbon Dioxide Information Analysis Center) covering energy consumption, carbon 

emissions, population, and socio-economic variables (like GDP per capita) has helped spur a 

substantial number of empirical analyses that estimate the socio-economic drivers of that 

consumption and emissions. Indeed, over half of the 28 papers listed in Table 1 were published 

since 2010—Table 1 presents some basic, summary information
1
 from all studies that considered 

at least population size or age structure (studies considering only urbanization or population 

density are mentioned in the text), employed cross-country, macro-level data sets, and focused 

on some aggregation of either energy consumption or carbon emissions. Table 1 gives some 

indication of the sizeable diversity this literature has produced—in results, variables and 

countries considered, and data structure (among other dimensions of difference). This review 

presents/summarizes the evidence from cross-country, macro-level studies on the way 

demographic factors and processes—specifically, (i) population size and growth, (ii) 

urbanization and population density, and (iii) age structure and household size—influence carbon 

emissions and energy consumption. Hence, by considering all papers that examine those six 

factors (and that adhere to the described dependent variable and data parameters), the review 

                                                
1 Several papers presented more than one regression; when authors articulated a favored regression, data was drawn 

from it. Also, when stationarity was not explicitly addressed, regressions performed in first differences were deemed 

to be more robust to stationarity, and thus, preferred. Lastly, an attempt was made to choose results that were most 

compatible with the results from the other studies listed in Table 1 (e.g., regressions that controlled for population 

and GDP per capita).  
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seeks to answer two questions: (1) what do we know about the impact of those six demographic 

factors; and (2) do we need to know anything more about their impact? 

The following section (i) briefly reviews the typical models used and (ii) outlines some of 

the important empirical issues/challenges encountered. The next three sections summarize the 

evidence to date, considering in turn: population size and growth (Section 3), urbanization and 

population density (Section 4), and age structure and household size (Section 5). The paper 

concludes with some suggestions for modeling and methodological improvements to the 

common macro-level population-environment framework. 

Table 1 

2. Background: models and empirical issues/methods 

Analyses interested in examining population’s impacts on the environment often employ 

Dietz and Rosa’s (1997) STIRPAT (Stochastic Impacts by Regression on Population, Affluence, 

and Technology) framework. STIRPAT builds on IPAT/impact equation of Ehrlich and Holdren 

(1971): 

      (1) 

where I is aggregate environmental impact, P is total population, A is affluence or consumption 

per capita, and T is technology or impact per unit of consumption. Dietz and Rosa (1997) 

proposed a flexible, log-linear, regression framework that allows for hypothesis testing:    

itititittiit TAPI εβββγα +++++= lnlnlnln 321     (2) 

where subscripts it denote the ith cross-section and tth time period. The constants α  and γ  are 

the country or cross-sectional and time fixed effects, respectively, and ε  is the error term. 

Affluence (A) is typically proxied by GDP per capita, and the T term is often treated like an 

TAPI ××=
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intensity of use variable and sometimes modeled as a combination of log-linear factors (like 

urbanization or density). 

A related literature, Environmental Kuznets Curve (EKC), tests whether pollution per 

capita first rises with income or GDP per capita and then falls after some threshold level of 

income/development is reached, thus forming an inverted U-shaped relationship. Empirical 

studies of the EKC typically take the following form: 

ln��/���� = ��+ ��+ ��ln�����+ ��(ln���)��
� + ��ln	(�)��+ ���  (3) 

where Z is a vector of other drivers (that is sometimes considered)—similar to T in Equation 2. 

Hence, the primary difference between the STIRPAT and EKC frameworks (i.e., between 

Equations 2 and 3) is that the EKC effectively assumes that population’s elasticity is unity and 

correspondingly converts the dependent variable into per capita terms.
2
 An EKC between 

emissions/energy consumption per capita and income is said to exist if the coefficient �� is 

statistically significant and positive, while the coefficient �� is statistically significant and 

negative. 

Still another framework, taken from economics, posits a demand-type relationship: 

	ln	��/���� = ��+ ��+ ��ln	�����+ ��ln(��)��+ ��ln	(�)��+ ���  (4) 

where E is (some aggregation of) energy consumption, Pr is energy price—for which data is 

available often only for OECD countries, and the Z vector sometimes includes terms like 

urbanization and population density. Naturally, many analyses, including some of those listed in 

Table 1, take a hybrid approach by combining elements of the three above described models—

for example, some STIRPAT studies have included an affluence squared term.  

