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Abstract A generalized trapezoidal-valued intuitionistic fuzzy geometric ag-
gregation operator is proposed which is then used to aggregate decision makers’
opinions in group decision making process. An extension of TOPSIS, a multi-
criteria trapezoidal-valued intuitionistic fuzzy decision making technique, to a
group decision environment is also proposed, where inter-dependent or interactive
characteristics among criteria and preference of decision makers are under consid-
eration. Furthermore, Choquet integral-based distance between trapezoidal-valued
intuitionistic fuzzy values is defined. Combining the trapezoidal-valued intuitionis-
tic fuzzy geometric aggregation operator with Choquet integral-based distance, an
extension of TOPSIS method is developed to deal with a multi-criteria trapezoidal-
valued intuitionistic fuzzy group decision making problems. Finally, an illustrative
example is provided to understand the proposed method.
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1 Introduction

Technique for order preference by similarity to ideal solution (TOPSIS) is a useful

and practical technique for selection and ranking of alternatives through distance

measures. The basic principle is that the chosen alternative should have the short-

est distance from the positive-ideal solution and the farthest distance from the
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negative-ideal solution. In the TOPSIS theory, crisp values used for weights and

performance ratings of the criterias. Hwang and Youn [25] developed a classi-

cal approach to multi-attribute/multi-criteria decision making (MADM/MCDM)

problems by using TOPSIS. Human judgment and preference are often ambiguous

and cannot be estimated with exact numeric value, so the crisp values are not

suitable to model real-world situations. Fuzzy set theory [67] has been success-

fully used to handle imprecision (or uncertainty) in decision making problems, to

solve the ambiguity in information from human judgement and preference. Since

fuzzy numbers applied and used to establish a prototype fuzzy TOPSIS ([11], [38]),

Recently a lot of work on fuzzy TOPSIS has been developed by several authors

([10], [14], [27], [31], [36], [54], [53], [55], [65], [66]). Atanassov gave the notion

of intuitionistic fuzzy sets (IFS) which is an extension of Zadeh’s [67] fuzzy set.

IFS has proved to be a very suitable tool to describe the uncertain or imprecise

decision information. Recently, IFS has received more attention and has been ap-

plied in the field of decision making and fuzzy TOPSIS has been extended to IFS

TOPSIS ([3], [8], [12], [35]). The concept of interval-valued intuitionistic fuzzy sets

(IVIFS) was introduced by Atanassov in [7], as a generalization of IFS. The basic

characteristic of the IVIFS is that the values of its membership function and non-

membership function are intervals rather than exact numbers. Some operational

laws of the IVIFS are defined in [5]. In [46] and [47] a novel method for multi-

ple attribute decision making based on IVIFS and TOPSIS method in uncertain

environments is presented. In [58] some geometric aggregation operators, such as

the interval-valued intuitionistic fuzzy weighted geometric averaging (IIFWGA)

operator and the interval-valued intuitionistic fuzzy ordered weighted geometric

averaging (IIFOWGA) operator are defined and applications of the IIFWGA and
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IIFOWGA operators to multiple attribute group decision making with interval-

valued intuitionistic fuzzy information are given. Wei [57] applied IIFWGA ag-

gregation functions to dealing with dynamic multiple attribute decision making

where all the attribute values are expressed in intuitionistic fuzzy numbers or

interval-valued intuitionistic fuzzy numbers.

These aggregation process are based on the assumption that the criteria (attribute)

or preferences of decision makers are independent, and the aggregation operators

are linear operators based on additive measures, which is characterized by an inde-

pendence axiom ([28], [52]). For real decision making problems, there is a phenom-

enon that there exists some degree of inter-dependent or interactive characteristics

between criteria ([17], [18], [22]). Decision makers invited usually come from same

or similar fields for a decision problem. They have similar knowledge, preference

and social status. Their subjective preference always shows non-linearity. Inde-

pendence phenomena among these criteria and mutual preferential independence

of decision makers are violated. Sugeno [45] introduced the concept of non-additive

fuzzy measure, which only make a monotonicity instead of additivity property. It

is most effective tool to modeling interaction phenomena ([19], [20], [26], [30], [40])

and deal with decision making problems ([17], [18], [21], [22], [39]). Liginlal and

Ow [34] is an excellent review on analyzing decision maker behavior using fuzzy

measure. In the real decision making problems, the attributes of the problem are

often correlated or inter-dependent. Choquet integral [13] is a useful tool to model

the correlation or inter-dependence. It has been studied and applied in the deci-

sion making methods ([1], [2], [9], [15], [16], [24], [32], [33], [37], [41], [43], [48], [49],

[50], [51], [59], [60], [61], [62], [63]). Aggregation of decision makers’ opinions is
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very important in group decision making problems to perform evaluation process.

Group decision making involves weighted aggregation of all individual decisions to

obtain a single collective decision. In [44], aggregation operator of intuitionistic

fuzzy group decision making is proposed with the weights of decision makers. The

weights of decision makers plays an important role in the process of aggregation.

In [46], [47] and [64], aggregation of the interval-valued intuitionistic fuzzy group

decision making environment with the Choquet integral is studied. Until now, we

do not have any aggregation of the trapezoidal-valued intuitionistic fuzzy group de-

cision making environment with Choquet integral. In this paper, we first develop a

generalized trapezoidal-valued intuitionistic fuzzy geometric aggregation operator

for aggregating all individual decision makers’ opinions under trapezoidal-valued

intuitionistic fuzzy group decision making environment. Combining this operator

with TOPSIS on Choquet integral-based distance, a multi-criteria trapezoidal-

valued intuitionistic fuzzy group decision making is proposed, where interaction

phenomena among the decision making problem and weights of decision makers

are taken into account.

Rest of the paper is organized as follows: In Section 2, we review ρ-fuzzy measure,

intuitionistic fuzzy sets, interval-valued intuitionistic fuzzy sets and trapezoidal

fuzzy numbers. In Section 3, we introduce trapezoidal-valued intuitionistic fuzzy

set and some operational laws on trapezoidal-valued intuitionistic fuzzy values. Or-

der relation and some of its properties are also studied in this section. In Section

4, based on these operational laws, a generalized trapezoidal-valued intuitionistic

fuzzy geometric aggregation operator is proposed, and some of its properties are

examined. In Section 5, according to definition of Choquet integral, we define the
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Choquet integral-based distance between any two trapezoidal-valued intuitionistic

fuzzy sets. Combining the generalized trapezoidal-valued intuitionistic fuzzy geo-

metric aggregation operator with Choquet integral-based distance, an extension

of TOPSIS is developed to deal with a multi-criteria trapezoidal-valued intuition-

istic fuzzy group decision making problems where inter-dependent or interactive

characteristics among criteria and preference of decision makers are considered. In

Section 6, an illustrative example is constructed to understand the application of

the method and to demonstrate its practicality and feasibility.

2 Preliminaries

As preparation for introducing our new aggregation operators, some preliminary

concepts are given in this section.

Let X be a crisp universe of generic elements, a fuzzy set A in the universe X is

a mapping from X to [0, 1]. For any x ∈ X, the value A(x) is called the degree of

membership of x in A.

Let X = {x1, x2, ..., xn} be the set of the attributes, P (X) be the power set of X.

Definition 2.1 [56] A ρ-fuzzy measure µ on the set X is a function µ : P (X)→

[0, 1] satisfying the following axioms:

1. µ(φ) = 0, µ(X) = 1;

2. B ⊆ C implies µ(B) ≤ µ(C), for all B,C ⊆ X;

3. µ(B ∪ C) = µ(B) + µ(C) + ρµ(B)µ(C) for all B,C ⊆ X and B ∩ C = φ,

where ρ ∈ (−1,+∞).
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In the above definition, if ρ = 0, then the third condition reduces to the axiom of

the additive measure:

µ(B ∪ C) = µ(B) + µ(C) for all B,C ⊆ X and B ∩ C = φ. Also ρ 6= 0 indicates

that the ρ-fuzzy measure µ is non-additive and there is interaction between B and

C.

If ρ > 0, then µ(B ∪ C) > µ(B) + µ(C), which implies that µ is a super-additive

measure. If ρ < 0, then µ(B ∪ C) < µ(B) + µ(C), which implies that µ is a

sub-additive measure.

If X is a finite set, then
n⋃

i=1

xi = X. To determine ρ-fuzzy measure µ on X avoiding

the computational complexity, Sugeno [45] gave the following Eq. (2.1)

µ(X) = µ

(
n⋃

i=1

xi

)

=






1
ρ

{
n∏

i=1

[1 + ρµ(xi)]− 1

}
if ρ 6= 0,

n∑

i=1

µ(xi) if ρ = 0.
(2.1)

It can be noted that µ(xi) for a subset with a single element xi is called a fuzzy

density.

Especially for every subset A ⊂ X, we have

µ(A) =






1
ρ

{
∏

xi∈A

[1 + ρµ(xi)]− 1

}
if ρ 6= 0,

∑

xi∈A

µ(xi) if ρ = 0.
(2.2)

Based on Eq. (2.1), the value of ρ can be uniquely determined from µ(X) = 1,

which is equivalent to solving

1 =
1

ρ

{
n∏

i=1

[1 + ρµ(xi)]− 1

}
. (2.3)
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If the elements of B in X are independent, we have

µ(B) =
∑

xi∈B

µ(xi), for all B ⊆ X. (2.4)

Definition 2.2 [29] A binary operation T : [0, 1]2 → [0, 1] is a triangular norm

(t-norm) if it satisfies the following:

1. T (1, x) = x for all x ∈ X. (Boundary condition)

2. T (x, y) = T (y, x) for all x, y ∈ X. (Commutativity)

3. T (x, T (y, z)) = T (T (x, y), z) for all x, y, z ∈ X. (Associativity)

4. if w ≤ x and y ≤ z then T (w, y) ≤ T (x, z) for all w, x, y, z ∈ X. (Monotonic-

ity)

Definition 2.3 [29] A binary operation S : [0, 1]2 → [0, 1] is a triangular conorm

(t-conorm) if it satisfies the following:

1. S(0, x) = x for all x ∈ X. (Boundary condition)

2. S(x, y) = S(y, x) for all x, y ∈ X. (Commutativity)

3. S(x, S(y, z)) = S(S(x, y), z) for all x, y, z ∈ X. (Associativity)

4. if w ≤ x and y ≤ z then S(w, y) ≤ S(x, z) for all w, x, y, z ∈ X. (Monotonic-

ity)

Let X be a universe of discourse, a fuzzy set in X is an expression A given by

A = {〈x, tA(x)〉 |x ∈ X}, where tA : X → [0, 1] is a membership function which

characterizes the degree of membership of the element x to the set A. The main
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characteristic of fuzzy sets is that: the membership function assigns to each element

x in a universe of discourse X a membership degree in interval [0, 1] and the

non-membership degree equals one minus the membership degree, i.e., this single

membership degree combines the evidence for x and the evidence against x, without

indicating how much there is of each. The single membership value tells us nothing

about the lack of knowledge. In real applications, however, the information of an

object corresponding to a fuzzy concept may be incomplete, i.e., the sum of the

membership degree and the non-membership degree of an element in a universe

corresponding to a fuzzy concept may be less than one. In fuzzy set theory, there

is no means to incorporate the lack of knowledge with the membership degrees. In

1986, Atanassov [4] generalized the concept of fuzzy set, and defined the concept

of intuitionistic fuzzy set as follows.

