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Abstract— In this paper, we address the Dubins Orienteering
Problem with Neighborhoods (DOPN) a novel problem derived
from the regular Orienteering Problem (OP). In the OP, one
tries to find a maximal reward collecting path through a subset
of given target locations, each with associated reward, such that
the resulting path length does not exceed the specified travel
budget. The Dubins Orienteering Problem (DOP) requires the
reward collecting path to satisfy the curvature-constrained
model of the Dubins vehicle while reaching precise positions
of the target locations. In the newly introduced DOPN, the
resulting path also respects the curvature constrained Dubins
vehicle as in the DOP; however, the reward can be collected
within a close distant neighborhood of the target locations. The
studied problem is inspired by data collection scenarios for an
Unmanned Aerial Vehicle (UAV), that can be modeled as the
Dubins vehicle. Furthermore, the DOPN is a useful problem
formulation of data collection scenarios for a UAV with the
limited travel budget due to battery discharge and in scenarios
where the sensoric data can be collected from a proximity of
each target location. The proposed solution of the DOPN is
based on the Variable Neighborhood Search method, and the
presented computational results in the OP benchmarks supports
feasibility of the proposed approach.

I. INTRODUCTION

The Unmanned Aerial Vehicles can be used for effective
autonomous data collection missions [1] where the goal
is to collect sensory information from a predefined set of
target locations. A standard approach for multi-goal path
planning in data collection scenarios is based on solving
the Traveling Salesman Problem (TSP) or its variant called
Dubins Traveling Salesman Problem (DTSP) [2] for the
curvature-constrained Dubins vehicle such as the fixed wing
UAV or dynamically constrained moving multi-rotor UAV.

For data collection scenarios where the sensory data can
be gathered within a vicinity of the target locations, the
path planning problem can be formulated as the Traveling
Salesman Problem with Neighborhoods (TSPN). By mea-
suring the data within a neighborhood, i.e., from wireless
sensors or with a wide-angle camera, the TSPN produces
shorter paths compared to the regular TSP because of saving
unnecessary visits of the exact target positions [3]. The
variant for the Dubins vehicle with neighborhoods is called
the Dubins Traveling Salesman Problem with Neighbor-
hoods (DTSPN) [4].

In the presented paper, we introduce a generalization of the
Dubins Orienteering Problem called the Dubins Orienteering
Problem with Neighborhoods. In the regular Orienteering
Problem, each target location has assigned reward and the
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Fig. 1: The top view of the workspace provided by a
UAV flying 150m above the quadrotor following a trajectory
computed by our DTSPN method [4]. With assigned reward
to each target location, the scenario can be described as the
Dubins Orienteering Problem with Neighborhoods in which
we request the resulting path to satisfy the limited travel
budget while it also maximizes the sum of the collected
rewards.

problem is to find a path from a prescribed starting location
to a given ending location such that the path maximizes the
sum of the collected rewards while the tour length is within
the given travel budget. The OP has been introduced to the
computer science and operational research by Tsiligirides [5]
in 1984. Although data collection missions can be formulated
as one of the mentioned variants of the TSP, the real vehicles
such as the fixed-wing UAVs or multi-rotor UAVs have
limited flight budget due to the battery discharge. Therefore,
visitations of all the target locations with the limited budget
cannot be ensured as it is required in the regular TSP
formulation. By assigning a priority to each target location,
defined as a reward that can be collected from the target, the
task can be specified as the Orienteering Problem, see the
illustrative scenario in Fig. 1.

The introduced DOPN combines both the limited curva-
ture constraint of Dubins vehicle and the ability to measure
the data within a predefined circular neighborhood around
each target location. By using Dubins model of the consid-
ered UAVs in the OP, which we call the Dubins Orienteering
Problem [6], the found path has typically lower sum of the
collected rewards due to the limited minimal turning radius.
However, the proposed DOPN may provide data collection
paths with higher sum of collected rewards by not visiting
exact positions of the targets and visiting additional locations
that could not be visited if using simple DOP. In this paper,



we propose a method to addressed the introduced DOPN by
the Variable Neighborhood Search (VNS) metaheuristic [7],
which has been already deployed for the OP in [8] and for
solving the DOP by our team in [6].