                                                
2 Menz and Kuhling (2011) suggest that the STIRPAT framework is more popular among sociologists; whereas, the 

EKC framework is more popular among economists—naturally, such discipline distinctions would affect the choice 

of additional (T and Z) variables. 
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2.1. Empirical issues/methods 

The earliest papers listed in Table 1 relied on cross-sectional data taken from a single 

year. Yet, the empirical consideration of many cross sectional units combined with observations 

taken at many time intervals (i.e., time series—cross sectional or panel data) offers substantial 

advantages over simple cross-sectional analysis, e.g., (i) using country and/or time fixed effects 

to control for some omitted variables (i.e., factors that may affect emissions that are not captured 

by variables specified in the regression model, such as economic shocks, changes in population 

policies, or other country specific development pathways); (ii) increasing substantially the 

degrees of freedom; and (iii) allowing for dynamic modeling (e.g., estimating short-run and long-

run effects). However, employing such time series—cross-sectional data also both introduces 

statistical challenges and provides opportunities to address those challenges and other modeling 

issues: namely, serial correlation, nonstationarity, cross-sectional dependence, heterogeneity, 

nonlinearities, and endogeneity.  

If regression errors are serially correlated, then ordinary least squares regressions (OLS) 

produce unbiased but inefficient estimations (i.e., t-tests and confidence intervals are inaccurate). 

Several time series-based estimation methods are robust to serial correlation (e.g., those used in 

Liddle 2011; Liddle 2012; and Liddle 2013a). Other papers employed the Prais-Winsten serial 

correlation correction (e.g., York 2007a; 2007b; and 2008). Beck and Katz (1996) argue that the 

Prais-Winsten correction is more difficult to interpret than the lagged dependent variable (LDV) 

model, which can address serial correlation, too. Hence, still other analyses listed in Table 1 

(e.g., Liddle and Lung 2010; Menz and Welsch 2012) have included a LDV to address serial 

correlation. Elasticities estimated from a LDV model are considered short-run; however, those 
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elasticities can be “scaled” or divided by one minus the estimated LDV coefficient to arrive at 

long-run elasticities. 

Most variables used in macro-population-environment analyses are stock (population) or 

stock-related variables (GDP, emissions, and energy consumption, which are influenced by 

stocks like population and physical capital); as such, those variables are typically highly trending 

and quite possibly nonstationary—i.e., their mean, variance, and/or covariance with other 

variables changes over time. When OLS is performed on variables that are not stationary, 

measures like R-squared and t-statistics are unreliable, and there is a serious risk of the estimated 

relationships being spurious. The studies listed in Table 1 that have addressed stationarity in their 

data, typically have done so via first differences (e.g., Cole and Neumayer 2004; and Martinez-

Zarzoso et al. 2007). (A few papers mitigated stationarity by analyzing data observed at five year 

intervals.) Although first-differencing often transforms nonstationary variables into stationary 

ones, first-differencing means that the model is a short-run (rather than a long-run) model, and 

that the estimated coefficients, rather than being elasticities, are constants of proportionality 

between percentage changes in the independent variables and percentage changes in the measure 

of impact. Among the studies in Table 1, only Liddle (2011), Liddle (2012), and Liddle (2013a) 

employed time series-based techniques that address stationarity in the estimation of long-run 

elasticities. 

Additionally, for variables like GDP per capita, carbon emissions, and energy 

consumption, cross-sectional dependence is likely because of, for example, regional and 

macroeconomic linkages that manifest themselves through (i) common global shocks, like the oil 

crises in the 1970s or the global financial crisis from 2007 onwards; (ii) shared institutions like 

the World Trade Organization; or (iii) local spillover effects between countries or regions. Yet, 



7 

 

most estimation methods (e.g., OLS) assume that the cross-sections are independent. 

Disregarding this cross-sectional correlation in panel data models can lead to inconsistent 

parameter estimates and incorrect inference (Kapetanios et al. 2011). Converting variables to 

first differences or considering observations taken at limited intervals (e.g., every five or 10 

years) can address/mitigate cross-sectional dependence (as can including time dummies to a 

more limited extent); however, only Liddle (2012) tested for and employed long-run estimation 

methods robust to cross-sectional dependence.   

It may not be reasonable to assume the population-environment relationship is the same 

for each country analyzed; yet, nearly all studies have employed pooled estimators (that make 

that assumption).
3
 If one mistakenly assumes that the parameters are homogeneous (when the 

true coefficients of a dynamic panel in fact are heterogeneous), then all of the parameter 

estimates of the panel will be inconsistent (Pesaran and Smith 1995). Heterogeneity, when 

considered, is typically addressed by splitting the panel along income lines—a distinction that 

appears justified by the results. (Alternatively, Martinez-Zarzoso and Maroutti 2011 used a semi-

parametric mixture model to endogenously classify countries into homogenous groups/panels.) 

By contrast, the panel estimators used in Liddle (2011, 2012, and 2013a) first estimate each 

group/cross-section specific regression and then average the estimated coefficients across the 

groups/cross-sections (standard errors are constructed nonparametrically); and thus those 

estimators, allow for a high degree of heterogeneity. Indeed, Liddle (2011) demonstrated a 

substantial variation in individual STIRPAT elasticity estimations among OECD countries. 