Definition 2.4 [4] Let X = {x1, x2, . . . , xn} be a universe of discourse, an intu-

itionistic fuzzy set in X is an expression A given by A = {(xi, tA(xi), fA(xi))|xi ∈

X}, where tA : X → [0, 1], fA : X → [0, 1] with the condition: 0 ≤ tA(xi)+fA(xi) ≤

1, for all xi in X. The numbers tA(xi) and fA(xi) represent the degree of member-

ship and the degree of non-membership of the element xi in the set A, respectively.

For each intuitionistic fuzzy set A in X, if πA(x) = 1−tA(x)−fA(x), for all x ∈ X.

Then πA(x) is called the degree of indeterminacy of x to A.

Specially, if πA(x) = 1− tA(x)− fA(x) = 0, for all x ∈ X. Then the intuitionistic

fuzzy set A is reduced to a fuzzy set.

Atanassov and Gargov [7] subsequently introduced the interval-valued intuition-

istic fuzzy set (IVIFS), which is a generalization of the IFS. The fundamental
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characteristic of the IVIFS is that the values of its membership function and non-

membership function are intervals rather than exact numbers.

Definition 2.5 [7] Let X = {x1, x2, . . . , xn} be a universe of discourse, D[0, 1] be

the set of all closed subintervals of the interval [0, 1]. An interval-valued intuition-

istic fuzzy set A in X is an expression given by A = {(xi, tA(xi), fA(xi))|xi ∈ X},

where tA : X → D[0, 1], fA : X → D[0, 1] with the condition: 0 ≤ sup tA(xi) +

sup fA(xi) ≤ 1, for all xi in X. The intervals tA(xi) and fA(xi) denote, respectively,

the degree of belongingness and the degree of non-belongingness of the element xi

to the set A.

For any two intervals [a, b] and [c, d] with b + d < 1 belonging to D[0, 1], let

tA(x) = [a, b], fA(x) = [c, d], so an interval-valued intuitionistic fuzzy set whose

value is denoted by A = {〈x, [a, b], [c, d]〉 |x ∈ X}.

Fuzzy data is a data type with imprecision or with a source of uncertainty not

caused by randomness, but due to ambiguity. Examples of fuzzy data types can

easily be found in natural language. It is generally more convenient and useful in

describing fuzzy data to use LR-type trapezoidal fuzzy numbers [42]. Zimmermann

[68, Subsubsection 5.3.2] defined the LR-type trapezoidal fuzzy numbers as follows:

Definition 2.6 Let L (and R) be decreasing, shape functions from <+ = [0,∞)

to [0, 1] with L(0) = 1; L(x) < 1 for all x > 0; L(x) > 0 for all x < 1; L(1) = 0

or (L(x) > 0 for all x and L(+∞) = 0). An LR-type trapezoidal fuzzy number

9



(TFN) X has the following membership function

µX(x) =






0 for x ≤ m1 and x ≥ m4,

L
(
m2−x
α

)
for m1 < x ≤ m2,

1 for m2 ≤ x ≤ m3,

R
(
x−m3

β

)
for m4 > x ≥ m3,

where m1 < m2 < m3 < m4 and α = m2 − m1 > 0 and β = m4 − m3 > 0

are called the left and right spread, respectively. Symbolically, X is denoted by

(m1,m2,m3,m4)LR.

The LR-type TFN is very general and allows one to represent the different types

of information. For example, the LR-type TFN X = (m,m,m,m)LR with m ∈

< = (−∞,∞) is used to denote a real number m and the LR-type TFN X =

(a, a, b, b)LR with a, b ∈ < and a < b is used to denote an interval [a, b].

Definition 2.7 For an LR-type TFN X = (m1,m2,m3,m4)LR, if L(x) = R(x) =

1− x then X is called a TFN, denoted by X = (m1,m2,m3,m4)T , i.e.

µX(x) =






0 for x ≤ m1 and x ≥ m4,

1− m2−x
α

for m1 < x ≤ m2(α > 0),

1 for m2 ≤ x ≤ m3,

1− x−m3

β
for m4 > x ≥ m3(β > 0).

where m1 < m2 < m3 < m4 and α = m2 − m1 > 0 and β = m4 − m3 > 0 are

called the left and right spread, respectively.

Definition 2.8 Let X = (m1,m2,m3,m4)LR be an LR-type trapezoidal fuzzy
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number then

sup(X) = m4.

Similarly,

sup(X) = m4

for trapezoidal fuzzy number X = (m1,m2,m3,m4)T .

In LR-type TFNs, the TFNs are most commonly used. In the rest of paper we use

TFN and denoted by X = (m1,m2,m3,m4) instead of X = (m1,m2,m3,m4)T .

3 Trapezoidal-valued intuitionistic fuzzy sets

Motivated by the IVIFS in [7], we define trapezoidal-valued intuitionistic fuzzy set

(TVIFS). The fundamental characteristic of the TVIFS is that the values of its

membership function and non-membership function are trapezoidal fuzzy number

rather than exact numbers or interval-valued. The set of all trapezoidal fuzzy

numbers on [0, 1] is denoted by Trap[0, 1], in which m1 ≥ 0 and m4 ≤ 1 for all

trapezoidal fuzzy numbers (see Definitions 2.7 and ?? ).

Definition 3.1 LetX = {x1, x2, . . . , xn} be a universe of discourse.A trapezoidal-

valued intuitionistic fuzzy setA inX is an expression given byA = {(xi, tA(xi), fA(xi))|xi ∈

X}, where tA : X → Trap[0, 1], fA : X → Trap[0, 1] with the condition: 0 ≤

sup tA(xi) + sup fA(xi) ≤ 1, for all xi in X. The trapezoidal fuzzy numbers tA(xi)

and fA(xi) denote, respectively, the degree of belongingness and the degree of

non-belongingness of the element xi to the set A.
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For any two trapezoidal fuzzy numbers (x1i, x2i, x3i, x4i) and (x
′

1i, x
′

2i, x
′

3i, x
′

4i) with

x4i + x
′

4i ≤ 1 belonging to Trap[0, 1], let tA(xi) = (x1i, x2i, x3i, x4i), fA(xi) =

(x′1i, x
′

2i, x
′

3i, x
′

4i), so a trapezoidal-valued intuitionistic fuzzy set whose value is

denoted by

A = {〈xi, ((x1i, x2i, x3i, x4i), (x
′

1i, x
′

2i, x
′

3i, x
′

4i))〉 |xi ∈ X}.

We call ((x1, x2, x3, x4), (x
′

1, x
′

2, x
′

3, x
′

4)) a trapezoidal-valued intuitionistic fuzzy

value. For convenience, let Ω be the set of all trapezoidal-valued intuitionistic

fuzzy values. Obviously, according to Definition 3.1, we know that ((1, 1, 1, 1),

(0, 0, 0, 0)) and ((0, 0, 0, 0), (1, 1, 1, 1)) are the largest and smallest trapezoidal-

valued intuitionistic fuzzy values, respectively.

In the following, we define a distance measure between trapezoidal valued intu-

itionistic fuzzy values.

Definition 3.2 LetX = {x1, . . . , xn} be a universe of discourse, ã = ((a1i, a2i, a3i,

a4i), (a
′

1i, a
′

2i, a
′

3i, a
′

4i)) and b̃ = ((b1i, b2i, b3i, b4i), (b
′

1i, b
′

2i, b
′

3i, b
′

4i)) (i = 1, 2, . . . , n) be

two trapezoidal-valued intuitionistic fuzzy values on X, then

d(ã, b̃) =
1

8

n∑

i=1

(
l|a1i − b1i|+ |a2i − b2i|+ |a3i − b3i|+ r|a4i − b4i|

+l|a′1i − b
′

1i|+ |a
′

2i − b
′

2i|+ |a
′

3i − b
′

3i|+ r|a
′

4i − b
′

4i|
)
,

is called the distance between ã and b̃, where l =
1∫

0

L−1(w)dw and r =
1∫

0

R−1(w)dw,

obviously l = r = 1/2 with the reference L and R in Definition 2.7.
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If

D(ã, b̃) =
1

8

n∑

i=1

wi

(
l|a1i − b1i|+ |a2i − b2i|+ |a3i − b3i|+ r|a4i − b4i|

+l|a′1i − b
′

1i|+ |a
′

2i − b
′

2i|+ |a
′

3i − b
′

3i|+ r|a
′

4i − b
′

4i|
)
,

where w = (w1, . . . , wn) is the weight vector of xj such that wi ∈ [0, 1] and
n∑

i=1

wi=1,

then D(ã, b̃) is called the weighted distance between ã and b̃.

Definition 3.3 We defined the following expressions for any two trapezoidal-

valued intuitionistic fuzzy values,

ã = ((a1, a2, a3, a4), (a
′

1, a
′

2, a
′

3, a
′

4)) and b̃ = ((b1, b2, b3, b4), (b
′

1, b
′

2, b
′

3, b
′

4));

1. ã ≤ b̃ if and only if a1 ≤ b1 and a2 ≤ b2 and a3 ≤ b3 and a4 ≤ b4 and

a′1 ≥ b
′

1 and a
′

2 ≥ b
′

2 and a
′

3 ≥ b
′

3 and a
′

4 ≥ b
′

4.

2. ã = b̃ if and only if a1 = b1 and a2 = b2 and a3 = b3 and a4 = b4 and

a′1 = b
′

1 and a
′

2 = b
′

2 and a
′

3 = b
′

3 and a
′

4 = b
′

4.

