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Abstract: This paper analyzes the causal relationship between renewable energy consumption, 
oil prices, and economic activity in the United States from July 1989 to July 2016, considering 
all quantiles of the distribution. Although the concept of Granger-causality is defined for the 
conditional distribution, the majority of papers have tested Granger-causality using conditional 
mean regression models in which the causal relations are linear. We apply a Granger-causality in 
quantiles analysis that evaluates causal relations in each quantile of the distribution. Under this 
approach, we can discriminate between causality affecting the median and the tails of the 
conditional distribution. We find evidence of bi-directional causality between changes in 
renewable energy consumption and economic growth at the lowest tail of the distribution; 
besides, changes in renewable energy consumption lead economic growth at the highest tail of 
the distribution. Our results also support the unidirectional causality from fluctuations in oil 
prices to economic growth at the extreme quantiles of the distribution. Finally, we find evidence 
of lower-tail dependence from changes in oil prices to changes in renewable energy 
consumption. Our findings call for government policies aimed at developing renewable energy 
markets, to increase energy efficiency in the U.S. 
 
Keywords: Granger-causality; Quantile Regression; Oil Prices; Renewable Energy 
Consumption; Economic Growth. 
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1. Introduction 
 

The relationship between energy consumption and economic growth is the subject of intense 

debate. If there is causality from energy consumption to economic growth, then reductions in 

energy availability have significant welfare implications. As reported by the International Energy 

Outlook 2016 (IEO2016), economic growth, along with accompanying structural changes, 

strongly influences world energy consumption. As countries develop and living standards 

improve, energy demand grows rapidly. Renewable energy consumption has emerged as an 

energy source that may alleviate the growing concerns over greenhouse gas emission, high and 

volatile energy prices, and the dependency on foreign energy sources. As reported by the 

IEO2016, with the Clean Power Plan (CPP) regulations in the United States, U.S. renewable 

energy use in 2020 may be 7% higher than in the Reference case, and in 2040 it may be 37% 

higher than in the Reference case.  

 

According to the U.S. Energy Information Administration in 2018, renewable energy sources 

accounted for about 10% of total U.S. energy consumption in 2016. The three most promising 

renewable markets (United States, China, and India) will account for two thirds of global 

renewable expansion up to 2022. Due to recent concerns about air pollution, China alone is 

responsible for over 40% of global renewable capacity growth. However, the recent uncertainty 

on energy policies could have implications for renewable energy consumption and production. 

Thus, the development of a sustainable energy pattern has brought renewable energy to the 

forefront of policy discussions. Based on country-specific studies, Sari and Soytas (2004), Ewing 

et al. (2007), Sari et al. (2008), Payne (2009; 2011), and Bowden and Payne (2010), among 

others, have found mixed results on the causality between renewable energy consumption and 

economic growth. On the other hand, Sadorsky (2009), Apergis and Payne (2010a,b), Apergis 

and Payne (2011), among others, have obtained a bi-directional causal relationship between the 

variables, using multi-country panel approaches. 

 

The oil market is a strategic raw commodity market, as periods of high oil prices (oil shocks) are 

usually associated with recessions and inflationary pressures. Many research papers suggest a 

negative relationship between oil prices and economic growth (see e.g., Hamilton, 1983, 1996, 
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2003; Hooker, 1996, 2002; Huntington, 1998; Kim and Loungani, 1992; Mork, 1989, 1994; 

Timilsina, 2015). However, there is no consensus about the causal relationship between oil prices 

and economic growth. First, some studies rejected the effects of oil price shocks on economic 

growth in the U.S. due to a restrictive monetary policy (Bohi, 1991; Bernanke et al., 1997; 

Barsky and Kilian, 2001). Besides, oil prices have a different impact on each of the countries 

because of their use of alternative energy sources, their relative position as oil importer or 

exporter, and their tax structure. Finally, the recent literature displays a negative relationship 

between oil prices and economic growth decreasing over time due to governmental measures 

against oil price shocks (see e.g., Doroodian and Boyd, 2003; Jbir and Zouari-Ghorbel, 2009). 

The oil market also affects the profitability of the substitution of exhaustible energy resources 

with renewable energy resources (Kumar et al. 2012). It is important to study the relationship 

between oil prices and renewable energy consumption for evaluating investments in renewable 

energy resources during periods of high or low oil prices. Besides, understanding how oil prices 

affect renewable energy consumption allow policy makers to reduce public expenditures on 

finite fossil fuels when oil prices dynamics provide the necessary supply- or demand-side 

incentives to invest in renewable energy industry (Reboredo, 2015). Therefore, the dynamics 

between oil prices and renewable energy consumption has relevant policy implications for 

investors and governments. These dynamics between renewable energy consumption, oil prices, 

and economic growth motivate researchers to know exactly the relationship between these 

variables. The Granger-causality definition proposed by Granger (1969) is the fundamental 

concept for studying dynamic relationships between economic variables. Although the concept 

of Granger-causality is defined for the conditional distribution, the majority of papers have tested 

Granger-causality using conditional mean regression models in which the causal relations are 

linear. As a result, a conditional mean regression model cannot assess a tail causal relation or 

nonlinear causalities.  

  

This paper analyzes the causal relationship between renewable energy consumption, oil prices, 

and economic activity in the United States from July 1989 to July 2016, considering all quantiles 

of the distribution. We apply the Granger-causality in quantiles test proposed by Troster (2016) 

that evaluates causal relations in all conditional quantiles of the distribution. Our main goal is to 

evaluate such a relation on each quantile of the distribution. Under this approach, we can 
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discriminate between causality affecting the median and the tails of the conditional distribution. 

Besides, it provides a sufficient condition for Granger-causality when all quantiles are 

considered. The quantile regression approach provides a more detailed analysis of the entire 

conditional distribution than the conditional mean-regression analysis, which focuses only on a 

single part of the conditional distribution. In addition, a quantile causal relation may contrast 

with causality in the mean of the conditional distribution. While a relationship with mean-

causality shifts at least a non-negligible number of quantiles, a tail causal relation does not 

necessarily imply causality in the mean. For example, Lee and Yang (2012) show that money-

income Granger-causality in the conditional mean is weak and unstable, while it is significant in 

tail quantiles in most data sets. Rather than checking a necessary condition for Granger-causality, 

we analyze a continuum of quantile functions that fully characterizes the concept of Granger-

causality in distribution. Then, our proposed empirical analysis provides a more complete 

description of the causal relation between the variables. This paper contributes to the existing 

literature by considering a detailed analysis of the relationship energy-growth nexus. The 

quantile regression approach allows us to determine whether extremely low or high changes in 

energy consumption or prices lead economic growth. Besides, we are able to analyze whether 

this relationship is asymmetric across the quantiles of the distribution. A detailed pattern of 

causality clarifies how to establish sustainable renewable energy policies. 

 

To test for Granger-causality in quantiles between economic variables, some studies applied the 

Sup-Wald test proposed by Koenker and Machado (1999) on the coefficients of a quantile 

regression model (see e.g., Chuang et al., 2009; Bastianin et al., 2014; Sim and Zhou, 2015). 

However, the method of Troster (2016) requires only a model for the marginal quantile 

regression (under the null hypothesis that there is no Granger-causality), and then it searches for 

rejections of the null hypothesis in every direction; on the other hand, the Sup-Wald test requires 

a particular model specification for the quantile regression under the alternative hypothesis of 

Granger-causality. In addition, the method of Troster (2016) is consistent over a range of 

quantiles, and it allows for nonlinear specifications of the quantile regression model. Our 

empirical analysis reveals no Granger-causality between variations in oil prices, economic 

activity, and renewable energy consumption considering all quantiles of the distribution. 

However, we find evidence of bi-directional causality between changes in renewable energy 
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consumption and economic growth at the lowest quantiles of the distribution; besides, there is 

also unidirectional causality running from changes in renewable energy consumption to 

economic growth at the highest quantiles of the distribution. Our findings also support the 

unidirectional causality from changes in oil prices to economic growth at the extreme quantiles 

of the distribution. Finally, we report evidence of lower-tail causality running from oil price 

changes to changes in renewable energy consumption. 

 

Our results suggest that negative shocks in oil prices affect the consumption of renewable energy 

resources, but the oil price behavior provides inadequate incentives to affect renewable energy 

consumption when oil prices are high. We also found evidence of lower-tail causality from large 

decreases in economic activity to changes in renewable energy consumption. Thus, economic 

growth provides asymmetric incentives to develop renewable energy consumption in the U.S. 

During periods of recessions, renewable energy consumption can increase without the need of 

energy policies. However, our results call for green energy policies during economic expansions 

periods. Therefore, policy makers need to consider the asymmetric causality from changes in oil 

prices and economic activity to renewable energy consumption changes to develop a sustainable 

energy system. Our results also provide the direction of causality from renewable and 

nonrenewable energy consumption to economic activity in the United States at different quantile 

levels. This implies that the sources of energy consumption including renewable versus non-

renewable energy consumption are sensitive to economic activity in the United States. The 

results of this paper are important because energy conservation policies may affect economic 

activity. The tail dependence from changes in renewable energy consumption to economic 

growth suggests that energy policies such as tax credits for energy production, renewable energy 

portfolio standards, and installation of renewable energy systems affect economic growth. 