The remainder of this paper is organized as follows. A
summary of related work is presented in the next section.
Section III introduces a formal definition of the proposed
DOPN. In Section IV, we present the VNS-based solution
of the addressed problem. An evaluation of the method is
presented in Section V. Section VI concludes the paper.

II. RELATED WORK

The newly addressed Dubins Orienteering Problem with
Neighborhoods belongs to a wider class of the Orienteering
Problems [9] where the objective is to find a length limited
path between starting and ending locations with maximal
sum of collected rewards from a subset of the specified
target locations. The DOPN is also related to the existing
Dubins Traveling Salesman Problem [2] and its variant with
Neighborhoods [4]. The main difference of the variants of
the TSP over the OP is the unlimited travel budget and
the requirement to visit all specified target locations, which
may not be feasible for the OP with the budget constraint.
According to our knowledge, there is no example of a
solution of DOPN in literature, therefore a summary of
relevant variants and approaches to the OP and DTSP(N)
are presented further in this section.

The Orienteering Problem has been studied since 1984
when Tsiligirides [5] introduced Euclidean version of the
Orienteering Problem (further denoted the EOP in this paper)
together with the deterministic D-algorithm and stochastic
S-algorithm. The S-algorithm is based on the Monte-Carlo
method with creation of multiple feasible paths and selection
of the one with the highest collected reward. The D-algorithm
is based on the method for the vehicle routing problem [10].
Tsiligirides also created three Orienteering Problem bench-
mark instances [11] further denoted as the Set 1, Set 2, and
Set 3 with up to 33 target locations.

The fast and effective heuristic for the EOP by Chao et
al. [12] considers only target locations reachable within the
prescribed budget (inside the respective ellipse around the
prescribed start and final locations). The heuristic uses an
initial set of generated paths that contains all reachable target
locations and tries to improve the most rewarded path by sim-
ple operations with the target locations. The used operators
are two-point exchange and one-point movement together
with the 2-Opt operation. Furthermore Chao proposed two
symmetrical benchmark instances, a diamond shaped Set 64
and square shaped Set 66 with up to 66 target locations.

The proposed DOPN method is based on the Variable
Neighborhood Search (VNS) [7] a metaheuristic by Hansen
and Mladenovi for combinatorial optimization. The VNS
employs predefined neighborhood structures, in terms of the
OP also describable as operations with target locations, that
are used to improve an initial solution by the shaking and
local search procedures. The first VNS-based approach to
the EOP [13] uses neighborhood structures that motivate

the proposed solution of the DOPN. The method randomly
changes current best path by either path move or exchange in
the shaking procedure and then tries to optimize the changed
path by multiple one point moves or exchanges in the local
search procedure in order to find better path than the current
best one.

In our previous work [6], we introduced the Dubins
Orienteering Problem (DOP), a variant of the Orienteering
Problem for Dubins vehicle, and we proposed the VNS-based
method to solve the DOP. The method uses a similar neigh-
borhood structures as the aforementioned VNS method for
the EOP [8]. To tackle the problem of finding suitable path
for the curvature constrained Dubins vehicle, we proposed an
equidistant sampling of heading angle at the target locations.
The VNS technique then searches for the most rewarded path
together with the appropriate sequence of sampled heading
angles to fit the path length within the budget constraint.

Probably the first approach addressing the generalization
of the OP to the Orienteering Problem with Neighbor-
hoods (OPN) has been proposed in [14] and further im-
proved by our team in [15]. The approach is based on the
unsupervised learning of the Self-Organizing Map (SOM)
for the Prize-Collecting Traveling Salesman Problem with
Neighborhoods [16], i.e., a variant of the TSP that combines
maximization of the rewards (prizes) and minimization of the
path length. Although the approach has been further extended
to the case of multiple vehicles [17] and SOM has also been
applied to the DTSP and DTSPN in [18], the SOM-based
approach has not been deployed for the combined DOPN.