Since Definition 3.3 is not satisfied in many cases, thus it cannot be used to compare

intuitionistic fuzzy values. We define a score function and an accuracy function

of trapezoidal-valued intuitionistic fuzzy values for the comparison between two

trapezoidal-valued intuitionistic fuzzy values.

Definition 3.4 Let ã = ((a1, a2, a3, a4), (a
′

1, a
′

2, a
′

3, a
′

4)) be a trapezoidal-valued

intuitionistic fuzzy values, if S(ã) = (a1+ a2+ a3+ a4− a
′

1− a
′

2− a
′

3− a
′

4)/4, then

S(ã) is called a score function of ã, where S(ã) ∈ [−1, 1].
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Definition 3.5 Let ã = ((a1, a2, a3, a4), (a
′

1, a
′

2, a
′

3, a
′

4)) be a trapezoidal-valued

intuitionistic fuzzy values, if H(ã) = (a1+ a2+ a3+ a4+ a
′

1+ a
′

2+ a
′

3+ a
′

4)/4, then

H(ã) is called an accuracy function of ã, where H(ã) ∈ [0, 1].

The score function S and the accuracy function H are, respectively, defined

as the difference and the sum of the membership function tA(x) and the non-

membership function fA(x). Next we define order relation between two trapezoidal-

valued intuitionistic fuzzy values.

Definition 3.6 Let ã = ((a1, a2, a3, a4), (a
′

1, a
′

2, a
′

3, a
′

4)) and b̃ = ((b1, b2, b3, b4), (b
′

1, b
′

2,

b′3, b
′

4)) be any two trapezoidal-valued intuitionistic fuzzy values.

1. If S(ã)<S(b̃), then ã is smaller than b̃, denoted by ã < b̃.

2. If S(ã)=S(b̃) and;

i. if H(ã)<H(b̃), then ã is smaller than b̃, denoted by ã < b̃.

ii. if H(ã)=H(b̃), then ã and b̃ represent the same information, denoted

by ã = b̃.

Motivated by the operations in ([5], [6], [47], [58]), we define two operational laws

of trapezoidal-valued intuitionistic fuzzy values.

Definition 3.7 Let ã = ((a1, a2, a3, a4), (a
′

1, a
′

2, a
′

3, a
′

4)) and b̃ = ((b1, b2, b3, b4), (b
′

1, b
′

2,

b′3, b
′

4)) be two trapezoidal-valued intuitionistic fuzzy values, then

1. ã.b̃ = ((a1b1, a2b2, a3b3, a4b4), (a
′

1+ b
′

1−a
′

1b
′

1, a
′

2+ b
′

2−a
′

2b
′

2, a
′

3+ b
′

3−a
′

3b
′

3, a
′

4+

b′4 − a
′

4b
′

4));

14



2. ãλ = ((aλ1 , a
λ
2 , a

λ
3 , a

λ
4), (1 − (1 − a

′

1)
λ, 1 − (1 − a′2)

λ, 1 − (1 − a′3)
λ, 1 − (1 −

a′4)
λ, )), λ > 0.

For two operational laws of Definition 3.7, it is easy to obtain the following propo-

sitions.

Proposition 3.8 Let ã = ((a1, a2, a3, a4), (a
′

1, a
′

2, a
′

3, a
′

4)) and b̃ = ((b1, b2, b3, b4), (b
′

1,

b′2, b
′

3, b
′

4)) be two trapezoidal-valued intuitionistic fuzzy values, and let c̃ = ã.b̃ and

d̃ = ãλ, then both c̃ and d̃ are also trapezoidal-valued intuitionistic fuzzy values.

Proposition 3.9 Let ã = ((a1, a2, a3, a4), (a
′

1, a
′

2, a
′

3, a
′

4)) and b̃ = ((b1, b2, b3, b4), (b
′

1,

b′2, b
′

3, b
′

4)) be two trapezoidal-valued intuitionistic fuzzy values. Then we have:

1. ã.b̃ = b̃.ã;

2. (ã.b̃)λ = ãλ.b̃λ;

3. ãλ1+λ2 = ãλ1 .ãλ2 ,

for all λ, λ1, λ2 > 0.

4 Generalized trapezoidal-valued intuitionistic fuzzy

geometric aggregation operator

In the following, based on ρ-fuzzy measure, we first give the definition of generalized

trapezoidal-valued intuitionistic geometric aggregation operator and then study its

properties.
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Definition 4.1 Let ãi = ((a1i, a2i, a3i, a4i), (a
′

1i, a
′

2i, a
′

3i, a
′

4i)) (i = 1, 2, . . . , n) be

a collection of trapezoidal-valued intuitionistic fuzzy values on X and µ be a ρ-

fuzzy measure on X. Based on ρ-fuzzy measure µ, a generalized trapezoidal-valued

intuitionistic fuzzy geometric aggregation (GTIFGA) operator of dimension n is a

mapping GTIFGA: Ωn → Ω such that

GTIFGAµ(ã1, ã2, . . . , ãn)

= (ã(1))
µ(A(1))−µ(A(2)) · (ã(2))

µ(A(2))−µ(A(3)) · · · · · (ã(n))
µ(A(n))−µ(A(n+1)),

where (·) indicates a permutation on X such that ã(1) ≤ ã(2) ≤ · · · ≤ ã(n) and

A(i) = ((i), . . . , (n)), A(n+1) = φ.

Theorem 4.2 Let ãi = ((a1i, a2i, a3i, a4i), (a
′

1i, a
′

2i, a
′

3i, a
′

4i)) (i = 1, 2, . . . , n) be a

collection of trapezoidal-valued intuitionistic fuzzy values on X, and µ be a ρ-fuzzy

measure on X. then their aggregated value by using the GTIFGAµ operator is also

16



a trapezoidal-valued intuitionistic fuzzy value, and

GTIFGAµ(ã1, ã2, . . . , ãn) =
(( n∏

i=1

(a1(i))
µ(A(i))−µ(A(i+1)),

n∏

i=1

(a2(i))
µ(A(i))−µ(A(i+1)),

n∏

i=1

(a3(i))
µ(A(i))−µ(A(i+1)),

n∏

i=1

(a4(i))
µ(A(i))−µ(A(i+1))

)
,

(
1−

n∏

i=1

(1− (a′1(i)))
µ(A(i))−µ(A(i+1)),

1−
n∏

i=1

(1− (a′2(i)))
µ(A(i))−µ(A(i+1)),

1−

n∏

i=1

(1− (a′3(i)))
µ(A(i))−µ(A(i+1)),

1−

n∏

i=1

(1− (a′4(i)))
µ(A(i))−µ(A(i+1))

))
(4.1)

where (·) indicates a permutation on X such that ã(1) ≤ ã(2) ≤ · · · ≤ ã(n) and

A(i) = ((i), . . . , (n)), A(n+1) = φ.

Proof. The first result follows immediately from Definition 4.1 and Proposition

3.8. Next we prove Eq. (4.1) by using mathematical induction on n.

By the operational laws of Definition 3.7, we have

(ã(1))
µ(A(1))−µ(A(2)) =

((
(a1(1))

µ(A(1))−µ(A(2)), (a2(1))
µ(A(1))−µ(A(2)), (a3(1))

µ(A(1))−µ(A(2)),

(a4(1))
µ(A(1))−µ(A(2))

)
,
(
1− (1− (a′1(1)))

µ(A(1))−µ(A(2)), 1−

(1− (a′2(1)))
µ(A(1))−µ(A(2)), 1− (1− (a′3(1)))

µ(A(1))−µ(A(2)),

1− (1− (a′4(1)))
µ(A(1))−µ(A(2))

))
,
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(ã(2))
µ(A(1))−µ(A(2)) =

((
(a1(2))

µ(A(1))−µ(A(2)), (a2(2))
µ(A(1))−µ(A(2)), (a3(2))

µ(A(1))−µ(A(2)),

(a4(2))
µ(A(1))−µ(A(2))

)
,
(
1− (1− (a′1(2)))

µ(A(1))−µ(A(2)),

1− (1− (a′2(2)))
µ(A(1))−µ(A(2)), 1− (1− (a′3(2)))

µ(A(1))−µ(A(2)),

1− (1− (a′4(2)))
µ(A(1))−µ(A(2))

))
.

Also

ã1.ã2 = ((a1(1)a1(2), a2(1)a2(2), a3(1)a3(2), a4(1)a4(2)), (a
′

1(1) + a
′

1(2) − a
′

1(1)a
′

1(2), a
′

2(1)

+a′2(2) − a
′

2(1)a
′

2(2), a
′

3(1) + a
′

3(2) − a
′

3(1)a
′

3(2), a
′

4(1) + a
′

4(2) − a
′

4(1)a
′

4(2)])

ã1.ã2 = ((a1(1)a1(2), a2(1)a2(2), a3(1)a3(2), a4(1)a4(2)), (1− (1− a
′

1(1))(1− a
′

1(2)), 1−

(1− a′2(1))(1− a
′

2(2)), 1− (1− a
′

3(1))(1− a
′

3(2)), 1− (1− a
′

4(1))(1− a
′

4(2)))).
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For n = 2 in Eq. (4.1), we have

GTIFGAµ(ã1, ã2) = (ã1)
µ(A(1))−µ(A(2)) · (ã2)

µ(A(2))−µ(A(3))

=
((
(a1(1))

µ(A(1))−µ(A(2)) · (a1(2))
µ(A(2))−µ(A(3)),

(a2(1))
µ(A(1))−µ(A(2)) · (a2(2))

µ(A(2))−µ(A(3)),

(a3(1))
µ(A(1))−µ(A(2)) · (a3(2))

µ(A(2))−µ(A(3)),

(a4(1))
µ(A(1))−µ(A(2)) · (a4(2))

µ(A(2))−µ(A(3))
)
,

(
1− (1− (a′1(1)))

µ(A(1))−µ(A(2))(1− (a′1(2)))
µ(A(2))−µ(A(3)),

1− (1− (a′2(1)))
µ(A(1))−µ(A(2))(1− (a′2(2)))

µ(A(2))−µ(A(3)),

1− (1− (a′3(1)))
µ(A(1))−µ(A(2))(1− (a′3(2)))

µ(A(2))−µ(A(3)),

1− (1− (a′4(1)))
µ(A(1))−µ(A(2))(1− (a′4(2)))

µ(A(2))−µ(A(3))
))
.

