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Abstract

This article presents computer vision modules of a multi-unmanned aerial vehicle (UAV)
system, which scored gold, silver, and bronze medals at the Mohamed bin Zayed Interna-
tional Robotics Challenge (MBZIRC) 2017. This autonomous system, which was running
completely on-board and in real-time, had to address two complex tasks in challenging out-
door conditions. In the first task, an autonomous UAV had to find, track, and land on a
human-driven car moving at 15 km/h on a figure-eight-shaped track. During the second
task, a group of three UAVs had to find small colored objects in a wide area, pick them up,
and deliver them into a specified drop-off zone.

The computer vision modules presented here achieved computationally efficient detection,
accurate localization, robust velocity estimation, and reliable future position prediction of
both the colored objects and the car. These properties had to be achieved in adverse outdoor
environments with changing light conditions. Lighting varied from intense direct sunlight
with sharp shadows cast over the objects by the UAV itself, to reduced visibility caused
by overcast to dust and sand in the air. The results presented in this paper demonstrate
good performance of the modules both during testing, which took place in the harsh desert
environment of the central area of United Arab Emirates, as well as during the contest,
which took place at a racing complex in the urban, near-sea location of Abu Dhabi. The
stability and reliability of these modules contributed to the overall result of the contest,
where our multi-UAV system outperformed teams from world-leading robotic laboratories
in two challenging scenarios.

1 Introduction

Advances in digital electronics meeting Moore’s law allowed reliable autonomous operation of multi-rotor
vehicles, which quickly became the most popular Unmanned Aerial Vehicles (UAVs) used in the scientific
community. Compared to single- or double- rotorcraft, their mechanics are simpler. This makes their
miniaturization easier and allows construction of small UAVs that can be fully autonomous and carry onboard
all sensors and computational equipment. Therefore, using simple light cameras and advanced computer



vision approaches is currently one of the most promising directions being followed by the robotic community
to achieve autonomous flight operations. In March 2017, the Mohamed Bin Zayed International Robotics
Challenge (MBZIRC) 2017 was organized by the Khalifa University of Science in Abu Dhabi. The event
aimed to accelerate the research of autonomous (multi) UAV systems, and the vision-based approaches were
the principal sources of information for the autonomous flight. In this article, all vision techniques used by
our team within the MBZIRC event are summarized. The MBZIRC competition had a significant impact
on the robotics community, particularly within the field of UAVs, due to the ambitiously selected robotic
challenges on the edge of current state-of-the-art chosen by a board of top scientists1. Two of the MBZIRC
challenges, motivated by current industry needs, were designed for UAVs: autonomous landing on a moving
vehicle and a task requiring a team of UAVs to collaborate to search, locate, track, collect, and relocate a
set of static and moving objects.

The MBZIRC competition could be considered as a relevant and objective benchmark of these tasks, which
are currently being solved by the robotic community since the teams had to achieve the given goal after only
a few minutes of preparation before each trial. No repeated attempts due to technical difficulties or other
problems, which is the standard practice in most of the robotics experiments, were allowed. Furthermore,
the systems’ robustness were thoroughly tested in an outdoor environment with changing environmental
conditions. Out of 143 registered groups from almost all of the best robotic laboratories worldwide, 25 top
teams were selected after several preliminary rounds to compete in the final competition in Abu Dhabi in
March 20172. The MBZIRC results verified the difficulty of the selected challenges and confirmed that the
goals are at the cutting edge of the current robotic research. Out of the 25 participants, only two teams were
able to land precisely in both final trials of the first challenge, and only four teams were able to transport
at least one object into the desired location in the autonomous mode. The vision systems introduced in this
paper were successfully employed in both of these challenges. The reliability and robustness of the object
search and localization were demonstrated by the best score of our system in all trials of the Challenge 3. In
the task of landing on a moving car, the robustness of the vision system was proven with successful landings
in all three trials. These landings were all conducted in autonomous mode, which was a unique result in
the competition. Moreover, the ability of fast car detection and landing was verified by the fastest attempt
(25.1 s during Grand Challenge) achieved by our team, while the best times of other competitors were 42.3 s
(Grand Challenge, University of Bonn) and 63.4 s (Beijing Institute of Technology, Landing Challenge).

In this article, we introduce vision-based techniques designed for the MBZIRC challenges. The first intro-
duced system is capable of repeatable fully autonomous landing on a 15 km/h moving platform in an outdoor
arena with the wind reaching 10− 20 km/h while achieving precision in the tens of centimeters. The second
method was designed for a “Treasure hunt” challenge, where a fleet of three UAVs was able to cooperatively
and entirely autonomously search for small objects in the challenging desert environment and collect them
with an onboard gripper with centimeter precision.