The proposed DOPN is also related to the existing ap-
proaches to the Dubins Traveling Salesman Problem [19]
and the Dubins Traveling Salesman Problem with Neighbor-
hoods [4]. The most relevant approaches are the sampling
based variants of DTSP where the heading angles at the
target locations are sampled and the problem is transformed
to the Asymmetric TSP (ATSP) [20] that can be solved
optimally for the specified sampling. A similar approach can
be used for the DTSPN [21] where both the heading angles
and the positions within the neighborhood are sampled, and
the problem is transformed into the Generalized TSP (GTSP)
and further to the ATSP that can be solved, e.g., by the LKH
solver [22].

The proposed approach to solve the introduced DOPN
leverages on the previous work, most specifically on the
VNS-based solution of the DOP [6] that is generalized by the
ideas of the sampling-based solutions of the DTSPN [21].

III. PROBLEM STATEMENT

The proposed Dubins Orienteering Problem with Neigh-
borhoods is inspired by the data collection scenarios with
Unmanned Aerial Vehicles. In the former Euclidean Ori-
enteering Problem, a set of given target locations (each
with assigned reward) are requested to be visit by the data
collection vehicle while the length of the data collection path
has to be within the specified travel budget Tmax. The goal of
the EOP is to find a path from the prescribed starting location



to the defined ending location such that it maximizes the sum
of the collected rewards R and meets the Tmax constraint.

Although the problem definition of the EOP suits to UAVs
with the budget limitation, it does not meet the curvature
constraint of Dubins vehicle, and thus a solution of the OP
may produce unfeasible paths. Here, we refer to our previous
work [6] that formally introduced the Dubins Orienteering
Problem where the rewards collecting path is directly con-
structed with respect to the kinematic constraint of Dubins
vehicle, and where the effect of solving the problem as the
EOP or DTSP is discussed.

For the data collection using UAV we can usually utilize
an ability to acquire the data within a small neighborhood
radius δ around the target location without reaching the
target location precisely. Such an ability can lead to higher
sum of the collected rewards R for the same travel bud-
get Tmax, and thus we can benefit from using the novel
problem formulation called the Dubins Orienteering Problem
with Neighborhoods. In the following section, we formally
introduce the DOPN, an extension of the DOP where it is
allowed to collect the rewards within a circular neighborhood
of each location.

A. Dubins Orienteering Problem with Neighborhoods

In all previously introduced variants of the Orienteer-
ing Problem [9] is given a set of target locations S =
{s1, · · · , sn} to be visited. Each target location si =
(ti, ri) = (xi, yi, ri) is defined by its position in a plane
ti = (xi, yi), ti ∈ R2 and the respective reward ri collected
once the vehicle visits the location. The reward is strictly
positive, i.e., ri ∈ R>0 for all target locations except the
starting and ending ones. The main objective of the OP is to
find a subset Sk ⊆ S with k target locations that maximizes
the collected reward R =

∑
ri∈Sk

ri. This objective is
similar to the NP-hard Knapsack problem.

Even though the determination of the maximal rewarding
subset Sk is the main objective, the OP path length is
constrained by the specified Tmax, which usually requires to
determine a sequence to visit the target locations in Sk such
that the shortest path connecting the locations of Sk meets the
Tmax constraint. The sequence of visit can be described as a
permutation Σ = (σ1, · · · , σk), where 1 ≤ σi ≤ n, σi 6= σj
for i 6= j and σ1 = 1, σk = n. Notice that the OP specifies
the starting location s1 and ending location sn, therefore
they must be kept in the permutation Σ. Furthermore we
assume strictly positive rewards ri > 0 for all target locations
i ∈ (2, n − 1) except the starting and ending locations
r1 = rn = 0. The finding an appropriate sequence to visit
the target locations Sk ⊆ S is similar to the NP-hard TSP
where the only objective is to minimize the path length over
all target locations S, i.e., Sk = S and the travel budget is
not prescribed. The addressed Orienteering Problem is also
NP-hard, as it combines the aforementioned TSP and also
the NP-hard Knapsack problem of selection subset Sk.