That is, for n = 2, Eq. (4.1) holds.
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Suppose that for n = k, Eq. (4.1) holds, i.e.,

GTIFGAµ(ã1, ã2, . . . , ãk) =
(( k∏

i=1

(a1(i))
µ(A(i))−µ(A(i+1)),

k∏

i=1

(a2(i))
µ(A(i))−µ(A(i+1)),

k∏

i=1

(a3(i))
µ(A(i))−µ(A(i+1)),

k∏

i=1

(a4(i))
µ(A(i))−µ(A(i+1))

)
,

(
1−

k∏

i=1

(1− (a′1(i)))
µ(A(i))−µ(A(i+1)),

1−

k∏

i=1

(1− (a′2(i)))
µ(A(i))−µ(A(i+1)),

1−

k∏

i=1

(1− (a′3(i)))
µ(A(i))−µ(A(i+1)),

1−

k∏

i=1

(1− (a′4(i)))
µ(A(i))−µ(A(i+1))

))
.
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Then, for n = k + 1, according to Definition 3.1, we have

GTIFGAµ(ã1, ã2, . . . , ãk+1)

=
((
(a1(k+1))

µ(A(k+1))−µ(A(k+2))

k∏

i=1

(a1(i))
µ(A(i))−µ(A(i+1)),

(a2(k+1))
µ(A(k+1))−µ(A(k+2))

k∏

i=1

(a2(i))
µ(A(i))−µ(A(i+1)),

(a3(k+1))
µ(A(k+1))−µ(A(k+2))

k∏

i=1

(a3(i))
µ(A(i))−µ(A(i+1)),

(a4(k+1))
µ(A(k+1))−µ(A(k+2))

k∏

i=1

(a4(i))
µ(A(i))−µ(A(i+1))

)
,

(
1− (1− (a′1(k+1)))

µ(A(k+1))−µ(A(k+2))

k∏

i=1

(1− (a′1(i)))
µ(A(i))−µ(A(i+1)),

1− (1− (a′2(k+1)))
µ(A(k+1))−µ(A(k+2))

k∏

i=1

(1− (a′2(i)))
µ(A(i))−µ(A(i+1)),

1− (1− (a′3(k+1)))
µ(A(k+1))−µ(A(k+2))

k∏

i=1

(1− (a′3(i)))
µ(A(i))−µ(A(i+1)),

1− (1− (a′4(k+1)))
µ(A(k+1))−µ(A(k+2))

k∏

i=1

(1− (a′4(i)))
µ(A(i))−µ(A(i+1))

))

=
((k+1∏

i=1

(a1(i))
µ(A(i))−µ(A(i+1)),

k+1∏

i=1

(a2(i))
µ(A(i))−µ(A(i+1)),

k+1∏

i=1

(a3(i))
µ(A(i))−µ(A(i+1)),

k+1∏

i=1

(a4(i))
µ(A(i))−µ(A(i+1))

)
,

(
1−

k+1∏

i=1

(1− (a′1(i)))
µ(A(i))−µ(A(i+1)), 1−

k+1∏

i=1

(1− (a′2(i)))
µ(A(i))−µ(A(i+1)),

1−
k+1∏

i=1

(1− (a′3(i)))
µ(A(i))−µ(A(i+1)), 1−

k+1∏

i=1

(1− (a′4(i)))
µ(A(i))−µ(A(i+1))

))
.
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That is, for n = k + 1, Eq. (4.1) still holds.

Therefore, for all n, the Eq. (4.1) holds.

Remark 4.3 Let ãi = ((a1i, a2i, a3i, a4i), (a
′

1i, a
′

2i, a
′

3i, a
′

4i)) and b̃i = ((b1i, b2i, b3i, b4i),

(b′1i, b
′

2i, b
′

3i, b
′

4i)) (i = 1, 2, . . . , n) be two collections of trapezoidal-valued intuition-

istic fuzzy values on X. Since aji, a
′

ji, bji, b
′

ji ∈ [0, 1] for any i and j = 1, 2, 3, 4. If we

assume that TP (a
′

ji, b
′

ji) = a
′

ji ·b
′

ji, SP (aji, bji) = aji+bji−aji ·bji, then TP (a
′

ji, b
′

ji) is

one of the basic t-norms, called the product, which is satisfying the axioms of de-

finition 2.2. SP (aji, bji) is one of the basic t-conorms, called the probabilistic sum

[29], and SP is also called the dual t-conorm of TP , which is satisfying the axioms

of definition 2.3. The associativity of t-norms and t-conorms allows us to extend

the product TP and probabilistic sum SP in unique way to an n-ary operation in

the usual way by induction, defining for each n-tuple (x1, x2, ..., xn) ∈ [0, 1]
n and

(y1, y2, ..., yn) ∈ [0, 1]
n, respectively:

TP (x1, x2, ..., xn) =

n∏

i=1

xi,

SP (y1, y2, ..., yn) = 1−

n∏

i=1

(1− yi).

Assume that x′1i = 1−(1−(a
′

1(i)))
µ(A(i))−µ(A(i+1)), x′2i = 1−(1−(a

′

2(i)))
µ(A(i))−µ(A(i+1)),

x′3i = 1 − (1 − (a′3(i)))
µ(A(i))−µ(A(i+1)), x′4i = 1 − (1 − (a′4(i)))

µ(A(i))−µ(A(i+1)), x1i =

(a1(i))
µ(A(i))−µ(A(i+1)), x2i = (a2(i))

µ(A(i))−µ(A(i+1)), x3i = (a3(i))
µ(A(i))−µ(A(i+1)), x4i =
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(a4(i))
µ(A(i))−µ(A(i+1)). Theorem 4.2 further implies

GTIFGAµ(ã1, ã2, . . . , ãn) =
((
TP (x11, x12, . . . , x1n), TP (x21, x22, . . . , x2n),

TP (x31, x32, . . . , x3n), TP (x41, x42, . . . , x4n)
)
,

(
SP (x

′

11, x
′

12, . . . , x
′

1n), SP (x
′

21, x
′

22, . . . , x
′

2n)

SP (x
′

31, x
′

32, . . . , x
′

3n), SP (x
′

41, x
′

42, . . . , x
′

4n)
))
.

Thus the generalized interval-valued intuitionistic fuzzy geometric aggregation op-

erator can be represented by one of the basic t-norms TP and t-conorms SP .

Corollary 4.4 Let ãi = ((a1i, a2i, a3i, a4i), (a
′

1i, a
′

2i, a
′

3i, a
′

4i)) (i = 1, 2, . . . , n) be a

collection of trapezoidal-valued intuitionistic fuzzy values on X. If all ãi are equal

(i = 1, 2, . . . , n) that is, for all i, ãi = ã = ((a1, a2, a3, a4), (a
′

1, a
′

2, a
′

3, a
′

4)), then

GTIFGAµ(ã1, ã2, . . . , ãn) = ã.

Proof. By Theorem 4.2, if for all i (i = 1, 2, . . . , n), ãi = ã, then

GTIFGAµ(ã1, ã2, . . . , ãn) =
((
a

n∑

i=1
µ(A(i))−µ(A(i+1))

1 , a

n∑

i=1
µ(A(i))−µ(A(i+1))

2 ,

a

n∑

i=1
µ(A(i))−µ(A(i+1))

3 , a

n∑

i=1
µ(A(i))−µ(A(i+1))

4

)
,

(
1− (1− b1)

n∑

i=1
µ(A(i))−µ(A(i+1))

,

1− (1− b2)

n∑

i=1
µ(A(i))−µ(A(i+1))

,

1− (1− b3)

n∑

i=1
µ(A(i))−µ(A(i+1))

,

1− (1− b4)

n∑

i=1
µ(A(i))−µ(A(i+1))

))
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Since
n∑

i=1

µ(A(i))− µ(A(i+1)) = 1.

Thus

GTIFGAµ(ã1, ã2, . . . , ãn) = ((a1, a2, a3, a4), (a
′

1, a
′

2, a
′

3, a
′

4)) = ã.

Corollary 4.5 Let ãi = ((a1i, a2i, a3i, a4i), (a
′

1i, a
′

2i, a
′

3i, a
′

4i)) and b̃i = ((b1i, b2i, b3i, b4i),

(b′1i, b
′

2i, b
′

3i, b
′

4i)) (i = 1, 2, . . . , n) be two collections of trapezoidal-valued intuition-

istic fuzzy values onX, and µ be a ρ-fuzzy measure onX. (·) indicates a permutation

on X such that ã(1) ≤ · · · ≤ ã(n) and b̃(1) ≤ · · · ≤ b̃(n). If aji ≤ bji and a
′

ji ≥ b
′

ji for

all i and j = 1, 2, 3, 4, that is, ã(i) ≤ b̃(i), then

GTIFGAµ(ã1, ã2, . . . , ãn) ≤ GTIFGAµ(b̃1, b̃2, . . . , b̃n).

Proof. Since A(i+1) ⊆ A(i), therefore µ(A(i)) − µ(A(i+1)) ≥ 0. For all i and j =

1, 2, 3, 4, aji ≤ bji and a
′

ji ≥ b
′

ji, thus we have

n∏

i=1

(aji)
µ(A(i))−µ(A(i+1)) ≤

n∏

i=1

(bji)
µ(A(i))−µ(A(i+1)) ,

1−
n∏

i=1

(
1− a′ji

)µ(A(i))−µ(A(i+1)) ≥
n∏

i=1

(
b′ji
)µ(A(i))−µ(A(i+1)) .

Using Theorem 4.2 and Definition 3.3, we have

GTIFGAµ(ã1, ã2, . . . , ãn) ≤ GTIFGAµ(b̃1, b̃2, . . . , b̃n).

Corollary 4.6 Let ãi = ((a1i, a2i, a3i, a4i), (a
′

1i, a
′

2i, a
′

3i, a
′

4i)) (i = 1, 2, . . . , n) be a

collection of trapezoidal-valued intuitionistic fuzzy values on X and µ be a ρ-fuzzy
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measure on X. If

ã− =
((
min
i
a1i,min

i
a2i,min

i
a3i,min

i
a4i

)
,
(
max
i
a′1i,max

i
a′2i,max

i
a′3i,max

i
a′4i

))

ã+ =
((
max
i
a1i,max

i
a2i,max

i
a3i,max

i
a4i

)
,
(
min
i
a′1i,min

i
a′2i,min

i
a′3i,min

i
a′4i

))

then

ã− ≤ GTIFGAµ(ã1, ã2, . . . , ãn) ≤ ã
+.