Analyses often focus on/consider whether a variable’s impact varies nonlinearly (again, 

the EKC literature asks this question in regard to income’s impact), and typically answer that 

                                                
3
 They do so, albeit, often after subtracting out country effects. 
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question of nonlinear relationships by including a squared term in the regressions. However, if 

the variables of interest (e.g., GDP per capita, population) are nonstationary—as noted earlier, 

they likely are—then regressions (using time-variant data and) involving nonlinear 

transformations of such nonstationary variables could be spurious, and their significance tests 

invalid (Wagner 2008). Furthermore, that polynomial model (e.g., Equation 3) does not allow for 

the possibility that elasticities are significantly different across development levels but still 

positive (Liddle 2013a). See Wagner (2008), Stern (2010), and Liddle (2012; 2013a) for different 

ways to address either or both of those two issues.  

Lastly, according to a number of social science theories, the variables typically 

considered in population-environment studies have a degree of endogeneity among them. For 

example, affluence (or GDP per capita) is believed to affect population—through both human 

capital’s influence on birth rates (e.g., Becker et al. 1990) and higher income’s ability to lower 

death rates. Likewise, population has been shown to impact affluence—such as when the size of 

the working-age population increases faster than the size of the dependent-age population (e.g., 

Bloom and Williamson 1998). The methods used by Liddle (2011 and 2013a) account for 

endogeneity among variables implicitly via error correction/cointegration modeling. Meanwhile, 

the system generalized method of moments (GMM) estimator employed by Martinez-Zarzoso 

and Maroutti (2011) and Fang et al. (2012) corrects for/mitigates endogeneity by using as 

instruments lags of the explanatory variables. However, I know of no population-environment 

studies that have explicitly addressed the endogeneity issue via multiple equation modeling.   

3. Population and population growth 

Table 1 shows that analyses employing time-variant data have produced a great variance 

in population elasticity estimations—sometimes significantly greater than one, sometimes 
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significantly less than one; whereas, cross-sectional analyses typically have estimated population 

elasticities very near one (e.g., Rosa et al. 2004; York et al. 2003a; York et al. 2003b; Dietz and 

Rosa 1997).
4
 Again, some of the studies in Table 1 employed a lagged dependent variable (LDV) 

model. If those elasticities reported in the table were converted to long-run elasticities as 

described previously, the long-run population elasticities for Menz and Welsch (2012), Martinez-

Zarzoso and Maroutti (2011), and Liddle and Lung (2010) would be 2.2, 1.0, and 2.1, 

respectively. However, none of those LDV analyses calculated new standard errors for that 

nonlinear combination of coefficients, and so we do not know whether those long-run elasticities 

are significantly different from one (or any other value). Also, some other studies analyzed 

models with all variables in first differences, and so, those values should be considered short-run 

estimates.
5
  

Beyond the issues of short run vs. long run estimates and the effectiveness in addressing 

the statistical issues discussed above (e.g., stationarity, cross-sectional dependence), the various 

papers listed in Table 1 analyzed different dependent variables, considered different additional 

explanatory variables (including non-population variables not listed in the table), and examined 

different panels of countries. Thus, in order to accurately assess the true measure of the 

population elasticity, one might proceed to a meta-analysis. Yet, perhaps we should not expect 

population’s elasticity to be different from one anyway, since as O’Neill et al. (2012) argued, “… 

if all other influences on emissions are controlled for, and indirect effects of population on 

                                                
4 Interestingly, this phenomenon of a population elasticity of unity for cross-sectional analyses is true even for 

studies considering different dependent variables (e.g., fuelwood consumption by Knight and Rosa 2012) or 

different units/scales of analysis (e.g., US county-level data in Roberts 2011; international city-level data in Liddle 

2013b). 
5
 Fang et al. (2012) first differenced their data and included a LDV; thus, it is difficult to compare their results with 

those of other studies. Perhaps, if one applies the one minus the LDV coefficient transformation (i.e., divides by 1-

0.92 for their all countries panel), their results would be comparable to other first differenced, short run models. 
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emissions through other variables are excluded, then population can only act as a scale factor[,] 

and its elasticity should therefore be 1.”     

Indeed, Liddle (2012) performed a substantial robustness exercise on the STIRPAT 

framework employing estimation methods that were designed to address the six 

econometric/modeling issues outlined in the previous section; that analysis determined that, even 

after correcting for the modeling and methodological short-comings of previous STIRPAT 

analyses, the population elasticity of carbon emissions was not conclusively significantly 

different from one. While the estimated (mean) population elasticity was greater than one and 

was unstable/inconsistent—i.e., it varied considerably depending on the panel (OECD vs. non-

OECD), method (long-run vs. short-run/first difference estimation), and time-span considered—

its accompanying standard errors were large; as a result, the elasticity was typically not 

statistically different from one, nor statistically different between developed and developing 

countries. By contrast, the affluence (or GDP per capita) elasticity of carbon emissions was 

highly stable/consistent—it was statistically less than one for OECD countries, and statistically 

smaller for OECD countries than for non-OECD countries (but not statistically different from 

one for non-OECD countries).  