For the Dubins Orienteering Problem, the reward col-
lecting path has to respect the kinematic model of Dubins
vehicle (1), where the state of the vehicle q = (p, θ)T =

(x, y, θ)T is described by its position p = (x, y) in plane,
i.e., p ∈ R2 and the vehicle heading angle θ, θ ∈ S1. The
kinematic model assumes a constant forward velocity v of
the vehicle that is controlled by the input u, which controls
the vehicle straight ahead or steers the vehicle left or right
with the minimal turning radius ρ.

q̇ =

[
ṗ

θ̇

]
=

 ẋ
ẏ

θ̇

 = v

 cos θ
sin θ
u
ρ

 , u ∈ [−1, 1] . (1)

For this specific vehicle, Dubins showed in [23] that the
shortest path between two states can be computed analyti-
cally and is either of type CSC or CCC, where ’C’ stands
for turning right or left and ’S’ means going straight. The
use of the curvature-constrained Dubins vehicle in the DOP
requires to consider the heading angles at the target locations
and also the distance metric for paths between the locations
has to respect the vehicle limitations. Note that by changing
the heading angles at the target locations we also change the
length of the final path which still has to be within the Tmax.
For the DOP we use a vector Θ = (θσ1

, · · · , θσk
) that holds

the selected heading angles θσi
at the target locations from

Sk with the sequence of visit defined by Σ. The distance
between two states of Dubins vehicle qσi and qσj , at target
locations sσi

and sσj
, is denoted as Ld(qσi

, qσj
) which is

the shortest Dubins maneuver [23] connecting sσi
and sσj

and its one of the six possible maneuvers [23].
In the Dubins Orienteering Problem with Neighborhoods,

the existing DOP needs to be extended to allow reward
collection within a circular neighborhood of each target
location. The specific neighborhood is described by the
neighborhood radius δ that defines a δ-radius disk centered
at the respective target location. For simplicity, we expect
all target locations to have the same value of δ expect
the starting location s1 and ending location sk with zero
neighborhood radius. In contrast to the DOP where k, Sk, Σ,
and Θ are determined, the DOPN also requires determination
of particular locations of the waypoints Pk ⊆ R2 at which
the rewards are collected, where the waypoints are within
δ distance from the respective target locations, i.e., pσi

∈
Pk, tσi

∈ Sk and |(pσi
, tσi

)| ≤ δ. The proposed Dubins
Orienteering Problem with Neighborhoods can be formulated
as the optimization problem:

maximize
k,Sk,Pk,Σ,Θ

R =

k∑
i=1

rσi

subject to
k∑
i=2

Ld(qσi−1
, qσi

) ≤ Tmax ,

qσi
= (pσi

, θσi
), pσi

∈ Pk, θσi
∈ Θ ,

‖pσi
, tσi
‖ ≤ δ , i ∈ (2, k − 1) ,

‖pσ1
, tσ1
‖ = 0 , ‖pσk

, tσk
‖ = 0 ,

σ1 = 1 , σk = n .

(2)

In the DOPN, we need to determine four variables. The Sk
and Σ are typical for the EOP, where Sk influences the sum



of the collected rewards R, and the permutation Σ defines the
length of the path over Sk constrained by the budget Tmax.
In addition, solution of the DOP also provides the sequence
of heading angles Θ at the target locations that influences
the path length because of the Dubins vehicle. Finally,
in the DOPN, we search for additional selection of the
waypoints Pk = (pσ1

, · · · , pσk
) within the neighborhoods of

the respective target locations, implied by ‖pσi
, tσi
‖ that also

influences the final path length. Regarding the computational
complexity, the DOPN is therefore more challenging than the
existing EOP and DOP because it adds additional part of the
continuous optimization for the locations of the waypoints
in R2.

IV. PROPOSED APPROACH FOR THE DOPN

The proposed approach for the Dubins Orienteering Prob-
lem with Neighborhoods is based on the Variable Neigh-
borhoods Search metaheuristic [7]. Even though the existing
DOP already uses the Dubins vehicle model, a solution of the
proposed DOPN requires an extension of the existing VNS-
based Orienteering methods to utilize the reward collection
within the neighborhood radius.