Proof. For any ãi = ((a1i, a2i, a3i, a4i), (a
′

1i, a
′

2i, a
′

3i, a
′

4i)) (i = 1, 2, . . . , n), ã
− and

ã+ are trapezoidal valued intuitionistic fuzzy values.

Since A(i+1) ⊆ A(i), therefore µ(A(i))− µ(A(i+1)) ≥ 0.

Let (·) indicates a permutation on X such that ã(1) ≤ · · · ≤ ã(n), we have

min
i
aji ≤ aj(i) ≤ max

i
aji, and min

i
a′ji ≤ a

′

j(i) ≤ max
i
aji.

Thus

n∏

i=1

(
min
i
aji

)µ(A(i))−µ(A(i+1))
≤

n∏

i=1

(
aj(i)

)µ(A(i))−µ(A(i+1)) ≤
n∏

i=1

(
max
i
aji

)µ(A(i))−µ(A(i+1))

and

1−

n∏

i=1

(
1−min

i
a′ji

)µ(A(i))−µ(A(i+1))
≤ 1−

n∏

i=1

(
1− a′j(i)

)µ(A(i))−µ(A(i+1))

≤ 1−

n∏

i=1

(
1−max

i
a′ji

)µ(A(i))−µ(A(i+1))
.
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i.e.,

(
min
i
aji

) n∑

i=1
µ(A(i))−µ(A(i+1))

≤
n∏

i=1

(
aj(i)

)µ(A(i))−µ(A(i+1)) ≤
(
max
i
aji

) n∑

i=1
µ(A(i))−µ(A(i+1))

and

1−
(
1−min

i
a′ji

) n∑

i=1
µ(A(i))−µ(A(i+1))

≤ 1−

n∏

i=1

(
1− a′j(i)

)µ(A(i))−µ(A(i+1))

≤ 1−
(
1−max

i
a′ji

) n∑

i=1
µ(A(i))−µ(A(i+1))

.

Since
n∑

i=1

(
µ(A(i))− µ(A(i+1))

)
= 1.

So we have

min
i
aji ≤

n∏

i=1

(
aj(i)

)µ(A(i))−µ(A(i+1)) ≤ max
i
aji

and

min
i
a′ji ≤ 1−

n∏

i=1

(
1− a′j(i)

)µ(A(i))−µ(A(i+1)) ≤ max
i
a′ji.

Using Theorem 4.2 and Definition 3.3, we have

((
min
i
a1i,min

i
a2i,min

i
a3i,min

i
a4i

)
,
(
max
i
a′1i,max

i
a′2i,max

i
a′3i,max

i
a′4i

))

≤ GTIFGAµ(ã1, ã2, . . . , ãn) ≤
((
max
i
a1i,max

i
a2i,max

i
a3i,max

i
a4i

)
,
(
min
i
a′1i,min

i
a′2i,min

i
a′3i,min

i
a′4i

))

that is,

ã− ≤ GTIFGAµ(ã1, ã2, . . . , ãn) ≤ ã
+.
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Corollary 4.7 Let ãi = ((a1i, a2i, a3i, a4i), (a
′

1i, a
′

2i, a
′

3i, a
′

4i)) (i = 1, 2, . . . , n) be

a collection of trapezoidal-valued intuitionistic fuzzy values on X and µ be a ρ-

fuzzy measure on X. If s̃ = ((a1, a2, a3, a4), (a
′

1, a
′

2, a
′

3, a
′

4)) is a trapezoidal valued

intuitionistic fuzzy value on X, then

GTIFGAµ(ã1 · s̃, ã2 · s̃, . . . , ãn · s̃) = GTIFGAµ(ã1, ã2, . . . , ãn) · s̃.

Proof. Since for any i(i = 1, 2, . . . , n)

ãi · s̃ = ((a1i · a1, a2i · a2, a3i · a3, a4i · a4), (a
′

1i + a
′

1 − a
′

1i · a
′

1,

a′2i + a
′

2 − a
′

2i · a
′

2, a
′

3i + a
′

3 − a
′

3i · a
′

3, a
′

4i + a
′

4 − a
′

4i · a
′

4))

= ((a1i · a1, a2i · a2, a3i · a3, a4i · a4), (1− (1− a
′

1i)(1− a
′

1),

1− (1− a′2i)(1− a
′

2), 1− (1− a
′

3i)(1− a
′

3), 1− (1− a
′

4i)(1− a
′

4))).

By Theorem 4.2, we have

GTIFGAµ(ã1 · s̃, ã2 · s̃, . . . , ãn · s̃) =
(( n∏

i=1

(a1(i)a1)
µ(A(i))−µ(A(i+1)),

n∏

i=1

(a2(i)a2)
µ(A(i))−µ(A(i+1)),

n∏

i=1

(a3(i)a3)
µ(A(i))−µ(A(i+1)),

n∏

i=1

(a4(i)a4)
µ(A(i))−µ(A(i+1))

)
,
(
1−

n∏

i=1

((1− (a′1(i)))(1− (a
′

1)))
µ(A(i))−µ(A(i+1)),

1−

n∏

i=1

((1− (a′2(i)))(1− (a
′

2)))
µ(A(i))−µ(A(i+1)),

1−
n∏

i=1

((1− (a′3(i)))(1− (a
′

3)))
µ(A(i))−µ(A(i+1)),

1−
n∏

i=1

((1− (a′4(i)))(1− (a
′

4)))
µ(A(i))−µ(A(i+1))

))
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=
((
a1

n∏

i=1

(a1(i))
µ(A(i))−µ(A(i+1)), a2

n∏

i=1

(a2(i))
µ(A(i))−µ(A(i+1)),

a3

n∏

i=1

(a3(i))
µ(A(i))−µ(A(i+1)), a4

n∏

i=1

(a4(i))
µ(A(i))−µ(A(i+1))

)
,

(
1− (1− (a′1))

n∏

i=1

(1− (a′1(i)))
µ(A(i))−µ(A(i+1)),

1− (1− (a′2))

n∏

i=1

(1− (a′2(i)))
µ(A(i))−µ(A(i+1)),

1− (1− (a′3))

n∏

i=1

(1− (a′3(i)))
µ(A(i))−µ(A(i+1)),

1− (1− (a′4))
n∏

i=1

(1− (a′4(i)))
µ(A(i))−µ(A(i+1))

))

According to Eq. (4.1), we have

GTIFGAµ(ã1, ã2, . . . , ãn) · s̃

=
((
a1

n∏

i=1

(a1(i))
µ(A(i))−µ(A(i+1)), a2

n∏

i=1

(a2(i))
µ(A(i))−µ(A(i+1)),

a3

n∏

i=1

(a3(i))
µ(A(i))−µ(A(i+1)), a4

n∏

i=1

(a4(i))
µ(A(i))−µ(A(i+1))

)
,

(
1− (1− (a′1))

n∏

i=1

(1− (a′1(i)))
µ(A(i))−µ(A(i+1)),

1− (1− (a′2))
n∏

i=1

(1− (a′2(i)))
µ(A(i))−µ(A(i+1)),

1− (1− (a′3))

n∏

i=1

(1− (a′3(i)))
µ(A(i))−µ(A(i+1)),

1− (1− (a′4))
n∏

i=1

(1− (a′4(i)))
µ(A(i))−µ(A(i+1))

))

Thus,

GTIFGAµ(ã1 · s̃, ã2 · s̃, . . . , ãn · s̃) = GTIFGAµ(ã1, ã2, . . . , ãn) · s̃.
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Corollary 4.8 Let ãi = ((a1i, a2i, a3i, a4i), (a
′

1i, a
′

2i, a
′

3i, a
′

4i)) (i = 1, 2, . . . , n) be a

collection of trapezoidal-valued intuitionistic fuzzy values on X and µ be a ρ-fuzzy

measure on X. If v > 0, then

GTIFGAµ((ã1)
v, (ã2)

v, . . . , (ãn)
v) = (GTIFGAµ(ã1, ã2, . . . , ãn))

v .

Proof. Due to Definition 3.7, for any i(i = 1, 2, . . . , n) and v > 0 we have.

By Theorem 4.2, we have

GTIFGAµ((ã1)
v, (ã2)

v, . . . , (ãn)
v)

=
(( n∏

i=1

((a1(i))
v)µ(A(i))−µ(A(i+1)),

n∏

i=1

((a2(i))
v)µ(A(i))−µ(A(i+1)),

n∏

i=1

((a3(i))
v)µ(A(i))−µ(A(i+1)),

n∏

i=1

((a4(i))
v)µ(A(i))−µ(A(i+1))

)
,

(
1−

n∏

i=1

((1− (a′1(i)))
v)µ(A(i))−µ(A(i+1)), 1−

n∏

i=1

((1− (a′2(i)))
v)µ(A(i))−µ(A(i+1)),

1−
n∏

i=1

((1− (a′3(i)))
v)µ(A(i))−µ(A(i+1)), 1−

n∏

i=1

((1− (a′4(i)))
v)µ(A(i))−µ(A(i+1))

))

=
(( n∏

i=1

(a1(i))
v(µ(A(i))−µ(A(i+1))),

n∏

i=1

(a2(i))
v(µ(A(i))−µ(A(i+1))),

n∏

i=1

(a3(i))
v(µ(A(i))−µ(A(i+1))),

n∏

i=1

(a4(i))
v(µ(A(i))−µ(A(i+1)))

)
,
(
1−

n∏

i=1

(1− (a′1(i)))
v(µ(A(i))−µ(A(i+1))),

1−
n∏

i=1

(1− (a′2(i)))
v(µ(A(i))−µ(A(i+1))), 1−

n∏

i=1

(1− (a′3(i)))
v(µ(A(i))−µ(A(i+1))),

1−
n∏

i=1

(1− (a′4(i)))
v(µ(A(i))−µ(A(i+1)))

))
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Since

(GTIFGAµ(ã1, ã2, . . . , ãn))
v

=

(((
n∏

i=1

(a1(i))
µ(A(i))−µ(A(i+1))

)v
,

(
n∏

i=1

(a2(i))
µ(A(i))−µ(A(i+1))

)v
,

(
n∏

i=1

(a3(i))
µ(A(i))−µ(A(i+1))

)v
,

(
n∏

i=1

(a4(i))
µ(A(i))−µ(A(i+1))

)v)

,

(

1−

(
n∏

i=1

(1− (a′1(i)))
µ(A(i))−µ(A(i+1))

)v
, 1−

(
n∏

i=1

(1− (a′2(i)))
µ(A(i))−µ(A(i+1))

)v
,

1−

(
n∏

i=1

(1− (a′3(i)))
µ(A(i))−µ(A(i+1))

)v
, 1−

(
n∏

i=1

(1− (a′4(i)))
µ(A(i))−µ(A(i+1))

)v))

=

((
n∏

i=1

(a1(i))
v(µ(A(i))−µ(A(i+1))),

n∏

i=1

(a2(i))
v(µ(A(i))−µ(A(i+1))),

n∏

i=1

(a3(i))
v(µ(A(i))−µ(A(i+1))),

n∏

i=1

(a4(i))
v(µ(A(i))−µ(A(i+1)))

)

,

(

1−

n∏

i=1

(1− (a′1(i)))
v(µ(A(i))−µ(A(i+1))),

1−
n∏

i=1

(1− (a′2(i)))
v(µ(A(i))−µ(A(i+1))), 1−

n∏

i=1

(1− (a′3(i)))
v(µ(A(i))−µ(A(i+1))),

1−
n∏

i=1

(1− (a′4(i)))
v(µ(A(i))−µ(A(i+1)))

))

.