Furthermore, the lack of stability of the population elasticity over time was not evidence 

that the elasticity had changed—the sensitivity analysis revealed no evidence that the size, 

significance, or sign of the population elasticity may have changed over-time (e.g., from 1970-

1990 to 1990-2006). Rather, the more extreme estimated values (i.e., particularly large or 

insignificant estimations) typically occurred whenever the time span was shortest (e.g., 1971-

1990, 1975-1995, 1980-2000, and 1985-2006).
6
 Jorgenson and Clark (2010), using different 

methods, similarly concluded that their population elasticity estimations did not change over 

                                                
6 See Liddle (2012) for details of the models, estimators, and regression diagnostics. 
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time. Hence, Liddle (2012) recommended that modelers divide Equation 2 by population, and 

thus, convert the depended variable into per capita terms, unless modelers specifically want the 

population variable “…to capture ‘other influences’ or missing variables by research design—to 

compare urban vs. rural populations, for example.”   

3.2 Population growth 

To my knowledge population growth’s impact on the level of national carbon emissions 

has not been explicitly explored (a conclusion also reached in another review by Rosa and Dietz 

2012). Yet, since many of the analyses listed in Table 1 employ an elasticity model, i.e., all 

variables in natural logs, the estimated coefficient for population represents the percentage 

change impact on the dependent variable that a one percent change in population would cause. 

Hence, one could argue that these elasticity studies (e.g., those using the STIRPAT framework) 

indeed investigate the impact of population change or growth. Furthermore, several studies have 

employed models with all the variables in logged first differences; as such those models 

investigated the impact of population growth on emissions growth. In other words, the estimated 

population coefficient in those studies reflects the percentage change in the emissions growth 

rate that a one percent change in the population growth rate would cause.  

Yet, it is not clear why population growth rates would affect contemporaneously the level 

of emissions/energy consumption. (Lagged population growth might have such an effect directly 

through its impact on population size.) Moreover, similar to the O’Neill et al. (2012) argument 

about population acting only as a scale factor, unless indirect effects are present, we would 

expect a change in the growth of population to have a proportional effect on the growth of 

emissions/energy consumption. Of course, we may be interested in population growth precisely 

because of its indirect effects on emissions/energy consumption through its impact on population 
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processes like urbanization, population density, age structure, and household size. Because it is 

probably better to model those four processes directly, we now turn to assessing the literature’s 

findings on their emissions/energy consumption impact.   

4. Urbanization and population density 

Urbanization may lead to higher emissions/energy consumption through urbanization’s 

association with industrialization—i.e., the shift from agriculture to industry and services. The 

co-evolving movement of people from rural to urban areas and from agricultural to industrial 

employment causes energy consumption to increase in three ways: (1) agricultural operations 

must mechanize as they become less labor intensive; (2) urbanization spatially separates food 

consumers from food producers, thus necessitating a transport requirement that did not exist 

under traditional agriculture and settlement patterns; and (3) modern industry/manufacturing uses 

more energy per unit of output and per worker than does traditional agricultural and 

manufacturing (Jones 1991). Furthermore, urbanization is associated with economic growth, and 

so urbanization may lead to greater energy consumption since energy consumption is a normal 

good. Lastly, urbanization is a proxy for the amount of people with access to a country’s 

energy/electricity grid, and thus, urbanization would be associated with more consumption of 

such energy.  

On the other hand, urbanization could lead to lower levels of energy consumption since 

cities benefit from energy efficiencies by providing/encouraging living in high-rise buildings and 

using public transit networks or energy-free transport modes (walking and cycling). Yet, it is not 

at all clear whether national levels of urbanization are really measures of the density of the types 

of activity that might lead (via efficiencies) to less energy consumption or emissions (Liddle and 

Lung 2010). Indeed, Liddle (2013b) calculated that for a large sample of the world’s largest 
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cities from both developed and developing countries, the correlation (ρ) between urban density 

and the corresponding national population density was only 0.35, and national urbanization 

levels were actually negatively correlated with urban density (ρ = -0.59).   

Studies that examine the influence of urbanization (share of population living in urban 

areas) on carbon emissions/energy consumption tend to come in two flavors: (i) those that 

assume a one-way causal direction (urbanization causes emissions/energy consumption) and test 

for the significance and sign of that relationship; and (ii) those that test for the possibility of a 

mutual causal relationship between urbanization and emissions/energy consumption.
7
 That 

second group of studies employs so-called Granger-causality and vector error correction 

modeling, typically considers multivariate models, and analyzes the variables in first differences 

to test for short-run relationships.
8
  

The earliest of the first type of studies focused on developing countries and found a 

positive, significant relationship between urbanization and energy consumption (Jones 1989; 

Burney 1995; Parikh and Shukla 1995). More recent, similar studies have considered developed 

as well as developing countries, carbon emissions and disaggregated energy consumption, and 

additional explanatory variables. These studies typically have confirmed the positive relationship 

between urbanization and emissions/energy consumption (e.g., York et al. 2003a and 2003b; 

Cole and Neumayer 2004; Fan et al. 2006; York 2007a; Poumanyvong and Kaneko 2010; 

Martinez-Zarzoso and Maruotii 2011; Menz and Welsch 2012; Poumanyvong et al. 2012; Zhu et 

al. 2012; Knight et al. 2013).  