The Variable Neighborhood Search is a metaheuristic
for combinatorial optimization applicable on various prob-
lems [24]. VNS uses an iterative improvement of the cur-
rently best achieved solution inside shake and local search
procedures. The algorithm operates on l predefined neigh-
borhood structures Nl, l = 1, . . . , lmax also expressible as
operations that are used inside the procedures. The shake
procedure starts with the current best solution of the com-
binatorial problem and randomly changes the solution to
escape from the possible local minimum. Such randomly
created solution is then used in the local search to find
the best solution in the particular solution neighborhood.
The solution produced by the local search is then set as
the new best solution if it improves the current one, and
the solution neighborhood with higher number l is used in
the next iteration. In particular, the proposed method for the
DOPN is based on the Randomized Variable Neighborhood
Search (RVNS) variant of VNS with the randomized local
search procedure.

To tackle the continuous optimization part of the prob-
lem, we propose sampling-base approach to determine the
location of the waypoint pσi inside the neighborhood of the
target location sσi , A constant number o of samples are
placed equidistantly along the circle with the radius δ that
is centered at the target location tσi

. Then, similarly to the
solution of the DOP [6], the heading angles of Dubins vehicle
at each neighborhood sample is also discretized. The possible
heading angles from the interval 〈0, 2π) are proportionally
sampled into m values. In [6], we propose a sampling based
approach for the Dubins Orienteering Problem; however, in
the proposed DOPN, additional discretization of the neigh-
borhood leads to (o · m) samples per each target location
except the starting s1 and ending sn locations where the
zero radius neighborhood requires only m heading samples.
Such a number of samples can be prohibitively large, and

solution of the DOPN by the combinatorial VNS can be
computationally too demanding.

Therefore, the number of samples is reduced by removing
unreachable target locations. We propose to preselect a set
of reachable target locations Sr such that it contains only
target locations reachable on the path between starting and
ending locations within Tmax distance. The set Sr then
contains si such that Ld(s1, si) + Ld(si, sn) ≤ Tmax for
any sampled position inside the neighborhood and for any
sampled heading angles. This procedure (denoted in the
Alg. 1 as getReachableLocations) decreases the number of
samples, especially for small travel budgets.

The proposed VNS method for the DOPN internally
represents the actual problem solution by a vector v =
(qσ1

, . . . , qσk
, qσk+1

, . . . , qσn
), where P = (qσ1

, . . . , qσk
)

with k target locations is the actual path for the vehicle
defined by Sk and ordered according to Σ. The vector
(qσk+1

, . . . , qσn
) then consists of all other unvisited target

locations from Sr. By using the solution vector v with all
reachable target locations, the further explained neighbor-
hood operators for shake and local search procedures can use
the current solution (represented by v) not only for changing
the ordering of target locations already present in the path but
also for introduction of previously unvisited target locations.

The VNS-based algorithm for the proposed Dubins Ori-
enteering Problem with Neighborhoods is summarized in
Algorithm 1 and a further detailed description of the neigh-
borhood structures for the shake IV-A and local search IV-B
procedures are described in next sections. For brevity, we
denote the DOPN path (defined by Sk, Σ, Θ and Pk) as P ,
the sum of the rewards collected by the path as R(P ) and
its length as L(P ).

Algorithm 1: VNS based method for the DOPN
Input : S – Set of the target locations
Input : Tmax – Maximal allowed budget
Input : o – Number of waypoints for each target
Input : m – Number of heading values for each waypoints
Input : lmax – Maximal neighborhood number
Output: P – Found data collecting path

1 Sr ← getReachableLocations(S)
2 P ← createInitialPath(Sr ,Tmax) // greedy
3 while Stopping condition is not met do
4 l← 1
5 while l ≤ lmax do
6 P ′ ← shake(P , l)
7 P ′′ ← localSearch(P ′, l)
8 if Ld(P

′′) ≤ Tmax and R(P ′′) > R(P ) then
9 P ← P ′′

10 l← 1
11 else
12 l← l + 1

A. Shake Procedure

The shake procedure of the proposed VNS for the DOPN
has two possible neighborhood operators for l = 1 and l = 2.
Both operators consist of moving or exchanging of randomly



selected parts of the currently best solution path P . Besides
changing the order in which the locations are visited, the
method also (after each operation) finds appropriate waypoint
and heading angle a the waypoint for each target location
in the path, such that the path length is minimal for the
particular order of targets. Notice, that by changing the
order of the target locations, the shortest path usually uses
different waypoint locations in the target neighborhoods and
also different heading angles, and thus the waypoint locations
and headings have to be determined after each operation.