Thus,

GTIFGAµ((ã1)
v, (ã2)

v, . . . , (ãn)
v) = (GTIFGAµ(ã1, ã2, . . . , ãn))

v .

Due to Corollaries 4.7 and 4.8, we can obtain the following corollary.

Corollary 4.9 Let ãi = ((a1i, a2i, a3i, a4i), (a
′

1i, a
′

2i, a
′

3i, a
′

4i)) (i = 1, 2, . . . , n) be a

collection of trapezoidal-valued intuitionistic fuzzy values on X. and µ be a ρ-fuzzy

measure on X. If v > 0 and s̃ = ((a1, a2, a3, a4), (a
′

1, a
′

2, a
′

3, a
′

4)) is a trapezoidal
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valued intuitionistic fuzzy value on X, then

GTIFGAµ((ã1)
v · s̃, (ã2)

v · s̃, . . . , (ãn)
v · s̃) = (GTIFGAµ(ã1, ã2, . . . , ãn))

v · s̃.

Corollary 4.10 Let ãi = ((a1i, a2i, a3i, a4i), (a
′

1i, a
′

2i, a
′

3i, a
′

4i)) (i = 1, 2, . . . , n) be a

collection of trapezoidal-valued intuitionistic fuzzy values on X. and µ be a ρ-fuzzy

measure on X.

1. If µ(A) = 1 for any A ∈ P (X), then

GTIFGAµ(ã1, ã2, . . . , ãn) = max(ã1, ã2, . . . , ãn) = ã(n).

2. If µ(A) = 0 for any A ∈ P (X) and A 6= X, then

GTIFGAµ(ã1, ã2, . . . , ãn) = min(ã1, ã2, . . . , ãn) = ã(1).

3. For any A,B ∈ P (X) such that |A| = |B|, if µ(A) = µ(B) and µ{(i), . . . , (n)} =

n−i+1
n
, 1 ≤ i ≤ n, then

GTIFGAµ(ã1, ã2, . . . , ãn)

=
(( n∏

i=1

(a1(i))
1
n ,

n∏

i=1

(a2(i))
1
n ,

n∏

i=1

(a3(i))
1
n ,

n∏

i=1

(a4(i))
1
n

)
,

(
1−

n∏

i=1

(1− (a′1(i)))
1
n , 1−

n∏

i=1

(1− (a′2(i)))
1
n ,

1−

n∏

i=1

(1− (a′3(i)))
1
n , 1−

n∏

i=1

(1− (a′4(i)))
1
n

))
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Tan [47] proposed a generalized interval-valued intuitionistic fuzzy geometric ag-

gregation (GIIFGA) operator, which is defined as follows.

Definition 4.11 Let ãi = ([a1i, a2i], [a
′

1i, a
′

2i]) (i = 1, 2, . . . , n) be a collection of

interval-valued intuitionistic fuzzy values on X, and µ be a ρ-fuzzy measure on

X. Based on ρ-fuzzy measure, a generalized interval-valued intuitionistic fuzzy

geometric aggregation (GIIFGA) operator of dimension n is a mapping GIIFGA:

Ωn → Ω such that

GIIFGAµ(ã1, ã2, . . . , ãn)

= (ã(1))
µ(A(1))−µ(A(2)) · (ã(2))

µ(A(2))−µ(A(3)) · · · · · (ã(n))
µ(A(n))−µ(A(n+1)),

where (·) indicates a permutation on X such that ã(1) ≤ ã(2) ≤ · · · ≤ ã(n) and

A(i) = ((i), . . . , (n)), A(n+1) = φ.

Remark 4.12 If the trapezoidal number shifted to interval valued by deleting

the two terms of trapezoidal number and closed brackets around that number

then GIIFGAµ =GTIFGAµ.

5 Trapezoidal valued intuitionistic fuzzy group

decision making process

Choquet integral is defined as follows.

Definition 5.1 [22] Let X = {x1, x2, . . . , xn} be a universe of discourse, f be a

positive real-valued function on X, and µ be a ρ-fuzzy measure on X. The discrete
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Choquet integral of f with respective to µ is defined by

Cµ(f) =

n∑

i=1

f(x(i))[µ(A(i))− µ(A(i+1))],

where (·) indicates a permutation on X such that f(x1) ≤ f(x2) ≤ · · · ≤ f(xn).

Also A(i) = {x(i), . . . , x(n)}, A(n+1) = φ.

Choquet integral based distance between two trapezoidal-valued intuitionistic fuzzy

values is defined as follows.

Definition 5.2 Let ãi = ((a1i, a2i, a3i, a4i), (a
′

1i, a
′

2i, a
′

3i, a
′

4i)) and b̃i = ((b1i, b2i, b3i, b4i),

(b′1i, b
′

2i, b
′

3i, b
′

4i)) (i = 1, 2, . . . , n) be two collections of trapezoidal-valued intuition-

istic fuzzy values on X, and µ be a ρ-fuzzy measure on X. C(ã, b̃) is defined by

Choquet integral-based distance as

C(ã, b̃) =

n∑

i=1

d(i)(ã, b̃)(µ(A(i))− µ(A(i+1))),

where di(ã, b̃) = l|a1i − b1i| + |a2i − b2i| + |a3i − b3i| + r|a4i − b4i| + l|a
′

1i − b
′

1i| +

|a′2i − b
′

2i|+ |a
′

3i − b
′

3i|+ r|a
′

4i − b
′

4i|, so that d(1)(ã, b̃) ≤ d(2)(ã, b̃) ≤ · · · ≤ d(n)(ã, b̃),

A(i) = {x(i), . . . , x(n)}, A(n+1) = φ.

In general, multi-criteria group decision making problem includes uncertain and

imprecise data and information. We consider the multi-criteria group decision

making problems where all the criteria values are expressed in trapezoidal-valued

intuitionistic fuzzy values, and interactions phenomena among the decision making

criteria or preference of decision makers are taken into account. The following

notations are used to depict the considered problems:
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E = {e1, e2, . . . , er} is the set of the experts involved in the decision process;

A = {a1, a2, . . . , am} is the set of the considered alternatives;

C = {c1, c2, . . . , cn} is the set of the criterias used for evaluating the alterna-

tives.

In group decision making problems, aggregation of expert opinions is very impor-

tant to appropriately perform evaluation process. In the following, according to

Choquet integral-based distance, Choquet integral-based TOPSIS is proposed for

multi-criteria trapezoidal valued intuitionistic fuzzy group decision making where

expert opinions are aggregated by the generalized trapezoidal-valued intuitionistic

fuzzy geometric aggregation operator, which involves the following steps:

Step 1. As for every alternative ai (i = 1, 2, . . . ,m), each expert ek (k = 1, 2, . . . , r),

is invited to express their individual evaluation or preference according to

each criteria cj (j = 1, 2, . . . , n), by a trapezoidal valued intuitionistic fuzzy

value ãkij = ((a1ijk , a2ijk , a3ijk , a4ijk), (a
′

1ijk
, a′
2ijk
, a′

3ijk
, a′
4ijk
)) (i = 1, 2, . . . ,m;

j = 1, 2, . . . , n; k = 1, 2, . . . , r), where (a1ijk , a2ijk , a3ijk , a4ijk) indicates the

uncertain degree that expert ek considers what the alternative ai should

satisfy the criteria cj, (a
′

1ijk
, a′
2ijk
, a′
3ijk
, a′
4ijk
) indicates the uncertain degree

that expert ek considers what the alternative ai should not satisfy the criteria

cj. Then we can obtain a decision making matrix as follow:

Rk =






ãk11 ãk12 · · · ãk1n

ãk21 ãk22 · · · ãk2n
...

...
. . .

...

ãkm1 ãkm2 · · · ãkmn
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Step 2. Confirm the fuzzy density µi = µ(ei) of each expert. According to Eq. (2.3),

parameter ρ1 of expert can be determined.

Step 3. By Definition 3.3 or Definition 3.6, ãkij is reordered such that ã
(k)
ij ≤ ã

(k+1)
ij .

Utilize the trapezoidal valued intuitionistic fuzzy Choquet integral operator

ãij = GTIFGAµ(ã
1
ij, ã

2
ij, . . . , ã

r
ij) =

(( r∏

k=1

(a1ij(k))
µ(A(k))−µ(A(k+1)),

r∏

k=1

(a2ij(k))
µ(A(k))−µ(A(k+1)),

r∏

k=1

(a3ij(k))
µ(A(k))−µ(A(k+1)),

n∏

i=1

(a4ij(k))
µ(A(k))−µ(A(k+1))

)
,
(
1−

n∏

i=1

(1− (a′1ij(k)))
µ(A(k))−µ(A(k+1)),

1−

n∏

i=1

(1− (a′2ij(k)))
µ(A(k))−µ(A(k+1)),

1−

n∏

i=1

(1− (a′3ij(k)))
µ(A(k))−µ(A(k+1)),

1−

n∏

i=1

(1− (a′4ij(k)))
µ(A(k))−µ(A(k+1))

))

to aggregate all the trapezoidal valued intuitionistic fuzzy decision matrices

Rk = (ãkij)m×n (k = 1, 2, . . . , r) into a complex trapezoidal valued intuitionis-

tic fuzzy decision matrixRk = (ãkij)m×n, where ãij = ((a1ij, a2ij, a3ij, a4ij), (a
′

1ij,

a′2ij, a
′

3ij, a
′

4ij)) (i = 1, 2, . . . ,m; j = 1, 2, . . . , n), A(k) = {e(k), . . . , e(r)},

A(r+1) = φ, and µ(A(k)) can be calculated by Eq. (2.2).