However, this relationship is asymmetric. Large decreases in renewable energy consumption (at 

the lowest quantile of the distribution) reduce economic growth. On the other hand, large 

increases in renewable energy consumption (at the highest quantile of the distribution) contribute 

to economic growth. Thus, policy makers need to consider this asymmetric effect to implement 

sustainable energy policies. 
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The rest of the paper is organized as follows. In Section 2, we provide a literature review on the 

panel and time series analyses on the renewable energy-economic growth nexus. We also present 

a review of the literature on the causal relation between oil prices and economic growth. In 

Section 3, we describe the econometric methodology. Section 4 discusses the empirical analysis, 

and Section 5 concludes the paper. 

 

2. Related Literature Review 
 
 

2.1. Panel Analysis on the Renewable Energy-Economic Growth Nexus 

 
 
Existing literature on renewable energy consumption-economic growth causality is inconclusive 

across sample periods, sample sizes, and model specifications. Yu and Choi (1985) found no 

causal relationship between energy consumption and gross domestic product (GDP) for the U.K., 

the U.S., and Poland. However, there is Granger-causality from energy consumption to GDP for 

the Philippines, and from GDP to energy consumption for South Korea. Erol and Yu (1987) 

found mixed results for six industrialized countries over the period 1952-1982. Masih and Masih 

(1996) also found mixed results for the Granger-causality between total energy consumption and 

real income of six Asian economies, from 1955 to 1990.  

 

Soytas and Sari (2003) reconsidered the causal relationship between energy consumption and 

GDP in the top 10 emerging markets (excluding China due to lack of data) and G-7 countries, 

from 1950 to 1992. They observed bi-directional causality in Argentina, causality running from 

GDP to energy consumption in Italy and Korea, and from energy consumption to GDP in 

Turkey, France, Germany, and Japan. Lee (2005) employed data on 18 developing countries 

from 1975 to 2001. His evidence suggests that there is unidirectional Granger causality from 

energy consumption to GDP. Using the Toda and Yamamoto (1995) Granger causality test in the 

G-11 countries, Lee (2006) found bi-directional causality in the United States and unidirectional 

running from energy consumption to GDP in Canada, Belgium, the Netherlands, and 

Switzerland.  
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Lee and Chang (2007) and Mahadevan and Asafu-Adjaye (2007) also found evidence of bi-

directional causality between economic growth and energy consumption for a set of developed 

countries over the period 1971-2002. Using panel data of energy consumption and GDP for 82 

countries from 1972 to 2002,  Huang et al. (2008) found unidirectional Granger-causality from 

economic growth to energy consumption for middle- and high-income countries. Narayan and 

Smyth (2008) also found the same pattern of causality in a panel of G-7 countries from 1972 to 

2002. However, Lee et al. (2008) found bi-directional causal linkages between energy 

consumption and economic growth for a set of 22 countries of the Organization for Economic 

Co-operation and Development (OECD) using annual data covering the period 1960-2001. 

 

Sadorsky (2009) explored the relationship between renewable energy consumption using data of 

18 emerging countries over the period 1994-2003. He applied ordinary least squares (OLS), fully 

modified least squares (FMOLS), dynamic ordinary least squares (DOLS), and Granger-causality 

approaches within a bivariate framework. The empirical results indicate that renewable energy 

consumption is positively linked with income; however, there is causality running from income 

to renewable energy consumption in the short-run. Similarly, Apergis and Payne (2010a) 

examined the relationship between renewable energy consumption and economic growth for a 

panel of twenty OECD countries over the period 1985-2005 using panel cointegration and error-

correction model. Their results show a long-run equilibrium relationship and bidirectional 

causality between renewable energy consumption and economic growth. Using bootstrap 

Granger non-causality tests for G-7 countries over the period 1960-2006, Balcilar et al. (2010) 

found that there is predictive power from energy consumption to economic growth only for 

Canada; however, the results from the bootstrap rolling window estimation showed no causality 

between the series under consideration. Apergis and Payne (2010b) used an augmented 

production function by incorporating renewable energy consumption for 13 countries within 

Eurasia over the period 1992-2007. They found bidirectional causality between renewable 

energy consumption and economic growth. Apergis and Payne (2011) also found evidence of 

bidirectional causality between renewable energy consumption and economic growth in a panel 

of six Central American countries over the period 1980-2006.  
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Menegaki (2011) examined the causal relationship between economic growth and renewable 

energy for 27 European countries over the period 1997-2007; his results rejected causality 

between renewable energy consumption and GDP, although panel causality tests unfolded a 

short-run relation between renewable energy consumption, greenhouse gas emissions, and 

employment. Apergis and Payne (2012) applied a multivariate panel approach including 80 

countries over the period 1990-2007; they found bidirectional causality between renewable 

energy consumption and economic growth in both short and long run. Marques and Fuinhas 

(2012) analyzed the role of different energy sources in economic growth for a set of 24 European 

countries (1990–2007). Their results suggest that the negative effect of the use of renewable 

energy supplants the positive effect of creating income, and thus economic growth does not 

appear to improve with the change towards renewable energy. Using panel data for upper middle 

income, lower middle-income, and high-income countries, Al-Mulali et al. (2013) found a bi-

directional long-run relationship between renewable energy consumption and economic growth 

via the FMOLS. They concluded that 79% of the countries have a positive bi-directional long-

run relationship between renewable energy consumption and economic growth whereas 19% of 

the countries have neutral effect between the variables. Ohler and Fetters (2014) considered the 

electricity generation from different sources of renewable energy (biomass, geothermal, 

hydroelectric, solar, waste, and wind) for a set of 20 OECD countries, over 1990 to 2008, via a 

panel error-correction model. They found a bidirectional relationship between aggregate 

renewable generation and real GDP. Aïssa et al. (2014) collected data for 11 African countries to 

examine association between renewable energy consumption and economic growth by applying 

a panel Granger causality test. They found that economic growth Granger-causes renewable 

energy consumption. Al-mulali et al. (2014) applied the Pedroni cointegration test (Pedroni, 

1999, 2004) and the Vector Error-Correction (VEC) causality test for a set of Latin American 

countries, to examine linkages between renewable energy consumption and economic growth. 

They noted that renewable electricity consumption is more significant than non-renewable 

electricity consumption in promoting economic growth in the investigated countries in the long 

and short run. Their empirical analysis also indicated the presence of bidirectional causal 

relationship between renewable energy consumption and economic growth. 
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Using a multivariate panel vector error correction model for 1990-2010 data for a set of 31 

OECD countries and 49 non-OECD countries, Cho et al. (2015) showed that the hypothesis of 

unidirectional causality running from economic growth to renewable energy consumption is 

valid in the long run for OECD countries, and the bidirectional causality, for non-OECD 

countries. Jebli and Youssef (2015) investigated the association between renewable energy 

consumption and economic growth for a set of 69 developing countries over the period 1980-

2010. Their empirical results indicated that renewable energy consumption plays a vital role in 

stimulating economic output. Chang et al. (2015) examined the causal relationship between 

renewable energy consumption and economic growth across G-7 countries using annual data for 

the period of 1990-2011. Their results support the existence of a bi-directional causal 

relationship between economic growth and renewable energy for the overall panel. However, 

country specific results are inconclusive. Bhattacharya et al. (2016) found that renewable energy 

consumption has a significant and positive impact on economic output for 57% of 38 top 

renewable energy-consuming countries from 1991 to 2012. Cetin (2016) also observed a positive 

impact of renewable energy consumption on economic growth in E-7 (Emerging Seven) 

countries over the period 1992-2012. Destek (2016) applied an asymmetric causality test to 

examine relationship between renewable energy consumption and economic growth in newly 

industrialized countries from 1971 to 2011. They noted that a negative shock in renewable 

energy consumption leads to a positive (negative) shock in real GDP for South Africa and 

Mexico (India), but a neutral effect also exists for Brazil and Malaysia. Kahia et al. (2016) 

examined the impact of renewable (non-renewable) energy consumption on economic growth in 

net oil exporting countries in the Middle East and North Africa (MENA) region by applying a 

FMOLS method. They found that renewable (nonrenewable) energy consumption adds in 

economic growth. Tugcu and Tiwari (2016) used Total Factor Productivity (TFP) as a measure 

of economic activity to examine the association between economic growth and renewable energy 

consumption; they used data of Brazil, Russia, India, China, and South-Africa (BRICS) from 

1992 to 2012. Their results show that no remarkable causal link exists between renewable energy 

consumption and TFP growth in the BRICS. 

 

Recently, Koçak and Sarkgünesi (2017) collected data for Black Sea and Balkan countries 

(1990-2012) to explore the link between renewable energy consumption and economic growth. 
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For this purpose, they applied the Pedroni panel cointegration test (Pedroni, 1999, 2004) and the 

Dumitrescu and Hurlin (2012) heterogeneous panel causality test. They concluded that there is a 

long-run cointegration relationship between the variables, and renewable energy consumption 

has a positive impact on economic growth. The heterogeneous causality analysis supports 

unidirectional causality running from renewable energy consumption to economic growth in 

Bulgaria, Greece, Macedonia, Russia, and Ukraine. They also found bidirectional causality 

between both variables in Albania, Georgia, and Romania. Furthermore, Narayan and Doytch 

(2017) found no evidence that residential renewable energy is a driver of economic growth or 

vice versa for income panels over the period 1971 to 2011. Only renewable totals in low and 

lower middle income countries are found to drive economic growth. Liu et al. (2017) 

investigated the impact of renewable energy on output with a sample of 15 Asia-Pacific countries 

for the period of 1994-2014. Long-run causality tests report the evidence of bidirectional 

causality between output and renewable energy consumption. 