                                                
7
 That first group of studies includes papers employing GMM or instrumental variables (e.g., Martinez-Zarzoso and 

Maruotti 2011; and Fang et al. 2012). Such techniques include lags of the independent variables to indirectly 

mitigate endogeneity; however, they do not formally test for the presence of a mutually causal relationship as the 

second group of studies does. 
8
 Most of the mutual causality studies to date have been focused on single countries, and thus, are beyond the scope 

of this review. 
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By contrast, Liddle and Lung (2010) found that urbanization had an insignificant 

influence on total carbon emissions in OECD countries; similarly, Jorgenson (2007), Jorgenson 

(2012), and Jorgenson and Clark (2010 and 2012) found a significant, but very small influence 

(elasticity of 0.02) for urbanization in both developed and developing countries. Whereas, 

Jorgenson et al. (2010) studied total energy consumption in less developed countries and found 

that urbanization had a significant positive influence, but that the share of the population living 

in urban slum conditions had a significant negative influence on energy consumption. Fang et al. 

(2012) found an insignificant impact for urbanization on energy consumption in low-income 

countries, but a significant (albeit small), negative impact for urbanization in high-income 

countries. Lastly, Liddle (2004) and Liddle and Lung (2010) considered more disaggregated 

forms of energy and carbon emissions. Liddle (2004) uncovered a significant, negative 

relationship between urbanization and per capita road energy use in OECD countries. However, 

Liddle and Lung (2010) ultimately determined that urbanization had no effect on aggregate 

carbon dioxide emissions from transport in their analysis of developed countries, but they did 

find that urbanization had a significant positive and, relative to GDP per capita, large impact on 

aggregate residential electricity consumption in those same countries. 

A different impact for urbanization in less developed countries than in developed 

countries (also uncovered by Poumanyvong and Kaneko 2010 for energy consumption) is not 

surprising. The most developed/OECD countries are likely to be “fully urbanized” (Henderson 

2003)—i.e., their urbanization levels no longer change. Furthermore, even for countries in 

similar development/income levels, the urbanization-energy consumption/emissions relationship 

should be heterogeneous since, taking OECD countries as an example, the level of urbanization 

for fully urbanized countries varies considerably. For example, the level of urbanization has 
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changed very little since 1950 for both Austria and Belgium (having increased by only 6% since 

then or 0.1% per year); yet, their current urbanization levels are substantially different, 68% and 

97%, respectively. 

Among the multi-country, Granger causality studies, Mishra et al. (2009) found one-way 

short-run causality from urbanization to energy consumption for a panel of Pacific Island 

countries; Hossain (2011) found no causal relationship between urbanization and carbon 

emissions in the short-run for a panel of newly industrialized countries; and Al-mulali et al. 

(2013) found a positive bi-directional long run relationship between urbanization and both 

energy consumption and carbon emissions for a panel of Middle East and North African 

countries.  

Yet, it is plausible that energy/electricity consumption could cause urbanization too. For 

example, rural to urban migration to fill manufacturing jobs would be associated with higher 

energy consumption (since manufacturing should consume more energy than traditional 

agriculture). Likewise, migration motivated by the improved quality of life that energy/electricity 

may bring means that energy causes urbanization. Indeed, Liddle and Lung (2014) uncovered a 

long-run, causal relationship from several aggregations of electricity consumption (i.e., total 

electricity consumption, industry electricity consumption, and residential electricity 

consumption) to urbanization for panels of high, middle, and low income countries, as well as for 

panels of non-OECD countries pooled geographically (i.e., Africa, Asia, and Latin America). In 

other words, the employment and quality of life opportunities that access to electricity afford 

likely encourage migration to cities, and thus, “cause” urbanization. However, Liddle and Lung 

(2014) could not reject pervasively causality from urbanization to electricity consumption, i.e., 

there was evidence of heterogeneity within the panels. 
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4.1 Population density 

Despite the well-established relationship between urban density and (i) lower levels of 

transport energy consumption (e.g., Newman and Kenworthy 1989; Kenworthy and Laube 1999; 

Liddle 2013b), (ii) lower levels of electricity consumption in buildings (e.g., Lariviere and 

Lafrance 1999), and (iii) lower levels of greenhouse gas emissions (e.g., Marcotullio et al. 2012) 

by studies employing city-level data, few national-level studies have considered population 

density. Among those few studies, Hilton and Levinson (1998) found a significant, negative 

relationship between national population density and gasoline use in a study of 48 (developed 

and developing) countries. Similarly, Liddle (2004) found a significant, negative relationship 

between national population density and per capita road energy use in OECD countries. By 

contrast, early studies on electricity or energy consumption per capita found a small positive to 

insignificant effect for national population density (Jones 1989; Burney 1995; Parikh and Shukla 

1995).  