Step 4. Let J1 be a collection of benefit criteria (i.e., the larger cj, the greater pref-

erence) and J2 be a collection of cost criteria (i.e., the smaller cj, the greater

preference). The trapezoidal valued intuitionistic fuzzy positive-ideal so-

lution (TV-IFPIS), denoted as α̃+, and the trapezoidal valued intuitionistic
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fuzzy negative-ideal solution (TV-IFNIS), denoted as α̃− = (α̃−1 α̃
−

2 . . . α̃−n ),

are defined as follows:

α̃+ =
(((

max
i
a1ij,max

i
a2ij,max

i
a3ij,max

i
a4ij

)
|j ∈ J1,

(
min
i
a1ij,min

i
a2ij,min

i
a3ij,min

i
a4ij

)
|j ∈ J2

)
,

((
min
i
a1ij,min

i
a2ij,min

i
a3ij,min

i
a4ij

)
|j ∈ J1,

(
max
i
a1ij,max

i
a2ij,max

i
a3ij,max

i
a4ij

)
|j ∈ J2

))

i = 1, 2, . . . ,m,

α̃+ = (α̃+1 α̃+2 . . . α̃+n )

where α̃+j = ((α1j, α2j, α3j, α4j), (α
′

1j, α
′

2j, α
′

3j, α
′

4j)) (j = 1, 2, . . . , n).

α̃− =
(((

min
i
a1ij,min

i
a2ij,min

i
a3ij,min

i
a4ij

)
|j ∈ J1,

(
max
i
a1ij,max

i
a2ij,max

i
a3ij,max

i
a4ij

)
|j ∈ J2

)
,

((
max
i
a1ij,max

i
a2ij,max

i
a3ij,max

i
a4ij

)
|j ∈ J1,

(
min
i
a1ij,min

i
a2ij,min

i
a3ij,min

i
a4ij

)
|j ∈ J2

))

i = 1, 2, . . . ,m,

α̃− = (α̃−1 α̃−2 . . . α̃−n )

where α̃−j = ((α1j, α2j, α3j, α4j), (α
′

1j, α
′

2j, α
′

3j, α
′

4j)) (j = 1, 2, . . . , n).

Moreover, we denote the alternatives ai (i = 1, 2, . . . ,m) by xi = (ãi1, ãi2, . . . ,

ãin).

Step 5. Confirm the fuzzy density µi = µ(ci) of each criteria. According to Eq. (2.3),

parameter ρ2 of criteria can be determined.
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Step 6. According to Choquet integral based distance, calculate the distance be-

tween the alternative xi and the IV-IFPIS α̃
+ and the distance between the

alternative xi and the IV-IFNIS α̃
−, respectively:

di(xi, α̃
+) =

n∑

j=1

di(j)(ãij, α̃
+
j )(µ(A(j))− µ(A(j+1))), (5.1)

where

dij(ãij, α̃
+
j ) = |α1j − a1ij| + |α2j − a2ij| + |α3j − a3ij| + |α4j − a4ij| + |α

′

1j −

a′1ij|+ |α
′

2j − a
′

2ij|+ |α
′

3j − a
′

3ij|+ |α
′

4j − a
′

4ij|,

so that

di(1)(ãij, α̃
+
j ) ≤ di(2)(ãij, α̃

+
j ) ≤ · · · ≤ di(n)(ãij, α̃

+
j ), A(j) = {c(j), . . . , c(n)},

A(n+1) = φ, µ(A(j)) can be calculated by Eq. (2.2)

di(xi, α̃
−) =

n∑

j=1

di(j)(ãij, α̃
−

j )(µ(A(j))− µ(A(j+1))), (5.2)

where dij(ãij, α̃
−

j ) = |α1j − a1ij| + |α2j − a2ij| + |α3j − a3ij| + |α4j − a4ij| +

|α′1j − a
′

1ij| + |α
′

2j − a
′

2ij| + |α
′

3j − a
′

3ij| + |α
′

4j − a
′

4ij|, so that di(1)(ãij, α̃
−

j ) ≤

di(2)(ãij, α̃
−

j ) ≤ · · · ≤ di(n)(ãij, α̃
−

j ), A(j) = {c(j), . . . , c(n)}, A(n+1) = φ, µ(A(j))

can be calculated by Eq. (2.2)

Step 7. Calculate the closeness coefficient of each alternative:

r(xi) =
di(xi, α̃

−)

di(xi, α̃+) + di(xi, α̃−)
, i = 1, 2, . . . ,m. (5.3)

Step 8. Rank all the alternatives ai (i = 1, 2, . . . ,m) according to the closeness coef-
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ficient r(xi), the greater the value r(xi), the better the alternative ai.

The main difference between the traditional TOPSIS and Choquet integral based

TOPSIS (CITOPSIS) is that the CITOPSIS takes the Choquet integral based

distance into account. It is reasonable to employ the Choquet integral in terms of

the ρ-fuzzy measure to aggregate the performance values instead of the weighted

average method, since the Choquet integral does not assume the independence of

one element from another.

6 Illustrative example

In this example, we utilized the proposed method where inter-dependent or inter-

active characteristics among criteria and preference of decision makers are taken

into account to get the most desirable alternative.

Step 1. There is an investment company, which wants to invest money in the best

option (adapted from [23]). There is a panel with five possible alternatives

in which to invest the money: a1 is a car industry, a2 is a food company,

a3 is a computer company, a4 is an arms company, a5 is a TV company.

The investment company must take a decision according to the following

four criteria: c1 is the risk analysis; c2 is the growth analysis; c3 is the

social-political impact analysis, c4 is the environmental impact analysis. The

five possible alternatives ai (i = 1, 2, 3, 4, 5) are to be evaluated using the

trapezoidal valued intuitionistic fuzzy information by three decision makers

ek (k = 1, 2, 3), as listed in R
1, R2 and R3 matrices.
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R1 =






(0.4, 0.45, 0.45, 0.5), (0.3, 0.35, 0.35, 0.4)

(0.6, 0.65, 0.65, 0.7), (0.2, 0.25, 0.25, 0.3)

(0.6, 0.65, 0.65, 0.7), (0.1, 0.15, 0.15, 0.2)

(0.3, 0.35, 0.35, 0.4), (0.2, 0.25, 0.25, 0.3)

(0.7, 0.75, 0.75, 0.8), (0.1, 0.15, 0.15, 0.2)

(0.4, 0.45, 0.55, 0.6), (0.2, 0.25, 0.35, 0.4)

(0.6, 0.65, 0.65, 0.7), (0.2, 0.25, 0.25, 0.3)

(0.5, 0.55, 0.55, 0.6), (0.3, 0.35, 0.35, 0.4)

(0.6, 0.65, 0.65, 0.7), (0.1, 0.15, 0.25, 0.3)

(0.3, 0.35, 0.45, 0.5), (0.1, 0.15, 0.25, 0.3)

(0.1, 0.15, 0.25, 0.3), (0.5, 0.55, 0.55, 0.6)

(0.4, 0.50, 0.60, 0.7), (0.1, 0.15, 0.15, 0.2)

(0.5, 0.55, 0.55, 0.6), (0.1, 0.15, 0.25, 0.3)

(0.3, 0.35, 0.35, 0.4), (0.1, 0.15, 0.15, 0.2)

(0.5, 0.55, 0.55, 0.6), (0.2, 0.25, 0.25, 0.3)

(0.3, 0.35, 0.35, 0.4), (0.3, 0.35, 0.45, 0.5)

(0.5, 0.55, 0.55, 0.6), (0.1, 0.15, 0.25, 0.3)

(0.4, 0.45, 0.45, 0.5), (0.2, 0.25, 0.35, 0.4)

(0.3, 0.40, 0.60, 0.7), (0.1, 0.15, 0.15, 0.2)

(0.3, 0.35, 0.35, 0.4), (0.5, 0.55, 0.55, 0.6)
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R2 =






(0.3, 0.35, 0.35, 0.4), (0.4, 0.45, 0.45, 0.5)

(0.3, 0.40, 0.50, 0.6), (0.3, 0.35, 0.35, 0.4)

(0.6, 0.65, 0.75, 0.8), (0.1, 0.15, 0.15, 0.2)

(0.4, 0.45, 0.45, 0.5), (0.3, 0.35, 0.45, 0.5)

(0.6, 0.65, 0.65, 0.7), (0.2, 0.25, 0.25, 0.3)

(0.5, 0.55, 0.55, 0.6), (0.1, 0.15, 0.25, 0.3)

(0.4, 0.50, 0.60, 0.7), (0.1, 0.15, 0.15, 0.2)

(0.5, 0.55, 0.55, 0.6), (0.1, 0.15, 0.15, 0.2)

(0.5, 0.60, 0.70, 0.8), (0.1, 0.15, 0.15, 0.2)

(0.6, 0.65, 0.65, 0.7), (0.1, 0.15, 0.15, 0.2)

(0.4, 0.45, 0.45, 0.5), (0.3, 0.35, 0.35, 0.4)

(0.5, 0.55, 0.55, 0.6), (0.2, 0.25, 0.25, 0.3)

(0.5, 0.55, 0.65, 0.7), (0.2, 0.25, 0.25, 0.3)

(0.2, 0.30, 0.40, 0.5), (0.3, 0.35, 0.35, 0.4)

(0.5, 0.55, 0.65, 0.7), (0.2, 0.25, 0.25, 0.3)

(0.4, 0.45, 0.55, 0.6), (0.2, 0.25, 0.35, 0.4)

(0.6, 0.65, 0.65, 0.7), (0.2, 0.25, 0.25, 0.3)

(0.1, 0.15, 0.25, 0.3), (0.5, 0.55, 0.55, 0.6)

(0.4, 0.50, 0.60, 0.7), (0.1, 0.15, 0.15, 0.2)

(0.6, 0.65, 0.65, 0.7), (0.1, 0.15, 0.25, 0.3)
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R3 =






(0.2, 0.30, 0.40, 0.5), (0.3, 0.35, 0.35, 0.4)

(0.2, 0.30, 0.60, 0.7), (0.2, 0.25, 0.25, 0.3)

(0.5, 0.55, 0.55, 0.6), (0.3, 0.35, 0.35, 0.4)