Path Move operator for l = 1, shown in Fig. 2a, uses a
randomly selected path (qσi , . . . , qσj ) with 1 < i < j < n
from the actual solution. Such selected part of the path is
then moved to a new randomly selected position inside the
solution vector.

The Path Exchange with l = 2 is the second neighbor-
hood operator used in the shake procedure. In this operator,
the randomly selected sub-path (qσi

, . . . , qσj
) is exchanged

with different non-overlapping sub-path (qσv
, . . . , qσw

), see
the visualization of the operations in Fig. 2b.
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Fig. 2: Examples of the used shaking neighborhood operators
Path Move and Path Exchange with o = 6 samples of
the target location neighborhood and m = 6 samples of the
heading angle at the waypoint location. The original paths
(dashed black) are changed within the neighborhood to new
and shorter paths (green).

B. Local Search Procedure

The local search procedure is used to find a local mini-
mum on the path produced by shaking. Contrary to the shake
procedure with only one move/exchange of the solution sub-
path, the local search tries simple random operations for a
number of times that is equal to the square of the number of
the target locations. The appropriate waypoints and heading
angles at the selected target locations has to be also found
after each simple operation to minimize the overall path
length.

One Point Move neighborhood corresponds to l = 1. This
simple neighborhood operator randomly selects one target

and move it to a different position within the solution vector.
One Point Exchange, shown in Fig. 3b, exchanges two

different randomly selected target locations within the solu-
tion path.
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Fig. 3: Examples of the used local search neighborhood
operators One Point Move and One Point Exchange with
the o = 6 samples of the waypoint locations per each
neighborhood of the target locations and m = 6 samples
of the heading angles at the waypoint location. The original
paths (dashed black) are changed to new paths (green).

V. RESULTS

The proposed solution of the Dubins Orienteering Problem
with Neighborhoods has been evaluated on existing bench-
mark datasets for the Orienteering Problem [11]. Three test
instances Set 1, Set 2, Set 3 created by Tsiligirides [5] have
up to 32 randomly placed target locations. The datasets Set
64, Set 66 by Chao [12] contain up to 66 target locations
with diamond and square shaped placement.

Due to our best knowledge, there is not a method for
solving the DOPN, and therefore, the proposed method has
been compared with the existing solution of the Dubins
Orienteering Problem [6] as the DOPN becomes the DOP
for δ = 0. Besides, we also compare the proposed method
with the existing SOM-based approach to the Orienteering
Problem with Neighborhoods [15] which corresponds to the
DOPN for ρ = 0.

For evaluation of the proposed randomized VNS method,
we run the experiments 10 times for all the problem instances
and particular algorithm, i.e., for each travel budget Tmax in
each dataset and algorithm. The computational results were
calculated using a single core of Intel i7 3.4GHz CPU and the
presented computational times represent the average required
time. During solution of the particular problem instance, a
combined stopping criterion was the maximal number of
10000 iterations with the maximal number of 5000 iterations
without improvement together with the maximal allowed
computational time of 4 hours. Both the number of samples
o of the waypoint locations at the δ perimeter around each



target locations and the number of sampled heading values
m were set to 16 samples except the zero neighborhood
radius δ=0 with o=1, and also in cases with the zero minimal
turning radius ρ=0 with m=1. Abbreviations used further in
the presentation of the achieved computational results are
listed in Table I.

TABLE I: Abbreviation related with the results

Set 1, Set 2, Set 3 Test instances created by Tsiligirides [5].
Set 64, Set 66 Test instances proposed by Chao [12].
SOM OPN Self-organizing map-based solution of the OPN [15]

The proposed VNS-based method for DOPN has been
compared using the minimal turning radius ρ=0 with existing
SOM-based OPN approach at three representative problems
for different neighborhood radii δ. Figure 4 shows the results
where the proposed VNS-based method outperforms the
existing OPN method mainly in cases without overlapping
neighborhoods, i.e., δ ≤ 1.5.
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Fig. 4: Comparison of self-organizing map-based solution
of OPN (red) and VNS-based OPN (blue) in solving OPN,
i.e., DOPN with ρ=0, for the selected problems and various
neighborhood radius δ

The proposed method uses the randomized VNS meta-
heuristic, and therefore, the found path does not always
collect the same rewards R. Table II presents the maximal
achieved sum of the rewards Rmax, the average collected
reward Ravg, standard deviation of the collected reward Rstd,
and the computational time for the selected instances with the
neighborhood radius δ and turning radius ρ on the problem
Set 66 with Tmax =60.