5. Age structure & household size 

Macro-level studies that have considered age structure typically have used the World 

Bank definitions/data, i.e., the share of people aged less than 15, aged 15-64, and aged over 64, 

and those studies mostly have found those age structure variables to be insignificant (see Table 

1). However, when researchers examining the link between age structure and emissions/energy 

consumption have considered levels of disaggregation that approximate life-cycle behavior like 

family or household size, they have uncovered relationships that are complex and nonlinear.  

For example, among the first studies to disaggregate the working-age population, Liddle 

and Lung (2010) uncovered a positive elasticity for young adults (aged 20-34) and a negative 

elasticity for older adults (aged 35-64). Menz and Welsch (2012), also analyzing aggregate 
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carbon emissions, estimated differential age-structure elasticities too, with the middle ages (30-

59) having negative elasticities. Menz and Welsch considered cohort effects as well, and 

determined that people born after 1960 are associated with increased carbon emissions. Yet, age 

structure is less likely to directly impact national, aggregate carbon dioxide emissions; instead, 

those emissions should be heavily influenced by the size, structure, and energy intensity of the 

macro-economy (e.g., the presence and size of sectors like iron and steel and aluminum 

smelting), and by the technologies used to generate electricity (i.e., coal vs. nuclear). 

By contrast, researchers employing micro- (i.e., household-) level data  have shown that 

activities like transport and residential energy consumption vary according to age structure and 

household size (e.g., O’Neill and Chen 2002; Liddle 2004; Prskawetz et al. 2004). In general, 

age structure matters because: (i) people in different age groups or at different stages of life have 

different levels of economic activity and resulting energy consumption; and (ii) the age of 

household head is associated with size of household (younger and older/retired-age adults 

typically have smaller households), and larger households consume more energy in aggregate, 

but less per person than smaller households.  

Recently, studies using cross-country, macro-level data have shown a similar age-

structure relationship. For example, Liddle (2011) determined that for transport energy 

consumption, young adults (20-34) were intensive consumers, whereas the other age groups had 

negative coefficients; yet, for residential electricity consumption, age structure had a U-shaped 

impact: the youngest and oldest age groups had positive coefficients, while the age middle 

groups had negative coefficients. Liddle and Lung (2010), using different methods than Liddle 

(2011), similarly found that, compared to younger ones, older age groups had a lower elasticity 

for CO2 emissions from transport (i.e., negative for ages 35-64 but positive for ages 20-34), yet a 
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higher elasticity for residential electricity use (i.e., negative for ages 35-49, but positive for ages 

50-64). Okada (2012), using different methods and models than Liddle (2011), confirmed the 

result that a larger share of population over 65 is associated with lower CO2 emissions from road 

transport.  

5.1 Household size 

The only two studies to consider household size both estimated a significant, negative 

relationship.
9
 Liddle (2004) found that larger households were associated with lower levels of 

per capita road energy use in OECD countries, while Cole and Neumayer (2004) found that 

larger households were associated with lower levels of aggregate carbon emissions in both 

developed and developing countries.  

6. Conclusions and suggestions for future work 

Heterogeneity, stationarity, cross-sectional dependence, endogeneity, and potential 

nonlinearities present serious statistical challenges for analyzing/estimating cross-country, 

macro-level population and environment models. Indeed, simultaneously addressing those issues 

currently is an area of active research for time-series, panel data econometric theory. Yet, despite 

the recent, increased interest in macro-level population and environment studies, other social 

science literatures that work with similar data sets (e.g., energy-GDP literature)
10

 seem to be 

further ahead than the macro-level population and environment literature (e.g., STIRPAT) in 

employing more advanced time-series, panel data empirical methods. For example, the statistical 

package STATA has several estimators that address heterogeneity, stationarity, and cross-

                                                
9
 Cross-national data on average household size is difficult to collect; however, there are a few other studies that 

have analyzed this variable (e.g., Knight and Rosa 2012), but since those studies considered dependent variables 

other than energy consumption or carbon emissions, they are beyond the scope of this review. 
10

 See reviews by Payne (2010a and 2010b). 
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sectional dependence,
11

 and there is some evidence that standard OLS with all variables in first 

differences is robust to both stationarity and cross-sectional dependence (Eberhardt et al. 2012; 

Liddle 2012). 

In addition to improvements in methods, the models used could be better motivated. It is 

not clear why total population should be anything more than a scaling factor (i.e., an elasticity of 

one)—particularly for aggregate environmental indicators like total carbon emissions or total 

energy consumption. Nor is it clear why more refined population variables like urbanization or 

working-age population share would directly affect those aggregate indicators. By contrast, 

empirical evidence exists supporting an argument that what drive consumption of 

environmentally important activities like transport and residential energy/electricity use are 

population factors/processes—like disaggregated age structure (i.e., beyond just 15-64 or over 

65) and average household size, life-cycle effects, and concentration measures (e.g., population 

density).  