 

2.2. Time Series Analysis on the Renewable Energy-Economic Growth Nexus 

 

Existing papers on renewable energy consumption-economic growth nexus also found mixed 

results using time series for specific country studies. Using linear and non-linear Granger 

causality tests for yearly data from 1954 to 2006, Chiou-Wei et al. (2008) found no causality 

between energy consumption and economic growth for the U.S., Thailand, and South Korea, 

although they found unidirectional causality from economic growth to energy consumption for 

the Philippines and Singapore. Pao and Fu (2013) used multivariate production function to 

investigate the association between renewable energy, non-renewable energy consumption, and 

economic growth in Brazil (1980-2010) by applying Johansen’s cointegration test. They found 

that cointegration exists between the variables and feedback exists between renewable (non-

renewable) energy consumption and economic growth. Lin and Moubarak (2014) applied the 

Autoregressive Distributed Lag (ARDL) approach to cointegration in China for the period 1977-

2011. They found that there is bi-directional long-term causality between renewable energy 

consumption and economic growth in China. Marques et al. (2014) concluded that there is no 

evidence of causal relationships from renewable electricity consumption to economic growth, 

either in the short- or long-run, in Greece from August 2004 to October 2013. Shahbaz et al. 
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(2015) tested the role of renewable energy consumption in promoting economic growth by 

incorporating capital and labor as potential determinants of production function in Pakistan 

(1972–2011). They found bidirectional causality between renewable energy consumption and 

economic growth. These empirical findings are similar to Shahbaz et al. (2012), who investigated 

the relationship between renewable energy consumption and economic growth in Pakistan 

(1972–2011) using the ARDL bounds testing and Gregory and Hansen (1996) structural break 

cointegration approaches. 

 

Ibrahiem (2015) used the ARDL bound testing approach to assess the linkage between renewable 

electricity consumption and economic growth in Egypt over the period from 1980 to 2011. His 

empirical findings show that the variables are cointegrated and there is bidirectional causality 

between renewable electricity consumption and economic growth. Rafindadi and Ozturk (2017) 

investigated the impacts of renewable energy consumption on the German economic growth 

(1971-2013) by applying different cointegration tests. They noted that renewable energy 

consumption increases economic growth and feedback effect exists between both variables. 

Shakouri and Khoshnevis Yazdi (2017) examined the causal link between economic growth, 

renewable energy consumption, energy consumption, capital fixed formation, and trade openness 

in South Africa over the period 1971-2015. Their empirical findings show that there exists 

bidirectional causality between renewable energy consumption and economic growth.  

 

2.3. The Renewable Energy-Economic Growth Nexus in the USA 

 
 

Existing studies investigating the association between renewable energy consumption and 

economic growth for the U.S. economy are handful but with mixed findings. The seminal paper 

of Kraft and Kraft (1978) demonstrated the existence of Granger-causality running from real 

GDP to energy consumption in the U.S. for the postwar period from 1947 through 1974. On the 

other hand, Akarca and Long (1979) support the unidirectional causality running from energy 

consumption to economic growth in the U.S. covering the period January 1973-March 1978. 

However, Akarca and Long (1980) found no causality between energy consumption and 

economic growth in the U.S. Yu and Hwang (1984), Yu and Jin (1992), and Cheng (1995) also 

found no causality between GDP and energy consumption in the U.S. for the periods 1947-1979, 



 

 

12 
 

1974-1990, and 1947-1990, respectively. On the other hand, Abosedra and Baghestani (1989) 

found evidence of unidirectional causality from GDP to energy consumption in the U.S., for the 

period 1947-1987. Ewing et al. (2007) investigated the effect of disaggregate energy 

consumption on industrial output in the U.S. They noted that unexpected shocks to coal, natural 

gas, and fossil fuel energy sources have the highest impacts on the variation of output, while 

other renewable sources are significant to output as well.  

 

Bowden and Payne (2009) examined the relationship between energy consumption and real GDP 

in the U.S. from 1949 to 2006 using a disaggregated analysis. They found bidirectional Granger-

causality between commercial and residential primary energy consumption and real GDP; 

however, Granger-causality is absent between total and transportation primary energy 

consumption and real GDP. Payne (2009) re-examined the causal relationship between 

renewable (and non-renewable) energy consumption and real GDP in the U.S. for annual data 

from 1949 to 2006 applying Toda and Yamamoto (1995) Granger causality tests. His results 

reveal the absence of Granger-causality between renewable or non-renewable energy 

consumption and real GDP. Payne and Taylor (2010) analyzed the relationship between nuclear 

energy consumption growth and real GDP growth within a neoclassical production function 

framework for the U.S. using annual data from 1957 to 2006. The Toda and Yamamoto (1995) 

test for long-run Granger-causality reveals the absence of Granger-causality between nuclear 

energy consumption growth and real GDP growth. Gross (2012) investigated the causality 

between energy consumption and economic growth in the U.S. for the period from 1970 to 2007 

for three sectors, industry, commercial sector, transport, as well as on the macro level. Using the 

ARDL bounds testing approach, he found evidence for unidirectional long-run Granger causality 

in the commercial sector from growth to energy, as well as evidence for bi-directional long-run 

Granger causality in the transport sector. Hatemi-J and Uddin (2012) re-examined the causal 

nexus of energy use and GDP per capita in the U.S. for the period from 1960 to 2007 using an 

asymmetric causality test. Their empirical results reveal that negative energy consumption 

shocks cause negative shocks in output per capita. 

 

Tiwari (2014) analyzed the relationship between energy consumption and economic growth for 

the U.S. economy (1973-2011) using an asymmetric Granger-causality test. He found evidence 
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of bidirectional Granger-causality between renewable energy consumption and economic 

growth. Recently, Carmona et al. (2017) reconsidered the energy-growth nexus in the U.S. over 

the period 1973-2015. Their Granger-causality tests reveal that energy consumption cycles cause 

output cycles and vice versa. Dogan and Ozturk (2017) investigated the impact of real income, 

renewable energy consumption, and non-renewable energy consumption on carbon emissions for 

the US over the period of 1980-2014. Their results suggest that increases in renewable energy 

consumption leads economic growth and mitigate environmental degradation in the US. Using 

U.S. state-level data for 2010, Squalli (2017) explored the causal links between renewable 

energy production and carbon emissions. The empirical results reveal that a 10% increase in the 

share of renewable energy could decrease carbon emissions by 0.26% after controlling for other 

sources of emissions. Shahbaz et al. (2017b) showed that economic growth causes biomass 

energy consumption and similar is true from opposite side. 

 

 

2.4. Oil Prices and Economic Growth 

 

Many research papers suggest that oil price shocks affect output and inflation (see e.g., 

Hamilton, 1983, 1996, 2003; Hooker, 1996, 2002; Huntington, 1998; Kim and Loungani, 1992; 

Mork, 1989, 1994). However, there is no consensus about the causal relationship between oil 

prices and economic growth. Darby (1982) found no significant relationship between oil prices 

and real GDP, in the U.S. and other developed countries over the period 1957-1976; however, 

when the effects of exports, exchange rates, and money are considered, there is a significant 

relationship between oil prices and GDP. Hamilton (1983) observed a causal relationship 

between oil price changes and economic growth using post-war data in the U.S. Burbidge and 

Harrison (1984) and Gisser and Goodwin (1986) confirmed the findings of Hamilton (1983) in 

the U.S. over the period 1961-1982, although the results for other countries are diverse. Mork 

(1989) verified that the causality between oil prices and economic growth breaks down (1949-

1988) if the analysis includes data from the oil price decline of 1986. He showed that the 

coefficients on oil price increases are negative and statistically significant, whereas the 

coefficients on oil price declines are positive, but small and not statistically significant. However, 

Lee et al. (1995) and Hamilton (1996) suggested that this breakdown of oil prices-economic 
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growth relationship displays a nonlinear relation between these variables. They proposed 

different nonlinear specifications of this relationship. 

 

Mory (1993) also presented evidence of an asymmetric effect of oil prices spikes in the U.S. 

economy over the period 1951-1990. Mork et al. (1994) investigated the relation between oil-

prices movements and GDP fluctuations for the U.S., Canada, Japan, Germany, France, the U.K., 

and Norway over the period 1967-1992. They found that the U.S. and other five OECD countries 

experienced a negative relationship between oil prices increases and economic growth. His 

results show that oil prices increases may generate reductions in economic activities. Hooker 

(1996) found strong evidence that oil prices do not Granger-cause economic growth in the U.S. 

after 1973. Nevertheless, Hamilton (1996) restored a significant relationship between oil prices 

and economic growth (1948-1994) by introducing the concept of net oil prices increase in a VAR 

model for the U.S. economy.  

 

Other studies rejected the effects of oil prices shocks on economic growth in the U.S. due to a 

restrictive monetary policy. Bohi (1991) found no statistical relationship between oil prices 

shocks on the business cycle of four countries (Germany, Japan, the U.K., and the U.S.) over the 

period 1966-1986. He argues that the restrictive monetary policy is responsible for much of the 

decline in GDP in the years following an oil price shock. Bernanke et al. (1997) supported these 

results, using a VAR model in the U.S. over the period 1965-1995. Barsky and Kilian (2001) 

also suggest that the economic crisis observed in the 1970s was mainly a monetary phenomenon. 

However, Balke et al. (2002), and Hamilton and Herrera (2004) showed that the monetary policy 

alone cannot account for the real effects of oil prices declines in the U.S. from 1970 to 2000. 