The computational results indicate that for almost all
turning radii the higher neighborhood radius leads to both
higher maximal and average sum of the collected rewards.
On the contrary, a larger turning radius requires a longer
path between the waypoints, and therefore a lower number
of target locations can be visited, and the collected sum of
rewards is lower.

A comparison of the maximal achieved sum of the col-
lected rewards for Set 3, Set 64 and Set 66 problems for the
complete set of the maximal allowed budget Tmax of the
available benchmarks are presented in Tables III, IV, and V.
The results are shown for various neighborhood radii δ and
turning radii ρ.

TABLE II: Comparison of DOPN for different neighborhood
radius δ and turning radius ρ on the Set 66 with Tmax = 60

δ=0.0 δ=0.2 δ=0.5 δ=1.0 δ=1.5

ρ=0.0

Rmax 915 950 1155 1545 1680
Ravg 899 933 1142 1531 1674
Rstd 26.1 13.5 12.0 16.4 13.4

comp. time 46.4s 26.1m 22.3m 22.4m 4.1m

ρ=0.3

Rmax 895 900 1110 1485 1615
Ravg 887 886 1082 1441 1598
Rstd 9.1 11.4 32.9 40.1 18.9

comp. time 2.5m 50.3m 80.0m 71.8m 66.5m

ρ=0.5

Rmax 895 885 1090 1520 1615
Ravg 883 873 1062 1466 1576
Rstd 26.8 11.5 22.0 41.6 29.2

comp. time 5.8m 36.6m 65.4m 64.6m 71.8m

ρ=1.0

Rmax 870 870 990 1465 1585
Ravg 857 856 946 1427 1531
Rstd 14.4 15.2 29.0 37.7 63.1

comp. time 5.1m 40.1m 54.3m 101.7m 95.9m

ρ=1.5

Rmax 785 825 960 1410 1455
Ravg 726 799 930 1312 1352
Rstd 54.1 19.2 30.0 72.9 97.0

comp. time 71.1s 26.5m 56.9m 85.8m 69.4m

TABLE III: Results for the Set 3

Tmax

δ=0.0 δ=0.5 δ=1.0

ρ=0.0 ρ=1.0 ρ=0.0 ρ=1.0 ρ=0.0 ρ=1.0
15 170 160 180 180 210 190
20 200 180 250 230 300 280
25 260 250 320 310 370 360
30 320 310 380 370 450 440
35 390 380 450 440 500 480
40 430 420 500 480 570 540
45 470 450 550 530 600 580
50 520 470 580 570 630 610
55 550 530 620 600 670 640
60 580 560 650 630 710 670
65 610 590 680 650 750 710
70 640 600 720 690 790 740
75 670 640 750 720 800 780
80 700 670 790 750 800 800
85 740 690 800 790 800 800
90 770 740 800 800 800 800
95 790 770 800 800 800 800

100 800 790 800 800 800 800
105 800 800 800 800 800 800
110 800 800 800 800 800 800

TABLE IV: Results for the Set 64

Tmax

δ=0.0 δ=0.5 δ=1.0

ρ=0.0 ρ=1.0 ρ=0.0 ρ=1.0 ρ=0.0 ρ=1.0
15 96 96 204 198 300 300
20 294 252 432 360 576 552
25 390 336 564 486 744 708
30 474 420 714 576 948 912
35 576 510 888 714 1158 1110
40 714 624 1068 876 1290 1236
45 816 696 1164 930 1344 1320
50 900 798 1248 1008 1344 1344
55 984 894 1320 1074 1344 1344
60 1062 948 1344 1140 1344 1344
65 1116 1014 1344 1212 1344 1344
70 1188 1074 1344 1254 1344 1344
75 1236 1116 1344 1290 1344 1344
80 1284 1170 1344 1308 1344 1344