The computer vision system described consists of two separate pipelines. Some steps of these two pipelines
perform similar functions and thus are redundant. However, this redundancy was intended because if some
components of one pipeline would exhibit insufficient performance during the contest itself, they could be
easily substituted by components from the other one. The first pipeline is aimed to detect a pattern, com-
posed of a black circle with an inscribed cross on a white background. The challenge rules specified the
exact pattern parameters in advance and ensured that this high-contrast pattern with known dimensions
could appear in the contest arena only once – on a moving vehicle for landing. Thus, the design and imple-
mentation of the first pipeline could be tailored specifically for this known pattern. The second processing
pipeline was responsible for the ‘Treasure hunt’, where it had to perform colored object detection, tracking,
and mapping. The exact parameters of these objects, e.g., shape, size, and score indication, were specified by
the organizers during later stages of the contest preparation, and therefore, the individual processing steps
of this pipeline had to rely on universal methods, which are easy to adjust to a variety of different object
shapes and types. In particular, the original colored object detection pipeline assumed cuboid objects with

1https://www.mbzirc.com/committee
2Results of team CTU/UPENN/UOL from this qualification process can be found at

http://mrs.felk.cvut.cz/projects/mbzirc



the score inscribed on their top in white Arabic numbers. However, shortly before the actual contest, the
pipeline had to be changed to detect planar circular objects, with scores defined by their color.

1.1 Contribution beyond the state-of-the-art in UAV

Before the MBZIRC competition, few solutions for autonomous landing with visual feedback were described
in literature (Saska et al., 2012),(Lange et al., 2009). Most of these systems were capable of landing only
on a static or slowly moving pattern (Saripalli et al., 2003), (Fu et al., 2016), (Kim et al., 2016), and only
in laboratory conditions, without the presence of wind and with stable light conditions. Our system has to
perform a quick landing on a rapidly-moving vehicle, which requires the UAV to pitch and roll in angles
sometimes exceeding 40 degrees. To prevent loss of landing target sight, we use a camera with a large field
of view (FOV), fast frame rate, and high resolution.

The visual module for following and landing is presented in a growing body of litera-
ture (Hoang et al., 2017), (Gomez-Balderas et al., 2013), (Borowczyk et al., 2017), (Xu and Luo, 2016),
(Lin et al., 2017), (Kim et al., 2014). In (Hoang et al., 2017) a system for ground vehicle following, based
on Scale Invariant Feature Transform (SIFT) (Lowe, 2004), is described. In our case, the requirement
of high resolution and framerate, along with the limited onboard computational power, prevent the use
of methods like SIFT. In (Gomez-Balderas et al., 2013) the target detection is straightforward because
the target is a red square in an indoor environment with constant, controlled lighting conditions. In
(Borowczyk et al., 2017) the GPS and AprilTag (Olson, 2011) is used. This combination enables precise
localization of the UAVs in the range of up to 5 m from landing platform. Similarly, (Xu and Luo, 2016)
is using AprilTag achieved good performance for mutual localization of ground vehicle and UAV. This ap-
proach cannot be used for MBZIRC because the ground vehicle is marked by the circle with the cross
inside. However, the method described in (Gomez-Balderas et al., 2013) and methods with AprilTag in
(Borowczyk et al., 2017) and (Xu and Luo, 2016) use the Canny edge detection algorithm as the first stage
of image processing. This is troublesome outdoors, where the presence of shadows and clutter causes the
Canny method to detect a high number of edges, leading to excessive computational overhead in subsequent
processing (Lightbody et al., 2017).

The authors of (Lin et al., 2017) present a similar approach for target detection, which is based on image
segmentation and line detection to detect a landing pattern with the letter H inside a circle. To deal with
the rapid movement of the target, our approach uses camera lenses with a FOV of more than 180◦ and a high
frame rate camera with a global shutter. However, usage of lenses with this FOV requires specific techniques
that deal with the image distortion. To reduce distortion we implemented an undistortion calculation method
which is 20 times faster than the OpenCV fish-eye undistortion function, see Section 2.2.

In (Kim et al., 2016) and (Kim et al., 2014) an omnidirectional camera is used to detect the target platform.
These articles describe the approach of team KAIST from MBZIRC competition, but only from their pre-
liminary stage of development, when the red square was used as a target. Our approach uses more efficient
computation of undistorted points and is more robust in the final detection.