(0.3, 0.40, 0.50, 0.6), (0.2, 0.25, 0.35, 0.4)

(0.6, 0.65, 0.65, 0.7), (0.1, 0.15, 0.25, 0.3)

(0.4, 0.45, 0.45, 0.5), (0.1, 0.15, 0.15, 0.2)

(0.3, 0.40, 0.50, 0.6), (0.2, 0.25, 0.35, 0.4)

(0.7, 0.75, 0.75, 0.8), (0.1, 0.15, 0.15, 0.2)

(0.4, 0.45, 0.55, 0.6), (0.2, 0.25, 0.25, 0.3)

(0.5, 0.55, 0.55, 0.6), (0.3, 0.35, 0.35, 0.4)

(0.3, 0.40, 0.50, 0.6), (0.2, 0.25, 0.25, 0.3)

(0.4, 0.50, 0.60, 0.7), (0.1, 0.15, 0.15, 0.2)

(0.5, 0.55, 0.55, 0.6), (0.2, 0.25, 0.25, 0.3)

(0.1, 0.20, 0.30, 0.4), (0.3, 0.40, 0.50, 0.6)

(0.5, 0.55, 0.55, 0.6), (0.2, 0.25, 0.25, 0.3)

(0.3, 0.40, 0.60, 0.7), (0.1, 0.15, 0.25, 0.3)

(0.5, 0.60, 0.70, 0.8), (0.1, 0.15, 0.15, 0.2)

(0.4, 0.45, 0.45, 0.5), (0.3, 0.35, 0.35, 0.4)

(0.3, 0.40, 0.60, 0.7), (0.1, 0.15, 0.15, 0.2)

(0.5, 0.55, 0.55, 0.6), (0.2, 0.25, 0.35, 0.4)






Step 2. We firstly determine fuzzy density of each decision maker, and its ρ parame-

ter. Suppose that µ(e1) = 0.4, µ(e2) = 0.4, µ(e3) = 0.4, Then ρ of expert
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can be determined:

ρ1 = −0.44.According to Eq. (2.2), we have µ(e1, e2) = µ(e1, e3) = µ(e2, e3) =

0.73, µ(e1, e2, e3) = 1.

Step 3. By Definition 3.3 or Definition 3.6, ãkij is reordered such that ã
(k)
ij ≤ ã

(k+1)
ij ,

then utilize the generalized trapezoidal valued intuitionistic fuzzy geometric

aggregation operator

ãij = GTIFGAµ(ã
1
ij, ã

2
ij, ã

3
ij) =

(( 3∏

k=1

(a1ij(k))
µ(A(k))−µ(A(k+1)),

3∏

k=1

(a2ij(k))
µ(A(k))−µ(A(k+1)),

3∏

k=1

(a3ij(k))
µ(A(k))−µ(A(k+1)),

3∏

i=1

(a4ij(k))
µ(A(k))−µ(A(k+1))

)
,
(
1−

3∏

i=1

(1− (a′1ij(k)))
µ(A(k))−µ(A(k+1)),

1−

3∏

i=1

(1− (a′2ij(k)))
µ(A(k))−µ(A(k+1)),

1−

3∏

i=1

(1− (a′3ij(k)))
µ(A(k))−µ(A(k+1)),

1−

3∏

i=1

(1− (a′4ij(k)))
µ(A(k))−µ(A(k+1))

))

to aggregate all the trapezoidal valued intuitionistic fuzzy decision matrices

Rk = (ãij)m×n (k = 1, 2, 3) into a complex trapezoidal valued intuitionistic

fuzzy decision matrix R = (ãij)m×n as follows:
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R =






((0.2944, 0.3678, 0.4044, 0.4708), (0.3285, 0.3787, 0.3787, 0.4288))

((0.3463, 0.4417, 0.5898, 0.6715), (0.2283, 0.2784, 0.2784, 0.3285))

((0.5712, 0.6213, 0.6579, 0.7083), (0.1590, 0.2094, 0.2094, 0.2598))

((0.3242, 0.3951, 0.4320, 0.4996), (0.2283, 0.2784, 0.3486, 0.3990))

((0.6382, 0.6883, 0.6883, 0.7384), (0.1282, 0.1782, 0.2115, 0.2616))

((0.4373, 0.4876, 0.5148, 0.5650), (0.1282, 0.1782, 0.2480, 0.2983))

((0.4231, 0.5133, 0.5865, 0.6715), (0.1614, 0.2115, 0.2414, 0.3268))

((0.5720, 0.6226, 0.6226, 0.6732), (0.1590, 0.2094, 0.2094, 0.2598))

((0.5000, 0.5700, 0.6400, 0.7083), (0.1282, 0.1782, 0.2115, 0.2616))

((0.4685, 0.5205, 0.5570, 0.6075), (0.1716, 0.2220, 0.2479, 0.2982))

((0.2452, 0.3191, 0.4005, 0.4685), (0.3257, 0.3768, 0.3768, 0.4280))

((0.4248, 0.5130, 0.5861, 0.6715), (0.1282, 0.1782, 0.1782, 0.2283))

((0.5000, 0.5500, 0.5880, 0.6382), (0.1683, 0.2184, 0.2500, 0.3000))

((0.1951, 0.2860, 0.3509, 0.4306), (0.2260, 0.2918, 0.3259, 0.3966))

((0.5000, 0.5500, 0.5880, 0.6382), (0.2000, 0.2500, 0.2500, 0.3000))

((0.3299, 0.4011, 0.5041, 0.5720), (0.1911, 0.2414, 0.3421, 0.3925))

((0.5310, 0.6018, 0.6400, 0.7083), (0.1343, 0.1844, 0.2115, 0.2616))

((0.2751, 0.3345, 0.3840, 0.4356), (0.3257, 0.3768, 0.4114, 0.4622))

((0.3366, 0.4373, 0.6000, 0.7000), (0.1000, 0.1500, 0.1500, 0.2000))

((0.4685, 0.5205, 0.5205, 0.5720), (0.2614, 0.3131, 0.3768, 0.4280))
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Step 4. Since ((1, 1, 1, 1), (0, 0, 0, 0)) and ((0, 0, 0, 0), (1, 1, 1, 1)) are the largest and

smallest trapezoidal valued intuitionistic fuzzy values, respectively. For cost

criteria c1, c4 and benefit criteria c2, c3 TV-IFPIS α̃
+ and TV-IFNIS α̃− can

be simply denoted as follows:

α̃+ = ( ((0, 0, 0, 0), (1, 1, 1, 1)) ((1, 1, 1, 1), (0, 0, 0, 0))

((1, 1, 1, 1), (0, 0, 0, 0)) ((0, 0, 0, 0), (1, 1, 1, 1)) )

α̃− = ( ((1, 1, 1, 1), (0, 0, 0, 0)) ((0, 0, 0, 0), (1, 1, 1, 1))

((0, 0, 0, 0), (1, 1, 1, 1)) ((1, 1, 1, 1), (0, 0, 0, 0)) )

Denote the alternatives ai (i = 1, 2, . . . , 5) by xi = (ãi1 ãi2 ãi3 ãi4) :

Step 5. We determine fuzzy density of each criterion, and its parameter. Suppose

that µ(c1) = 0.4, µ(c2) = 0.25, µ(c3) = 0.37, µ(c4) = 0.20, according to

Eq. (2.3), the ρ of criteria can be determined: ρ2 = −0.44. By Eq. (2.2),

we have µ(c1, c2) = 0.6, µ(c1, c3) = 0.7, µ(c1, c4) = 0.56, µ(c2, c3) = 0.68,

µ(c2, c4) = 0.43, µ(c3, c4) = 0.54, µ(c1, c2, c3) = 0.88, µ(c1, c2, c4) = 0.75,

µ(c2, c3, c4) = 0.73, µ(c1, c3, c4) = 0.84, µ(c1, c2, c3, c4) = 1.

Step 6. According to Eqs. (5.1) and (5.2), respectively, we calculate that

d1(x1, α̃
+) = 3.04068, d1(x1, α̃

−) = 3.07328,

d2(x2, α̃
+) = 3.36406, d2(x2, α̃

−) = 3.11366,

d3(x3, α̃
+) = 2.89115, d3(x3, α̃

−) = 3.48042,

d4(x4, α̃
+) = 3.25302, d4(x4, α̃

−) = 2.99290,

d5(x5, α̃
+) = 3.40700, d5(x5, α̃

−) = 3.05841.
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Step 7. According to Eq. (5.3), we calculate the closeness coefficient of each alter-

native as follows:

r(x1) = 0.5026, r(x2) = 0.4806, r(x3) = 0.5462, r(x4) = 0.4792, r(x5) =

0.473.

Step 8. Rank all the alternatives ai (i = 1, 2, . . . , 5) according to the closeness coef-

ficient r(xi) :

a3 � a1 � a2 � a4 � a5.

Thus the most desirable alternative is a3.

7 Conclusion

We have studied the situation that the attributes in the decision making problem

are interactive or inter-dependent and the evaluation values are trapezoidal fuzzy

numbers. We have defined some new aggregation operators with Choquet integral

for trapezoidal valued intuitionistic fuzzy group decision making process based

TOPSIS, where the inter-dependent of attributes is considered. The trapezoidal

valued intuitionistic fuzzy sets is the best way to deal with uncertainty. GTIFGA

operator is used to aggregate the values of decision makers. trapezoidal valued

intuitionistic fuzzy positive and negative ideal solution calculated by using dis-

tance based on Choquet integral. The relative closeness coefficient is used to rank

alternatives. The properties of these operators are studied, such as idempotency,

commutativity, boundedness and monotonicity. We have applied this operator

to the multi-criteria trapezoidal valued intuitionistic fuzzy group decision mak-

ing with Choquet integral based TOPSIS. Finally, an example has been provided
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to compare our method with some other to show the feasibility of our proposed

decision making method. The proposed method is different from all the previous

techniques for group decision making due to the fact that the proposed method use

trapezoidal valued intuitionistic fuzzy set theory rather than intuitionistic fuzzy

set or fuzzy set theory, which will not cause any loss of information in the process.

So it is efficient and feasible for real-world decision making applications. In fu-

ture, we shall continue working in the extension and application of the developed

multi-criteria trapezoidal valued intuitionistic fuzzy group decision making with

Choquet integral based TOPSIS to other domains.

Acknowledgements. Authors are grateful to the editor and referees for their

valuable suggestions and critical remarks for improving this paper.
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