TABLE V: Results for the Set 66

Tmax

δ=0.0 δ=0.5 δ=1.0

ρ=0.0 ρ=1.0 ρ=0.0 ρ=1.0 ρ=0.0 ρ=1.0
5 10 0 20 0 35 0

10 40 40 70 55 105 90
15 120 95 160 130 220 200
20 205 195 265 245 380 350
25 280 275 390 350 540 540
30 400 370 495 450 685 655
35 465 455 605 530 870 835
40 545 540 725 640 980 940
45 650 645 830 715 1135 1090
50 730 705 920 770 1275 1235
55 815 820 1035 870 1390 1330
60 915 865 1155 940 1545 1375
65 980 955 1255 990 1620 1570
70 1060 1070 1350 1085 1665 1575
75 1140 1115 1445 1185 1680 1650
80 1215 1170 1535 1240 1680 1680
85 1270 1235 1605 1305 1680 1680
90 1340 1295 1635 1390 1680 1680
95 1395 1365 1680 1485 1680 1680

100 1455 1420 1680 1550 1680 1680
105 1520 1470 1680 1610 1680 1680
110 1550 1530 1680 1640 1680 1680
115 1595 1565 1680 1660 1680 1680
120 1625 1605 1680 1680 1680 1680
125 1670 1640 1680 1680 1680 1680
130 1680 1670 1680 1680 1680 1680

Selected solutions found by the proposed method for the
DOPN are shown in Fig. 5 together with respective values
of the collected rewards.

EOP R=915 EOPN R=1135

DOP R=865 DOPN R=935

0 5 10 15 20 25 30 35

reward

Fig. 5: Solution of the Orienteering Problem, Orienteering
Problem with Neighborhoods, Dubins Orienteering Problem
and Dubins Orienteering Problem with Neighborhoods with
respective collected rewards R. The minimal turning radius
ρ = 1.0 is used for the variants of the OP with Dubins
vehicle. The neighborhood radius δ in respective variants is
set to δ = 0.5. In all four presented solutions, the same travel
budget Tmax = 60 on benchmark Set 66 [12] is utilized.

The computational time and the sum of the collected
rewards of proposed VNS-based method for the DOPN is
significantly influenced by the number of heading angle sam-
ples m, which has been shown in our previous work on the
DOP [6]. For the herein addressed DOPN, the computational
time, and thus the solution quality is also influenced by the
number of samples of waypoints locations o. Figure 6 shows
the influence of the maximal collected rewards Rmax and the
corresponding computational time for increasing number of
samples o for the neighborhood radius δ=0.5, turning radius
ρ=0.5, and number of heading samples m=16.
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Fig. 6: Influence of the maximal sum of the collected rewards
Rmax and the required computational time on the number
of samples o

VI. CONCLUSIONS

In this paper, we introduce a novel problem called the
Dubins Orienteering Problem with Neighborhoods as an
extension of existing Dubins Orienteering Problem with data
collection that is possible within a circular neighborhood of
each target location. The proposed solution is based on the
Variable Neighborhood Search metaheuristic for combinato-
rial optimization. A sampling of the possible locations on the
circular border of the neighborhood of each target location
is utilized as suitable discretization schema to determine the
location of waypoints at which rewards are collected from
the respective target locations. The computational results
show the feasibility of the proposed solution where the
selection of the circular neighborhood to collect the rewards
from the targets saves the travel cost, and thus additional
rewards from other targets are collected. Furthermore, the
results for the Euclidean Orienteering Problem with Neigh-
borhoods indicates that the VNS-based approach outperforms
the only existing SOM-based approach for non-overlapping
neighborhoods. For future work, we intend to investigate the
possibility of improving both the neighborhood and heading
angle samples during the algorithm in order to limit the
influence of the number of samples and their placement to the
solution quality and computational requirements. Besides,
we also plan to validate the proposed method in realistic
experiments of data collection scenario. We will use the
UAV platform designed for the MBZIRC competition (see
http://mrs.felk.cvut.cz/mbzirc for examples of experimental
deployment of the system). This platform enables to pre-
cisely follow Dubins trajectories over a sequence of targets
using a model predictive controller [25] as it was shown in
the case of verification of DTSPN and OPN methods [17].
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