Hence, one way to advance the macro-level population and environment literature would 

be to focus on, as dependent variables, environmental impacts like transport and residential 

demand, and to include as explanatory variables population processes like age and household 

structure (in order to proxy life-cycle effects). Also, likely to be illuminating would be more 

advanced, perhaps multiple equation, models that could more fully and explicitly express the 

potential mutual feedbacks among the variables. In other words, develop models that separately 

analyze (i) age and household structure’s and population density’s potentially mutually causal 

relationship with economic development, and (ii) population and development processes’ impact 

on emissions/energy consumption.  

                                                
11 Some of these estimators were developed/coded by Markus Eberhardt, who also maintains a very helpful website: 

https://sites.google.com/site/medevecon/home.  
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Finally, the clear consensus of evidence is that urbanization is positively associated with 

energy consumption and carbon emissions—but, perhaps, that association is entirely a function 

of income’s/development’s positive association with both urbanization and energy/emissions. 

Additionally, most to every OECD country has been fully urbanized since the start of typical 

data sets (i.e., 1960-1980), and it is possible to likely that higher levels of energy consumption 

lead to/“cause” greater urbanization elsewhere. By contrast, higher population density is 

(unambiguously and uni-directionally) associated with lower levels of energy consumption in 

transport and buildings, as well as with lower emissions. Furthermore, national urbanization 

levels (i.e., the share of national population living in urban areas) are a poor proxy for population 

density; and thus, density, rather than urbanization, is associated with energy efficiency 

(savings). Some modelers may include urbanization as a proxy for development/modernization; 

yet, there is little reason to believe urbanization is any better, if even as good, a measure of that 

phenomenon than income (GDP per capita). Moreover, it is not at all clear whether urbanization 

has any relevance as a policy variable (in contrast to urban form measures). Hence, those 

interested in exploring the environmental impact of urban agglomeration are advised to focus on 

population density (rather than national urbanization), and perhaps employ data at a more 

appropriate level of spatial aggregation for such considerations, i.e., at a regional or city-level. 
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Table 1: Cross-national population-environment studies estimating the effects of (several) demographic changes on CO2 

emissions/energy consumption.  Values indicate elasticities of emissions with respect to changes in demographic variables.   
Study Dependent variable(s) Population size Urbanization Age structure Data structure 

Knight et al., 2013 b Total CO2 emissions 2.25 1.09  29 OECD countries; 1970-2007, annual 
obs. 

Liddle, 2013a g CO2 emissions from 
domestic transport 
 
Total residential 
electricity use 

1.05 (overall); 0.68 (HI); 
0.86 (MI); 0.70 (LI) 
 
0.85 (overall); 0.23 (HI); 
0.10 (MI); 1.02 (LI) 

  23 HI, 25 MI, & 37 LI countries; 1971-
2007, annual obs. 

Liddle, 2012 Total CO2 emissions 1.16 (OECD); 1.28 (non-
OECD) 

  26 OECD & 45 non-OECD countries; 
1971-2006, annual obs. 

Fang et al., 2012 b Total primary energy use 0.08 (overall); 0.03 (HI); 
0.12 (LI) 

-0.01 (overall); -0.01 
(HI); NS (LI) 

 94 countries; 1981-2007, annual obs. 

Jorgenson & Clark, 
2012 

Total CO2 emissions 1.55 0.02  86 countries; 1960-2005 at 5-yr 
intervals 

Zhu et al., 2012 b Total CO2 emissions 0.79 3.55 (levels); -0.47 
(quadratic) 

 20 non-OECD, “emerging” countries; 
1992-2008, annual obs. 

Poumanyvong et al., 
2012 

Total road energy use 1.15 (overall); 1.15 (HI); 
1.37 (MI); 0.72 (LI) 

0.49 (overall); 1.32 (HI); 
0.84 (MI); 0.81 (LI) 

 31 HI, 40 MI, & 21 LI countries; 1975-
2005, annual obs.  

Okada, 2012 b CO2 emissions from road 
transport per capita 

  64.10 (65+, levels) 
-2.47 (65+, quadratic) 

25 OECD countries; 1978-2008, annual 
obs. 

Menz & Welsch, 2012 
b 

Total CO2 emissions 0.78 0.31 -1.17 (30-44); -1.77 (45-59) 26 OECD countries; 1960-2005 at 5-yr 
intervals 

Martinez-Zarzoso & 
Maruotti, 2011 b 

Total CO2 emissions 0.32 0.76 (levels); -0.12 
(quadratic) 

NS (15-64) ; NS (65+) 88 non-OECD countries; 1975-2003, 
annual obs. 