Other papers analyzed the relationship between oil prices and economic growth using advanced 

non-linear econometric methods. Raymond and Rich (1997), Clements and Krolzig (2002), 

Holmes and Wang (2003), and Cologni and Manera (2009) applied the Markov-switching 

approach to evaluate the impact of oil shocks on GDP in the U.S. and G-7 countries. Huang et al. 

(2005) used a multivariate threshold model to investigate the impacts of an oil price change and 

its volatility on economic activities for monthly data of the U.S., Canada, and Japan from 1970 to 

2002. 
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Other studies analyzed the relationship between oil prices and economic growth for other 

countries than the U.S. Cuñado and Pérez de Gracia (2003) showed that oil prices have 

permanent effects on inflation and asymmetric effects on production growth rates for a set of 

European countries using quarterly data for the period 1960-1990. Jiménez-Rodríguez and 

Sánchez (2005) and Cologni and Manera (2008) performed multivariate VAR analyses for some 

OECD countries and for the G-7 countries, respectively. Jiménez-Rodríguez and Sánchez (2005) 

found evidence of a non-linear impact of oil prices on real GDP for the period 1972-2001; 

Cologni and Manera (2008) found a negative relationship between oil prices and economic 

growth (1980-2003) taking into account the reaction of monetary variables to external shocks. 

Lardic and Mignon (2006) analyzed the long-term relationship between oil prices and GDP in 12 

European countries for 1970-2003. Their results provide evidence for asymmetric cointegration 

between oil prices and GDP in the majority of the considered European countries while standard 

cointegration is rejected. Kilian (2008) showed that there is no evidence that the 1973-1974 and 

2002-2003 oil supply shocks had a substantial impact on real growth in any G-7 country; on the 

other hand, the 1978-1979, 1980, and 1990-1991 shocks contributed to lower growth in at least 

some G-7 countries. Mehrara (2008) and Jayaraman and Choong (2009) examined the 

relationship between oil prices and economic growth for oil-exporting and oil-importing 

economies, respectively. They found that output growth is adversely affected by negative oil 

shocks. Özlale and Pekkurnaz (2010) and Tang et al. (2010) also found that oil prices shocks 

negatively affect economic growth for the Turkish and Chinese economy, respectively.  

 

Timilsina (2015) and Ftiti et al. (2016) reexamined the relationship between oil prices and 

economic growth for 25 economies and selected OPEC countries, respectively. They found that 

oil price increases strengthen the economy of oil-exporting countries while there is a significant 

negative effect of oil price on GDP for oil-importing economies. Sarwar et al. (2017) used panel 

data of 210 countries over the period 1960-2014 to analyze the empirical relationship between 

economic growth and oil prices. The results of full panel confirm a bidirectional 

relationship between oil prices and GDP. Finally, Shahbaz et al. (2017a) employed data from 

157 countries from 1960 to 2014 to analyze the relationship between economic growth and oil 

prices. The empirical results indicate the presence of cointegration between the variables; 

moreover, there is bidirectional causality between oil prices and economic growth.  
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3. Econometric Methodology 
 

We apply the following methods in our analysis. First, we test if the variables follow a unit 

process through different procedures. Then, we test whether the quantiles of the distribution 

follow a unit root process using the quantile autoregression unit root test proposed by Koenker 

and Xiao (2004) and Galvao (2009). Once the null hypothesis of a unit root is not rejected, we 

apply the linear cointegration test of Johansen (1991, 1995) to verify whether there is a 

cointegration relationship between the variables. We also test the null hypothesis of constant 

cointegrating coefficients by applying the quantile cointegration test proposed by Xiao (2009). 

Finally, we apply the test for Granger-causality in quantiles proposed by Troster (2016). 

 

3.1. Unit Root Tests and Cointegration: Linear and Nonlinear Analysis 

 

We apply the Augmented Dickey-Fuller (ADF) test of Dickey and Fuller (1979), the Zivot and 

Andrews (1992) test (ZA), and the Augmented Dickey-Fuller Generalized Least Squares (ADF-

GLS) test of Elliott et al. (1996), to verify whether the series have a unit root. The ADF-GLS test 

is an efficient version of the ADF test statistic; we select the optimal lag order of the endogenous 

variable that minimizes the Modified Akaike Information Criterion (MAIC) of Ng and Perron 

(2001). The ZA unit root test allows for the possibility of an endogenous structural break. 

Besides, we also test whether the series are stationary through the Kwiatkowski-Phillips-

Schmidt-Shin (KPSS) test of Kwiatkowski et al. (1992). 

 

We also apply quantile autoregression unit root tests to verify the stationarity of each series not 

only on the conditional mean, but also at each quantile of the conditional distribution. Koenker 

and Xiao (2004) proposed the quantile auto-regressive (QAR) unit root tests; Galvao (2009) 

generalized their method by including covariates and a linear time trend into the QAR model. Let 

Y� be a strictly stationary time series process with a past information set	I�� ≔ �Y��	, … , Y���
� ∈
ℝ�, where A� denotes the transpose matrix of	A. Let ���⋅ �I��
 be the conditional distribution 

function of	Y� given	I��. We perform the quantile autoregressive unit root test based on the 

following quantile linear regression model: 
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������|���
 = 	�	��
 + � ��
! + "��
���	 +	#"$
%

$&	
�τ
Δ���$ + �)�	��
, (1) 

 

where ����⋅ |���
 is the τ-quantile of	���⋅ |���
, �	��
 is a drift term, ! is a linear trend, "��
 is the 

persistence parameter, and �)�		is the inverse conditional distribution of the errors, for each 

quantile � ∈ * ⊂ [0,1]. Thus, we estimate a different persistence parameter (",) for each quantile 

of the conditional distribution of	Y�. We test the null hypothesis -.:	"��
 = 1 by applying the t-

statistic proposed by Koenker and Xiao (2004) and Galvao (2009) at different quantiles � ∈ *.  

 

Recently, Li and Park (2016) combined the nonlinear unit root test of Kapetanios et al. (2003) 

with the quantile unit root test of Koenker and Xiao (2004) to enable nonlinearity and 

asymmetric mean reversion at different quantiles. Bahmani-Oskooee et al. (2018) applied the 

nonlinear quantile unit root test of Li and Park (2016) for testing the purchasing power parity 

hypothesis across 29 African countries. We could also consider applying the nonlinear quantile 

unit root test of Li and Park (2016), but unreported results show that our findings remain 

unchanged. Thus, to save space, we omit the results of the nonlinear quantile unit root tests. We 

further apply the linear cointegration test of Johansen (1991, 1995), to verify whether the series 

are cointegrated. This method tests the cointegration between each pair of series through a vector 

error-correction model (VECM) as follows:  

 

Y� = " + 12� +	#Π$
%

$&	
���$ +	#γ$

5

$&	
2��$ + 6�,  

 

where Y� and Z� are integrated of order 1, and 6� is stationary in level. We select the lag lengths 

of the VECMs that minimize the Akaike information criteria (AIC) allowing for a maximum lag 

length of 18 months.  

 

Many empirical applications in finance and economics suggest that the cointegrating vector 

changes over the distribution; thus, we apply the quantile cointegration test proposed by Xiao 

(2009). The quantile cointegration model can capture systematic influences of conditioning 
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variables on the location, scale, and shape of the conditional distribution of the response variable. 

Following Saikkonen (1991), Xiao (2009) decomposes the errors of the cointegrating equation 

into lead-lag terms and a pure innovation component, to deal with the endogeneity in standard 

cointegration models. Thus, the quantile cointegration model includes the traditional 

cointegration model of Engle and Granger (1987) as special case where β(τ) is a vector of 

constants. In this special case, we have: 

�� 	= " + 1�2� + # Δ2��$�
8

$&�8
Π$ + 6�,  

 

and 

������|���, ��9
 = 	"��
 + 1��
�2� + # Δ2��$�
8

$&�8
Π$ + �)�	��
. (2) 

 

We also include a quadratic term of the regressor in the quantile cointegration model as follows: 

 

������|���, ��9
 = 	"��
 + 1��
�2� + ;��
�2� + # Δ2��$�
8

$&�8
Π$ + # Δ2 ��$�

8

$&�8
Γ$ + �)�	��
. (3) 

 

Xiao (2009) derived a test of the stability of the cointegrating coefficients in equation (3). Under 

the null hypothesis that H0:	β�τ
	=	β over all quantiles τ, he proposed a supremum norm of the 

absolute value of the difference Vn
=�τ
	=	>β?�τ
- β?@ as a test statistic. Thus, we apply the test 

statistic sup
τ
�Vn
=�τ
� over all quantiles of the distribution. Following Xiao (2009), we perform 

1,000 Monte Carlo simulations to calculate the critical values of the test statistic sup
τ
�Vn
=�τ
�. 

 

3.2. Granger-Causality in Mean and in Quantiles 

 
 
According to Granger (1969), a series Z� does not Granger-cause another series Y� if past Z� does 

not help to predict future Y�, given the past 	Y�. Suppose there is an explanatory 

vector It	≡	����, ��9
� ∈ ℝA,	d	=	s	+	q, where I�B is the past information set of	Z�,	I�B ≔
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>Z��	, … , Z��C@� ∈ ℝC. We define the null hypothesis of Granger non-causality from Z� to Y� as 

follows: 

 

-.9↛�: ���E����, ��B
 = ���E|���
, for all	E ∈ ℝ, (4) 

               

where ���⋅ �I��, I�B
 is the conditional distribution function of �� given �I��, I�B
. We denote the null 

hypothesis of equation (4) as Granger non-causality in distribution. Since the estimation of the 

conditional distribution may be complicated, many papers have proposed tests for Granger non-

causality in mean, which is only a necessary condition for equation (4). In this case,	Z� does not 

Granger cause	Y� in mean if 

 

E�������, ��B
 = E���|���
, a.s., (5) 

 

where	E�������, ��B
 and E���|���
	are the means of ���⋅ ����, ��B
 and ���⋅ |���
, respectively. 