The contribution of this paper is to present a solution that was very successful in the MBZIRC compe-
tition. The vision systems are a critical part of the whole control system, and the success of the system
depends on thorough testing in realistic conditions. The requirements put on of vision-in-the-loop systems for
autonomous flight are beyond efficiency metrics traditionally used in computer vision community, where de-
tection is commonly evaluated using precision/recall on standardized datasets. In a contest-based evaluation,
the methods have to satisfy real-time constraints on computationally restrained devices, to analyze images
from low-end cameras, and to integrate results with sensory data, which are subject to glitches, delays, and
hard-to-model noise. Furthermore, these methods have to deliver satisfactory results across a wide range of
environmental conditions, which are often not captured in the training data. The quality and reliability of
the presented approaches have been verified during the MBZIRC event by direct and fair comparison in equal
conditions with tens of rivaling methods designed by reputable robotic laboratories worldwide. The solutions



Figure 1: The landing pattern from the UAV’s perspective. Note the shadows cast by the UAV itself.

proposed here enable detection of a target object, precise estimation of its relative position and velocity, and
accurate prediction of the target motion. The most important property of the proposed approaches is their
computational efficiency and robustness in demanding outdoor environments with adverse illumination con-
ditions. To facilitate the use of our vision system by other researchers, we provide their source codes as well
as datasets collected during the contest at http://github.com/gestom/MBZIRC_2017_vision.

2 Landing pattern detection

The primary goal of landing pattern detection is to detect the target quickly and robustly. The target speed
was high – 15 km/h (or 4.2 m/s) and considering the speed of the UAV (up to 25 km/h, i.e. 6.9 m/s) the
computer vision system has to be able to deal with object’s speed exceeding 10 m/s. Our tests indicated that
UAV-mounted rolling-shutter cameras are subject to the ‘jelly’ effect (see Figure 9), which had a negative
impact on our method’s robustness. Furthermore, tests with 80◦ FOV cameras with standard framerates
allowed us to land only on vehicles slower than 5 km/h. This led us to select a global shutter grayscale camera
(mvBlueFOX-MLC200w), which can provide 93 images per second with resolution 752× 480. To achieve a
sufficient, 185◦ field of view, we equipped the camera with a small SuperFisheye lens (Sunex DSL215).

All control algorithms were performed on a machine which we have previously tested in a variety of weather
conditions – Intel NUC embedded PC with Intel Core i7 5557U processor. This processor has two cores, four
threads, and the computer runs three mission-critical control algorithms for trajectory planning, trajectory
execution and position estimation using Real-time Kinematic Positioning of Global Positioning System (RTK-
GPS), altitude sensors. It was decided to use only one thread for the image processing module to keep enough
computation power for those control tasks. Our detection algorithm can recognize the landing pattern in one
image using a single thread in less than 15 ms. Considering this detection frame rate and the aforementioned
relative velocities, the relative position change of the landing target to the UAV is below 20 cm.

2.1 Algorithm overview

Landing pattern detection is based on standard computer vision approaches using the OpenCV
(Bradski, 2000) library. The landing pattern (see Figure 1) consists of a cross within a circle. Therefore, the
landing pattern localization algorithm combines outer circle detection with cross detection inside the circle.
The detection has to be robust to various weather conditions, changes in light intensity, and shadows cast
over the pattern. To reduce the effect of the sun’s glare, we implemented a customized camera exposure
control. The exposure of the camera was controlled so that the brightest point in the image is in the range
200 to 240 (the maximum brightness of a pixel is 255). This exposure control was especially efficient in
suppressing brightness variations, and the images obtained from the camera were suitable for segmentation.



Figure 2: Vision pipeline for landing pattern detection.

The visual pipeline in Figure 2 starts with the adaptive thresholding that produces a binary image, followed
by the detection of continuous areas with convex border. The steps mentioned above are performed on the
original (radially distorted) image. Then, the border points of continuous areas that are larger than 10 pixels
are undistorted using our improved undistort function, see Section 2.2. If the undistorted border points are
ellipse-shaped, their inner area is tested for the presence of a cross. If no ellipse is found in the image and the
UAV altitude is less than 1.5 m, the detection of the large cross, consisting of two pairs of parallel lines, is
initiated. If either a large cross or ellipse with a cross inside is found, the target’s coordinates are calculated.

The first step of pattern detection is an application of adaptive thresholding. The OpenCV library optimizes
this step by using the integral image. Therefore the adaptive thresholding step is computationally efficient.
In our case, the adaptive thresholding (AT) of an image with resolution 752 × 480 took less than 1 ms.
The adaptive threshold is robust to changes in light intensity but can be used to segment correctly only the
border of the pattern’s circle. The box size defines the size of details that can be detected in the resulting
image. The result of the adaptive thresholding with box sizes: 5 pixels, 11 pixels, and 25 pixels can be seen
in Figure 3. Therefore the size of the block for adaptive threshold depends on expected pattern size, which
again depends on UAV altitude over the landing pattern. The box size has to be an odd number in pixels
and was continuously updated according to the current altitude of the UAV as follows:

• At altitudes exceeding 5 m we set the box size to 5 pixels because the pattern appears small, and
the size of the circle in the image ranges from 10 to 20 pixels.