Liddle, 2011 CO2 emissions from 
domestic transport 
 
Total residential 
electricity use 

2.35 
 
 
2.69 

 0.82 (20-34); -0.22 (35-49); 
-0.77 (50-69); -0.36 (70+) 
 
0.22 (20-34); -0.42 (35-49); 
-0.40 (50-69); -0.55 (70+) 

22 OECD countries; 1960-2007, annual 
obs. 

Poumanyvong & 
Kaneko, 2010 b 

Total CO2 emissions 
 
 
Total energy use 

1.12 (overall); 1.12 (HI); 
1.23 (MI); 1.75 (LI) 
 
1.22 (overall); 1.20 (HI); 
1.70 (MI); 0.60 (LI) 

0.45 (overall); 0.36 a 
(HI); 0.51 (MI); 0.43 (LI) 
 
NS (overall); 0.91 (HI); 
0.51a (MI); -0.12a (LI) 

 33 HI, 43 MI, & 23 LI countries; 1975-
2005, annual obs. 

Jorgenson & Clark, 
2010 b 

Total CO2 emissions 1.43 (overall); 1.65 (DC); 
1.27 (LDC) 

0.02 (for all three panels)  22 DC and 64 LDC; 1960-2005 at 5-yr 
intervals 

Jorgenson et al., 

2010 b c
 

Total energy use 0.70 0.37 0.99 (15-64) 57 LDC; 1990-2005, annual obs. 

Liddle & Lung, 2010 b Total CO2 emissions 
 
CO2 emissions from 

0.69 
 
 

NS  
 
 

0.20 a (20-34); -0.36 a (35-
64 ) 
 

17 OECD countries; 1960-2005 at 5-yr 
intervals 
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domestic transport 
 
Total residential 
electricity use 

1.34 
 
2.24 

NS 
 
1.92  

0.30 (20-34); -0.48 (35-64)a 
 
NS (20-34); -0.67 (35-49); -
0.67 (50-64); NS (65-79) 

York, 2008 Total CO2 emissions 1.87 2.80 -2.51 (dependency ratio) 14 FS countries; 1992-2000, annual obs. 

Jorgenson, 2007 Total CO2 emissions 0.80 0.02  37 LDC; 1975-2000, annual obs. 

Martinez-Zarzoso et 
al., 2007 b 

Total CO2 emissions NS (overall); 0.71a (15 old 
EU); 2.73 (8 new EU) 

  23 EU countries; 1975-1999, annual 
obs. 

York, 2007a Total energy use 2.75 0.53 0.96 (65+) 14 EU countries; 1960-2000, annual 

obs. 

York, 2007b Total energy use 0.84 -0.22 (levels); 0.37 
(quadratic) 

1.74 (15-64) 14 Asian countries; 1971-2002, 
annual obs. 

Fan et al., 2006 d Total CO2 emissions 0.30 (overall); 0.54 (HI); 

0.21 (UMI); 0.28 (LMI); 
0.33 (LI) 

0.24 (overall); 0.57 (HI); 

0.23 (UMI); 0.23 (LMI); 
0.33 (LI) 

0.34 (overall); -0.70 (HI); 

0.17 (UMI); 0.57 (LMI); 
0.23 (LI) (15-64) 

218 countries; 1975-2000, annual obs. 

Cole & Neumayer, 
2004 b e 

Total CO2 emissions 0.98 0.70 NS (aged < 15) 
NS (aged 15-64) 

86 countries; 1975-1998, annual obs. 

Liddle, 2004
 f
 Road energy use per 

capita 
 -0.47 1.16 (20-39) 23 OECD countries; 1960-2000 at 10-yr 

intervals 

Rosa et al., 2004 Total CO2 emissions 1.02   Cross section: 146 countries, late 1990s 

York et al., 2003a Total CO2 emissions 0.99 0.72 NS (15-64) Cross section: 137 countries, 1991 

York et al., 2003b Total CO2 emissions 0.98 0.62 NS (15-64) Cross section: 146 countries, 1996 

Shi, 2003 Total CO2 emissions 1.43 (overall); 0.83 (HI); 
1.42 (UMI); 1.97 (LMI); 
1.58 (LI) 

 0.63 (15-64) 88 countries; 1975-1996, annual obs. 

Dietz & Rosa, 1997 Total CO2 emissions 1.15   Cross section: 111 countries, 1989 

Notes: a statistically significant at p < 0.10. b estimations were performed in first differences and/or with a lagged dependent variable; and thus, those elasticities could be 
interpreted as short-run (as opposed to long-run). c Also considered percentage of population living in urban slums and calculated an elasticity of -0.10. d estimations were 
performed via partial least squares. e Also considered average house-hold size and calculated an elasticity of -0.50. f Also considered average house-hold size and population 
density and calculated coefficients of -0.10 and -0.001, respectively. g Considered urban population (population x share living in urban areas). 
 
NS= not statistically significant at the p < 0.10 level or higher; OECD=Organization for Economic Cooperation and Development; EU=European Union; FS=former Soviet 

countries; DC=developed countries; LDC=less developed countries; HI=high income; MI=middle income; LI=low income; UMI=upper-middle income; LMI=lower-middle 
income. Studies whose main focus was not population-environment interactions are not listed in the table but are mentioned in the text. 
 