Granger non-causality in mean of equation (5) can be easily extended to higher order moments 

(see e.g. Cheung and Ng, 1996). However, causality in mean (or in higher moments) ignores the 

possibly dependence in the conditional tails of the distribution. On the other hand, the null 

hypothesis of Granger non-causality distribution of equation (4) does not inform us about the 

level of the causality if equation (4) is rejected. Thus, we test for Granger non-causality in 

conditional quantiles, since it determines the pattern of causality and provides a sufficient 

condition for testing the null hypothesis in equation (4), as the quantiles fully characterize a 

distribution. Let	���,9�⋅ |���, ��9
 be the τ-quantile of	���⋅ ����, ��B
, we can rewrite equation (4) as 

follows: 

 

-.
GH:9↛�: ���,9�������, ��B
 = ������|���
, a.s. for all	� ∈ *, (6) 

 

where * is a compact set such that *	⊂	[0,1], and the conditional τ-quantiles of Y� satisfy the 

following restrictions: 
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PrKY� ≤ ������|���
|���M:= �, a.s. for all	� ∈ *,
PrNY� ≤ ���,9�������, ��B
����, ��BO: = �, a.s. for all	τ ∈ *.

 
(7) 

 
Given an explanatory vector	��, then	PrKY� ≤ �����|��
|��M = PK1QY� ≤ �����|��
R|��M, where 

1QY� ≤ yR is an indicator function of the event that	Y�	is less than or equal to y. Thus, the null 

hypothesis of Granger non-causality in equation (6) is equivalent to: 

 

PN1TY� ≤ ���,9�������, ��B
U����, ��BO = PK1QY� ≤ ������|���
R|���M, a.s. for all	� ∈ *,   (8) 

 

where the left-hand side of equation   (8) is equal to the τ-quantile of ���⋅ ����, ��B
 by definition. 

Following Troster (2016), we apply a parametric model to estimate the τ-th quantile of ���⋅ |��
. 
We assume that ���⋅ |��
 is correctly specified by a parametric quantile model V>⋅, W��
@ 
belonging to a family of functions ℳ =
NV>⋅, W��
@�W�⋅
: � ↦ W��
 ∈ Θ ⊂ ℝ%,		for	� ∈ *	⊂	Q0,1R	O. Then, under the null hypothesis in 

equation (8), the τ-conditional quantile, ����⋅ |���
, is correctly specified by a parametric quantile 

model	V>���, W.��
@ that uses only the restricted information set	���. We can rewrite the null 

hypothesis of non-Granger-causality in equation (8) as follows: 

 

-.9↛�: PN1TY� ≤ 	V>���, W.��
@U����, ��BO = �, a.s. for all	� ∈ *, (9) 

versus 

-̂9↛�: PN1TY� ≤ 	V>���, W.��
@U����, ��BO ≠ �, a.s. for some	� ∈ *, (10) 

 

where V>���, W.��
@ correctly specifies the true conditional quantile ����⋅ |���
, for all � ∈ *. We 

can rewrite equation (9) as -.9↛�: PNT1>�� −V>���, W.��
@ ≤ 0@ − �U����, ��BO = 0	almost surely, 

for all � ∈ *. Then, we can characterize the null hypothesis equation (9) by a sequence of 

unconditional moment restrictions: 

 

PNT1>�� −V>���, W.��
@ ≤ 0@ − �U exp�de���
O = 0, for all � ∈ *, (11) 
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where exp�de���
 : = expQd�f	����	, 2��	
� +⋯+fh����h , 2��h
�
R is a weighting function, for 

all e ∈	ℝh with i ≤ j, and d = √−1 is the imaginary root. The test statistic is a sample analog 

of	PNT1>�� −V>���, W.��
@ ≤ 0@ − �U exp�de���
O: 
 

lm�e, �
: = 1
√n#T1>�� −V>���, Wm��
@ ≤ 0@ − �U exp�de���
,

m

�&	
 (12) 

 

where Wm is a √n-consistent estimator of W.��
, for all � ∈ *. Then, we apply the test statistic 

proposed by Troster (2016): 

 

om: = p p |lm�e, �
| j�e�e
j����
,q*
 (13) 

 

where �e�⋅
 is the conditional distribution function of a d-variate standard normal random 

vector, �r�⋅
 follows a uniform discrete distribution over a grid of 	* in n equally spaced 

points,	*s = N�$O$&	
s

, and the vector of weights e ∈ ℝt is drawn from a standard normal 

distribution. The test statistic in equation (13) can be estimated using its sample analog. Let Ψ be 

a n × w matrix with elements	xy,$ = Ψ�z {�y −V|�y�, Wm>�$@}~, where Ψ�z�⋅
 is the function 

Ψ�z��
 	≔ 1�� ≤ 0
 − �$ .  Then, we apply the following test statistic: 

 

om = 1
nw#�x⋅$� �x⋅$�,

s

$&	
 (14) 

 
where � is the n × n matrix with elements	��,� = expQ−0.5��� − ��
 R, and x⋅$�  denotes the j-th 

column of Ψ. We reject the null hypothesis of Granger non-causality in distribution (9) whenever 

we observe large values of	om  in equation (14). We use the subsampling procedure of Troster 

(2016) to calculate critical values for	om  in equation (14). Given our series K�� = �Y�, Z�
M	of 

sample size T, we generate � = n − � + 1	subsamples of size b (taken without replacement from 

the original data) of the form	K�y, … , �y���	M. Then, the test statistic	om  in equation (14) is 

calculated for each subsample; we obtain p-values by averaging the subsample test statistics over 
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the �	subsamples. Following Sakov and Bickel (2000), we choose a subsample of size � =
T�n /�U, where Q⋅R is the integer part of a number, and k is a constant parameter.  

 

To apply the om  test in equation (14), we specify three different QAR models V�⋅
, for all 

τ ∈ * ⊂ [0,1], under the null hypothesis of non-Granger-causality in equation (9) as follows: 

 

QAR�1
:	V	|���, W��
} = �	��
 +	� ��
���	 + σ�Φ)�	��
, 
QAR�2
:	V |���, W��
} = �	��
 +	� ��
���	 +	����
��� + σ�Φ)�	��
,
QAR�3
:	V�|���, W��
} = �	��
 +	� ��
���	 +	����
��� +	����
���� + σ�Φ)�	��
,

 

(15) 

 

where the parameters W��
 = ��	��
, � ��
, ����
, ����
, ��
′ are estimated by maximum likelihood 

in an equally spaced grid of quantiles, and Φ)�	�⋅
 is the inverse of a standard normal distribution 

function. To verify the sign of the causal relationship between the variables, we estimate the 

quantile autoregressive models in equation (15) including lagged variables of another variable. 

For simplicity, we present the results using only a QAR(3) model with the lagged values of the 

other variable as follows:  

 

������|���, ��9
 = 	�	��
 +	� ��
���	 +	����
��� +	����
���� + 1��
2��	 + σ�Φ)�	��
. (16) 

 
 

4. Empirical Analysis 
 
We analyze the causal relationship between renewable energy consumption, oil prices, and 

economic activity in the U.S. economy. Our data consist of 331 monthly observations on oil 

prices (OP), U.S. industrial production index (IPI) measure of economic activity, and renewable 

energy consumption (R) over the period from January 1989 to July 2016. We obtained all series 

from Datastream.  

 

Table 1 displays summary statistics and correlations of oil prices, economic activity, and 

renewable energy consumption. All correlations between the variables are positive and higher 

than 0.49. Besides, Jarque-Bera normality tests (Jarque and Bera, 1980) reject the null hypothesis 
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of normality for each one of the series at the 1% significance level. This illustrates the 

applicability of the quantile regression analysis that is robust to non-normal skewness in 

estimation. Table 2 shows the results of the unit root tests for oil prices, economic activity, and 

renewable energy consumption. All series are nonstationary at the 1% significance level or 

higher. Besides, these results are robust to a possible endogenous structural break, as we apply 

the ZA unit root test. Thus, we perform our analysis on the log-difference of the series. 

 

Table 1. Summary Statistics and Pairwise Correlations 

  OPt IPIt Rt 
Mean 45.73 88.90 583.91 
Median 30.75 93.97 548.21 
Std. Dev. 30.57 14.11 117.71 
Skewness 0.83 -0.65 0.94 
Kurtosis 2.37 1.96 2.95 
Minimum 11.35 62.71 395.80 
Maximum 133.88 106.69 922.07 
Jarque-Bera 43.84 37.74 49.30 
Probability 0.00 0.00 0.00 

Correlation Matrix 
OPt 1.00 - - 
IPIt 0.66 1.00 - 
Rt 0.61 0.49 1.00 
Note: The data consist of 331 monthly observations on oil prices (OP), U.S. industrial production index (IPI) measure of 
economic activity, and renewable energy consumption (R) from January 1989 to July 2016. We obtained all series from 
Datastream. 

 

Table 2. Traditional Unit Root Analysis 

  OPt IPIt Rt 
ADF Test: Level -2.72 -0.75 -1.54 
ADF Test: 1st Diff. -10.68 -8.85 -15.48 
ZA Test: Level -3.98 -3.43 -4.78 
ZA Test: 1st Diff. -11.02 -6.66 -6.75 
ADF-GLS Test: Level -2.68 -1.51 -0.90 
ADF-GLS Test: 1st Diff. -9.34 -3.77 -16.87 
KPSS Test: Level 0.47 1.12 0.98 
KPSS Test: 1st Diff. 0.07 0.11 0.02 
Note: The oil prices, economic activity, and renewable energy consumption series are taken in natural logarithms. The null 
hypothesis is that the series has a unit root in the ADF (Dickey and Fuller, 1979), ZA (Zivot and Andrews, 1992), and ADF-GLS 
(Elliott et al., 1996) tests, whereas the series is stationary under the null hypothesis of the KPSS test (Kwiatkowski et al., 1992). 
Bold values denote rejection of the null hypothesis at the 1% significance level.  
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Table 3 displays the results of the quantile unit root test. It shows the persistence estimates and 

the t-statistics of the null hypothesis that -.:	"��
 = 1 in equation (1) for the grid of 19 

quantiles	* = Q0.05; 0.95R. We included 10 lags of the difference of the dependent variable to 

avoid serial correlation of the residuals. Oil prices and economic activity are non-stationary at 

the 5% significance level for all the quantiles of the conditional distribution. These results are in 

line with the results of the unit root tests in Table 2. The renewable energy consumption is also 

nonstationary at the lowest quantiles of the distribution. However, we reject the null hypothesis 

of unit root for the renewable energy consumption at the median and higher quantiles of the 

conditional distribution at the 5% significance level. We further apply the linear cointegration 

test of Johansen (1991, 1995), to verify whether the series are cointegrated. Table 4 shows that 

there is no linear cointegration between oil prices, renewable energy consumption, and economic 

activity at the 5% significance level. 

 

Table 3. Quantile Autoregression Unit Root Analysis 

τ OPt  IPIt  Rt 
 ", t-statistic  ", t-statistic  ", t-statistic 
0.05 0.996 -0.096  1.011 0.369  0.930 -1.108 
0.10 0.988 -0.320  1.008 0.790  0.945 -0.978 
0.15 0.994 -0.275  1.005 0.609  0.891 -1.960 
0.20 0.991 -0.393  0.998 -0.274  0.891 -2.042 
0.25 0.994 -0.288  0.996 -0.672  0.902 -1.953 
0.30 1.007 0.381  0.994 -1.082  0.875 -2.760 
0.35 0.981 -1.050  0.999 -0.144  0.848 -3.517 
0.40 0.982 -1.081  0.995 -1.003  0.845 -3.670 
0.45 0.976 -1.503  0.994 -1.231  0.855 -3.560 
0.50 0.972 -1.879  0.994 -1.321  0.861 -3.478 
0.55 0.973 -1.821  0.993 -1.574  0.847 -3.939 
0.60 0.964 -2.565  0.996 -0.893  0.840 -3.955 
0.65 0.961 -2.619  0.997 -0.516  0.839 -3.848 
0.70 0.965 -2.266  0.994 -1.052  0.819 -4.483 
0.75 0.980 -1.163  0.993 -1.231  0.821 -4.188 
0.80 0.975 -1.528  0.996 -0.737  0.804 -4.705 
0.85 0.960 -2.514  0.996 -0.720  0.795 -4.808 
0.90 0.966 -1.678  0.994 -1.095  0.770 -5.624 
0.95 0.938 -1.375  0.995 -0.460  0.757 -3.975 
Note: This table displays the persistence estimates �",
 and t-statistics of the quantile unit root test proposed by Koenker and Xiao 
(2004)  and Galvao (2009). Bold values of t-statistics denote rejection of the null hypothesis H.:	α�τ
 = 1 at the 5% significance 
level. 
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Table 4. Johansen Linear Cointegration Test 

  
Trace statistic 

 -.:	rank=0 (15.41) 
Max. eigenvalue statistic  

-.:	rank=0 (14.07) 

OPt vs. IPIt 7.47 4.88 
OPt vs. Rt 8.09 5.32 
IPIt vs. Rt 4.70 4.37 
Note: This table reports the linear cointegration test of Johansen (1991, 1995) for the logarithm of the oil price, economic 
activity, and renewable energy consumption. We selected the lag lengths of vector autoregressive models that minimize the AIC, 
allowing for a maximum lag length of 18 months. Numbers in parentheses next to -.:	rank	=	0 represent the 5% critical values of 
the corresponding test statistic. 
 

We apply the quantile cointegration test proposed by Xiao (2009) to verify whether the 

cointegration relationship between the variables changes over the distribution. As the renewable 

energy consumption series is stationary at the 5% level for all quantiles higher than τ = 0.25, we 

use an equally spaced grid of the five lowest quantiles, * = Q0.05; 0.25R, for the quantile 

cointegration analysis between renewable energy consumption and oil prices or economic 

activity. We include two lags and two leads of �Δ2� , Δ2� 
 in the quantile cointegrating model in 

(3). Table 5 presents the results of the stability test of the coefficients of the quantile 

cointegration model in equation (3). In contrast to the results of the linear cointegration test in 

Table 4, we find evidence of a statistically non-linear cointegration relationship between the 

quantiles of oil prices, renewable energy consumption, and economic activity at the 1% 

significance level.  

 

Table 5. Quantile Cointegration Test 

Model Coefficient sup
τ
�Vn
=�τ
� CV1 CV5 CV10 

OPt vs. IPIt β 32630.50 10286.49 8361.47 7094.76 
γ 3685.03 1041.44 685.60 516.65 

OPt vs. Rt β 17653.73 2104.60 1368.62 1075.01 
γ 1367.67 159.27 91.10 66.97 

IPIt vs. Rt 
  

β 4500.36 494.68 317.36 6.08 
γ 338.10 37.67 23.09 17.09 

Note: This table presents the results of the quantile cointegration test of Xiao (2009) for the logarithm of the oil price (OP), 
economic activity (IPI), and renewable energy consumption (R). We test the stability of the coefficients β and γ in the quantile 
cointegration model (3). CV1, CV5, and CV10 are the critical values of statistical significance at 1%, 5%, and 10%, respectively. 
We use 1,000 Monte Carlo simulations to generate the critical values. We use an equally spaced grid of 19 quantiles, Q0.05;	0.95R, 
to calculate the test statistic of the quantile cointegration model between oil prices (OP) and economic activity (IPI). We use an 
equally spaced grid of 5 tail quantiles, Q0.05;	0.25R, to calculate the test statistic between renewable energy consumption (R) and 
oil prices (OP) or economic activity (IPI). Bold values denote rejection of the null hypothesis at the 1% significance level. 
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Table 6 reports the estimated cointegrating coefficients β?(τ) and γ,(τ) of the quantile cointegrating 

model in (3). The estimated coefficients of the model between oil prices and economic activity 

are negative and statistically significant at the 1% level for all quantiles below or equal to 

τ	=	0.80. Besides, the estimated coefficients increase with the quantiles of the distribution. Table 

6  also suggests a non-linear cointegrating relationship between oil prices and renewable energy 

consumption; all the estimated coefficients are negative for all quantiles of the distribution. 

However, the coefficients of the cointegrating model between economic activity and renewable 

energy consumption are not significant at the 1% level, for all quantiles lower or equal to 

τ	=	0.25. 

 

Table 6. Quantile Cointegration Model: Estimated Coefficients 

τ OPt vs. IPIt OPt vs. Rt IPIt vs. Rt 
β(τ) γ(τ) β(τ) γ(τ) β(τ) γ(τ) 

0.05 -131.09*** 15.06*** -42.06* 3.37* 1.72 -0.06 
0.10 -119.16*** 13.72*** -50.08*** 4.00*** 5.86* -0.38 
0.15 -114.04*** 13.16*** -50.10*** 4.02*** 4.63 -0.29 
0.20 -101.03*** 11.69*** -49.97*** 4.02*** 5.06 -0.33 
0.25 -104.25*** 12.07*** -52.38*** 4.23*** 3.41 -0.20 
0.30 -107.95*** 12.50*** - - - - 
0.35 -108.28*** 12.55*** - - - - 
0.40 -106.19*** 12.32*** - - - - 
0.45 -103.64*** 12.05*** - - - - 
0.50 -104.12*** 12.11*** - - - - 
0.55 -102.69*** 11.96*** - - - - 
0.60 -103.53*** 12.07*** - - - - 
0.65 -94.86*** 11.10*** - - - - 
0.70 -99.29*** 11.63*** - - - - 
0.75 -98.65*** 11.58*** - - - - 
0.80 -89.49*** 10.55*** - - - - 
0.85 -27.45 3.49 - - - - 
0.90 -13.52 1.90 - - - - 
0.95 2.20 0.11 - - - - 
Note: This table displays the estimated coefficients of the quantile cointegration model (3), where ***, **, and * denote rejection 
of the null hypothesis at the 1%, 5%, and 10% significance level, respectively. 

 

We further apply the om  test in equation (14) for Granger-causality in quantiles. We estimate 

three different QAR specifications in equation (15) under the null hypothesis of Granger non-

causality in quantiles in equation (9). Tables 7-9 report the p-values of the om  test for the 

logarithm of the three series. We implement test the om  test in equation (14) over an equally 
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spaced grid of 19 quantiles * = Q0.05; 0.95R. Following Sakov and Bickel (2000), we apply a 

subsample size � = T�n /�U, where Q⋅R is the integer part of a number, �	=	5 is a constant 

parameter, and n	=	331. The resulting subsample size is	�	=	51, but unreported p-values show 

that our results are robust to other choices of subsample sizes. Table 7 reports the p-values of the 

test for Granger-causality in quantiles to ∆OPt. Considering all quantiles, changes in economic 

activity (economic growth) or changes in renewable energy consumption do not Granger-cause 

variations in oil prices at the 1% significance level. These results are robust to different 

specifications of the quantile auto-regressive model under the null hypothesis of Granger non-

causality. Besides, there is no evidence of Granger-causality from economic growth or changes 

in renewable energy consumption to changes in oil prices, for each quantile of the distribution. 

 

Table 7. Granger-causality to ∆OPt: Subsampling p-values 

τ ∆IPIt to ∆OPt ∆Rt to ∆OPt 
  It

∆OPt 	=	1  It
∆OPt	=	2  It

∆OPt = 3  It
∆OPt	=	1  It

∆OPt 	=	2  It
∆OPt  = 3 

[0.05; 0.95] 0.486 0.550 0.507 0.482 0.554 0.507 
0.05 0.367 0.482 1.000 0.317 0.475 1.000 
0.10 0.162 0.295 0.723 0.162 0.295 0.723 
0.15 0.115 0.083 0.165 0.115 0.083 0.205 
0.20 0.324 0.155 0.137 0.360 0.165 0.158 
0.25 0.788 0.701 0.863 0.799 0.705 0.921 
0.30 0.356 0.683 0.227 0.302 0.565 0.227 
0.35 0.072 0.173 0.317 0.072 0.173 0.317 
0.40 0.162 0.036 0.122 0.162 0.036 0.126 
0.45 0.371 0.363 0.817 0.371 0.374 0.914 
0.50 0.597 0.615 0.342 0.597 0.615 0.342 
0.55 0.863 0.896 0.820 0.863 0.899 0.820 
0.60 0.727 0.712 0.665 0.727 0.712 0.665 
0.65 0.579 0.594 0.752 0.608 0.615 0.752 
0.70 0.554 0.594 0.428 0.554 0.594 0.439 
0.75 0.604 0.669 0.773 0.604 0.669 0.773 
0.80 0.493 0.568 0.424 0.493 0.568 0.424 
0.85 0.162 0.227 0.065 0.162 0.227 0.065 
0.90 0.543 0.583 0.270 0.547 0.633 0.270 
0.95 0.442 0.252 0.320 0.442 0.252 0.320 

Note: This table presents the subsampling p-values of the om test in (14). ∆OPt is the log-difference of oil prices, ∆IPIt is the log-

difference of IPI, and ∆Rt is the log-difference of renewable energy consumption. It
∆OPt is the number of lags of the dependent 

variable, ∆OPt, under the null hypothesis of non-Granger-causality in (9). The subsample size is �	=	51 for a sample of T = 331 
observations. 
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Table 8 shows that fluctuations in oil prices or changes in renewable energy consumption do not 

Granger-cause economic growth at the 1% significance level, considering all quantiles of the 

distribution. However, we find evidence of Granger-causality at the extreme tails of the 

distribution. If we consider only the extreme tails of the conditional distribution,	� =
{0.05, 0.10, 0.15} or τ	=	{0.85, 0.90, 0.95}, there is Granger-causality running from ∆OPt or 

∆Rt to ∆IPIt at the 1% significance level. Besides, these results are robust to different 

specifications of the quantile auto-regressive model. Therefore, large positive or negative 

fluctuations in oil prices or in renewable energy consumption lead extreme changes in economic 

activity. Finally, Table 9 illustrates that there is no causality running from changes in oil prices 

or economic growth to changes in renewable energy consumption at the 1% significance level, 

considering all quantiles of the distribution. However, there is Granger-causality running from 

∆OPt or ∆IPIt to ∆Rt at the lowest quantiles of the distribution, for	� = {0.05, 0.10}, at the 1% 

significance level. These results suggest that only the lowest negative variations in oil prices or 

in economic activity Granger-cause variations in renewable energy consumption. 

 

Table 8. Granger-causality to ∆IPIt: Subsampling p-values 

τ ∆OPt to ∆IPIt ∆Rt to ∆IPIt 
  It

∆IPIt 	=	1  It
∆IPIt	=	2  It

∆IPIt = 3  It
∆IPIt 	=	1  It

∆IPIt 	=	2  It
∆IPIt  = 3 

[0.05; 0.95] 0.065 0.086 0.072 0.065 0.086 0.072 
0.05 0.007 0.007 0.004 0.115 0.007 0.004 
0.10 0.004 0.004 0.004 0.004 0.004 0.004 
0.15 0.004 0.004 0.004 0.004 0.004 0.004 
0.20 0.004 0.004 0.119 0.004 0.004 0.119 
0.25 0.014 0.180 0.054 0.014 0.180 0.054 
0.30 0.194 0.194 0.241 0.194 0.194 0.241 
0.35 0.194 0.349 0.338 0.194 0.349 0.338 
0.40 0.209 0.281 0.629 0.209 0.281 0.629 
0.45 0.723 0.809 0.374 0.781 0.802 0.374 
0.50 0.147 0.281 0.151 0.147 0.281 0.129 
0.55 0.122 0.353 0.086 0.122 0.353 0.086 
0.60 1.000 1.000 0.050 1.000 1.000 0.050 
0.65 0.173 0.986 0.018 0.173 0.903 0.018 
0.70 0.090 0.165 0.025 0.090 0.165 0.025 
0.75 0.248 0.022 0.191 0.248 0.022 0.191 
0.80 0.108 0.004 0.241 0.108 0.004 0.241 
0.85 0.004 0.004 0.007 0.004 0.004 0.007 
0.90 0.004 0.068 0.004 0.004 0.068 0.004 
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0.95 0.004 0.004 0.313 0.004 0.004 0.313 
Note: This table presents the subsampling p-values of the om test in (14). ∆OPt is the log-difference of oil prices, ∆IPIt is the log-

difference of IPI, and ∆Rt is the log-difference of renewable energy consumption. It
∆IPIt  is the number of lags of the dependent 

variable, ∆IPIt, under the null hypothesis non-Granger-causality in (9). The subsample size is �	=	51 for a sample of T = 331 
observations. Bold p-values denote rejection of the null hypothesis at the 1% significance level. 
 

Table 9. Granger-causality to ∆Rt: Subsampling p-values 

τ ∆OPt to ∆Rt ∆IPIt to ∆Rt 
  It

∆Rt 	=	1  It
∆Rt 	=	2  It

∆Rt  = 3  It
∆Rt 	=	1  It

∆Rt 	=	2  It
∆Rt  = 3 

[0.05; 0.95] 0.119 0.032 0.072 0.119 0.032 0.061 
0.05 0.108 0.004 0.022 0.108 0.004 0.022 
0.10 0.237 0.007 0.007 0.237 0.007 0.007 
0.15 0.043 0.043 0.147 0.043 0.043 0.147 
0.20 0.291 0.248 0.691 0.209 0.183 0.691 
0.25 0.741 0.691 0.716 0.737 0.687 0.691 
0.30 0.709 0.824 0.482 0.615 0.817 0.482 
0.35 0.277 0.306 0.295 0.277 0.266 0.295 
0.40 0.086 0.047 0.011 0.086 0.047 0.011 
0.45 0.004 0.014 0.842 0.004 0.014 0.842 
0.50 0.144 0.094 0.730 0.144 0.094 0.730 
0.55 0.165 0.626 0.989 0.155 0.626 0.971 
0.60 0.547 0.766 0.363 0.547 0.766 0.335 
0.65 0.212 0.504 0.367 0.212 0.504 0.367 
0.70 0.392 0.421 0.187 0.392 0.421 0.187 
0.75 0.173 0.065 0.151 0.144 0.079 0.151 
0.80 0.083 0.076 0.180 0.083 0.076 0.180 
0.85 0.022 0.036 0.065 0.022 0.036 0.065 
0.90 0.730 0.511 0.432 0.730 0.561 0.558 
0.95 0.227 0.169 0.112 0.227 0.169 0.112 

Note: This table presents the subsampling p-values of the om test in (14). ∆OPt is the log-difference of oil prices, ∆IPIt is the log-

difference of IPI, and ∆Rt is the log-difference of renewable energy consumption. It
∆Rt	is the number of lags of the dependent 

variable, ∆Rt, under the null hypothesis non-Granger-causality in (9). The subsample size is �	=	51 for a sample of T = 331 
observations. Bold p-values denote rejection of the null hypothesis at the 1% significance level. 
 

We further estimate a QAR(3) model with the lagged values of the other variable as described in 

equation (16) to verify the sign of the Granger-causality between the variables. Table 10 displays 

the estimated coefficients 1��
 in the quantile regression model (16) for all the quantiles of the 

distribution. Regarding the analysis from ∆OPt to ∆IPIt, large negative variations in oil prices 

have a positive sign, whereas large positive fluctuations in oil prices have a negative sign 

(column 3 of Table 10). In line with the results of Table 8, there is Granger-causality at the 

extreme tails from ∆OPt to ∆IPIt, with opposite signs. We find the same pattern of signs for the 

causality running from ∆Rt to ∆IPIt, except for the lowest quantile of the distribution τ	=	0.05 
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(column 4 of Table 10). For the Granger-causality analysis from ∆OPt or ∆IPIt to ∆Rt, the 

estimated coefficients have positive signs at the lowest quantiles of the distribution, except for 

τ	=	0.05 for the relationship from ∆OPt to ∆Rt (column 6 of Table 10). Thus, large oil shocks 

negatively affect economic growth, but there is no clear pattern of signs of the causal relationship 

from changes in renewable energy consumption to economic growth. 

 

Table 10. Quantile Regression Estimated Coefficients 

τ ∆IPIt to ∆OPt ∆Rt to ∆OPt ∆OPt to ∆IPIt ∆Rt to ∆IPIt ∆OPt to ∆Rt ∆IPIt to ∆Rt 

0.05 3.304 -0.255 0.008 -0.005 -0.008 1.102 
0.10 1.349 -0.043 0.008 0.001 0.027 0.903 
0.15 1.814 0.046 0.002 0.000 0.044 -0.069 
0.20 1.799 0.102 0.002 0.001 -0.003 -0.034 
0.25 1.609 0.099 0.003 0.001 0.036 0.356 
0.30 1.999 0.151 0.003 0.003 0.022 0.329 
0.35 1.460 0.138 0.004 0.005 -0.004 -0.032 
0.40 1.341 0.083 0.002 0.007 -0.003 0.396 
0.45 1.674 0.042 0.001 0.006 -0.015 0.422 
0.50 1.676 0.046 0.000 0.004 -0.036 0.701 
0.55 1.216 0.032 0.000 0.004 -0.011 0.302 
0.60 0.734 0.038 -0.001 0.004 0.001 1.398 
0.65 -0.223 0.021 -0.001 0.002 0.002 0.797 
0.70 -0.632 0.055 -0.001 0.001 -0.015 1.087 
0.75 -0.182 0.036 -0.004 -0.001 -0.071 0.523 
0.80 -1.460 0.025 -0.007 -0.004 -0.037 0.566 
0.85 -1.724 0.064 -0.002 -0.001 -0.027 0.687 
0.90 -2.231 -0.028 -0.005 -0.006 -0.053 -0.049 
0.95 -2.915 0.077 -0.011 0.001 -0.056 -0.075 
Note: This table presents the estimated coefficients 1��
 of the quantile autoregressive model in (16). 
 

Our findings are consistent with Hamilton (1983, 1996, 2003), Hooker (1996, 2002), Kilian 

(2008), and Timilsina (2015), among others, who support the causality running from changes in 

oil prices to economic growth in the U.S., via standard causality approaches. Besides, we found  

lower-tail dependence between changes in oil prices and renewable energy consumption; these 

results are consistent with Reboredo (2015), who reported evidence of tail dependence between 

oil prices and a set of global renewable energy indices. Our findings are also in line with Akarca 

and Long (1979), Lee (2005, 2006), Soytas and Sari (2006), Mahadevan and Asafu-Adjaye 

(2007), Sari et al. (2008), and Cho et al. (2015), who found evidence of Granger-causality from 

changes in energy consumption to economic growth in the U.S. 
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In contrast to the papers of Huang et al. (2008), Sadorsky (2009), Apergis and Payne (2010a,b), 

Apergis and Payne (2011), Lin and Moubarak (2014), Sebri and Ben-Salha (2014), and Tiwari 

(2014), we found a bi-directional causal relationship between economic growth and renewable 

energy consumption only at the lowest tail of the conditional distribution. Besides, our results 

contradict the previous literature for the United States such as Akarca and Long (1980), Yu and 

Hwang (1984), Yu and Jin (1992), Cheng (1995), Chiou-Wei et al. (2008), Payne (2009), Payne 

and Taylor (2010), Balcilar et al. (2010), Tugcu et al. (2012), and Narayan and Doytch (2017), 

who found no causality between renewable energy consumption and economic activity in the 

U.S. 

 

The empirical results of dependence between changes in renewable energy consumption, oil 

prices, and economic activity have important policy implications. Our results report evidence of 

lower-tail causality running from oil prices changes to changes in renewable energy 

consumption. Our quantile-based analysis suggests that negative shocks in oil prices affect the 

consumption of renewable energy resources. However, oil prices behavior provides inadequate 

incentives to affect renewable energy consumption when oil prices are high. We also found 

evidence of lower-tail causality from large decreases in economic activity to changes in 

renewable energy consumption. Thus, economic growth provides asymmetric incentives to 

develop renewable energy consumption in the U.S. During periods of recessions, renewable 

energy consumption can increase without the need of energy policies. However, our results call 

for green energy policies during economic expansions periods. Therefore, governments should 

consider the asymmetric causality from changes in oil prices and economic activity to renewable 

energy consumption changes to develop a sustainable energy system. In line with Reboredo 

(2015), our results call for the implementation of policies that support the profitability of clean 

energy companies only during periods of large negative shocks in oil prices. Governments could 

help mitigate the downside risk stemming from oil price declines by implementing subsidization 

policies that depend on oil price changes (Rausser et al. 2010). Thus, our results allow policy 

makers to identify the kind of downside risk to subsidize. Besides, governments should take into 

account the asymmetric effect of economic growth to renewable energy consumption to 

implement sustainable energy policies during economic growth periods. 
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The tail dependence from changes in renewable energy consumption to economic growth 

suggests that energy policies such as tax credits for energy production, renewable energy 

portfolio standards, and installation of renewable energy systems affect economic growth. 

However, this relationship is asymmetric. Large decreases in renewable energy consumption (at 

the lowest quantile of the distribution) reduce economic growth. On the other hand, large 

increases in renewable energy consumption (at the highest quantile of the distribution) contribute 

to economic growth. Thus, policy makers need to take into account this asymmetric effect to 

implement sustainable energy policies. We found causality from changes in oil prices to 

economic growth at the tails of the distribution. In line with Kilian and Vigfusson (2011), there is 

an asymmetric effect of oil shocks to economic growth in the U.S. economy. Our results suggest 

a decline in economic growth in response to increases in oil prices, yet an increase in economic 

growth in response to negative oil shocks. Therefore, our analysis calls for the development of 

renewable energy markets in the U.S. to reduce their dependence on oil, allowing the U.S. 

economy to become less sensitive to positive shocks in oil prices. 

 

5. Conclusions 
 

Many important economic and financial analyses are investigated through testing for Granger-

causality between the variables. However, most of the results in the literature were obtained in 

the context of Granger-causality in mean. In this paper, we analyze the causal relationship 

between renewable energy consumption, oil prices, and economic activity for the United States 

from July 1989 to July 2016, considering all quantiles of the distribution. Rather than focusing 

on a single part of the conditional distribution, we evaluate possible causal relations in all 

conditional quantiles. Under this approach, we can discriminate between causality affecting the 

median and the tails of the conditional distribution, providing a sufficient condition for Granger-

causality when all quantiles are considered.  

 

We find that there is no Granger-causality between variations in oil prices, economic activity, 

and renewable energy consumption, when all quantiles are taken into account. However, we find 

evidence of bi-directional causality between changes in renewable energy consumption and 

economic growth at the lowest quantiles of the distribution; besides, there is also unidirectional 
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causality running from changes in renewable energy consumption to economic growth at the 

highest tail of the distribution. Our findings also support unidirectional causality from changes in 

oil prices to economic growth at the extreme quantiles of the distribution. Finally, we found 

lower-tail dependence from changes in oil prices to renewable energy consumption changes. 

 

Our results provide the direction of causality between renewable energy consumption and 

economic activity in the United States at different quantile levels. This implies that changes in 

renewable energy consumption are sensitive to economic growth in the United States at the 

lowest quantiles of the distribution. The results of this paper are important because energy 

conservation policies may affect the economic activity. Our findings suggest that policy makers 

should not only focus on the non-renewable energy consumption (crude oil price), but also on the 

contribution to the overall renewable energy mix in the production process. In contrast to the 

papers of Sadorsky (2009), Apergis and Payne (2010a,b), Apergis and Payne (2011), Lin and 

Moubarak (2014), Sebri and Ben-Salha (2014), and Tiwari (2014), we found a bi-directional 

causal relationship between economic growth and renewable energy consumption only at the 

lowest tail of the conditional distribution.  

 

As an aftermath of the 21st meeting of the Conference of the Parties (COP21)-Paris agreement 

and the current geo-political tension in crude oil market, the causal relationship between 

renewable energy consumption and economic growth highlights the importance of promoting 

renewable energy consumption in the U.S. Our quantile-based analysis suggests that negative 

shocks in oil prices affect the consumption of renewable energy resources. We also found 

evidence of lower-tail causality from large decreases in economic activity to changes in 

renewable energy consumption. Therefore, our results call for the implementation of policies that 

support the profitability of clean energy companies only during periods of large negative shocks 

in oil prices. Governments could help mitigate the downside risk stemming from oil prices 

decreases by implementing subsidization policies that depend on oil prices changes (Rausser et 

al. 2010).  

 

The bidirectional causality between changes in renewable energy consumption and economic 

growth, at the lowest tail of the distribution, calls for government policies aimed at developing 
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renewable energy markets, to increase energy efficiency in the U.S. These policies include, for 

instance, the creation of tax incentives for the production and consumption of renewable energy, 

the establishment of partnerships between the public and private sector, and the implementation 

of renewable energy portfolio standards. As suggested by Kaygusuz (2007), Hirschl (2009), and 

Apergis and Payne (2010a, 2011), the development of markets for tradable renewable energy 

certificates together with the exchange of information on technologies across countries should 

foster the renewable energy sector. Moreover, the development of renewable energy markets in 

the U.S. contribute to reduce their dependence on oil, allowing the U.S. economy to become less 

sensitive to positive shocks in oil prices. 
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