• Between 1.5 m and 6 m, the pattern is larger (20 to 200 pixels), and the box size is set to 11 pixels.

• Below 1.5 m, only part of the target’s circle is visible (due to the UAV declination when pursuing
a fast-moving object), and the box size is set to 25 pixels, which is optimal to detect the target’s
central cross.

Continuous areas with convex borders are searched for in binary images (see Figure 3) produced by the
adaptive thresholding step. The border points of these areas are then undistorted and processed by ellipse
and line fitting methods of the OpenCV.

2.2 Optimised fish-eye undistort

The identification of the lens was performed using OpenCV 3.2 and its fish-eye model
(Kannala and Brandt, 2006). The original and undistorted images from the UAV’s camera are in Figure 4.
The size of the undistorted image is 1680 × 1290, which is too large to achieve real-time detection of the
target. Since we do not want to lose details in the image center, we do not solve this by resampling the
image. Instead of that, we perform undistortion only for points at the areas border.

For our application, the fish-eye undistortion provided by the OpenCV library is too computationally inten-
sive, and thus, we implemented our own image undistortion method. The original fish-eye undistort function
computes transformation from image coordinates (x, y) to undistorted coordinates as shown in Algorithm 1.

The approach described in Algorithm 1 is slow, mainly because of the iterative computation of θ10, which



Figure 3: Adaptive thresholding of the target pattern. The top row shows original images from the camera,
and the bottom shows results of the adaptive thresholding with box size 5, 11 and 25 pixels (left to right).

Figure 4: Image distortion specific to the fish-eye lens. Original image from the camera on the left and
undistorted image on the right.

Algorithm 1: Standard fish-eye undistort

Input: (x, y, c{x,y}, f{x,y}, k{0...3}): x, y – coordinates to be undistorted; c{x,y} – optical center;
f{x,y} – focal lengths; k{0...3} distortion coefficients from camera calibration
Output: (x′, y′): (x′, y′) – undistorted coordinates
wx ← (x− cx)/fx // transform x to canonical coordinates

wy ← (y − cy)/fy // transform y to canonical coordinates

θ0 ←
√
w2

x + w2
y // compute distance from center

// #1 iteratively compute undistortion coefficient θi (10 times)

for i ∈ 0 . . . 9 do
θi+1 ← θ0/(1 + k0 · θ2i + k1 · θ4i + k2 · θ6i + k3 · θ8i )

s← tan(θ10)
θ0

// determine scale s

x′ ← swx // use scale s to calculate undistorted x coordinate

y′ ← swy // use scale s to calculate undistorted y coordinate



requires 80 float multiplications, 11 float divisions, 1 square root and 1 tangent calculation. Therefore the
original undistort function requires 93 float operations per coordinate.

Because the distortion coefficients k{0...3} are known in advance, we can precalculate the results of the scale s
(see Step #1 of Algorithm 1) for all values of θ0 with sufficient precision. For our image resolution 752×480 we
perform this precalculation for 2000 values of θ0, obtaining a function σ(θ0), which sufficiently estimates the
fish-eye undistortion for angles between 0 and 75◦. Additionally, we neglect the square root function, because
we can prepare scale values for the square distance from image origin. This allows optimized computation
of undistorted coordinates of image coordinates (x, y) as shown in Algorithm 2.

Algorithm 2: Optimized fish-eye undistort

Input: (x, y, c{x,y}, f{x,y}, k{0...3}): x, y – coordinates to be undistorted; c{x,y} – optical center;
f{x,y} – focal lengths; k{0...3} distortion coefficients from camera calibration;s
Output: (x′, y′): (x′, y′) – undistorted coordinates
wx ← (x− cx)/fx // transform x to canonical coordinates

wy ← (y − cy)/fy // transform y to canonical coordinates

θ0 ← w2
x + w2

y // compute square distance from center

s← σ(θ0) // use precomputed values of σ(.)
x′ ← swx // use scale s to calculate undistorted x coordinate

y′ ← swy // use scale s to calculate undistorted y coordinate

The optimised Algorithm 2 uses only 5 float multiplications/divisions and is ∼20 times faster than the
conventional method shown in Algorithm 1. To assess its accuracy, we compared its undistortion results
with the original method provided by the OpenCV library, see Table 1. For the central areas of the image,
corresponding to a cone with apex angle 154◦, the maximal error of our algorithm with the comparison to
the original one is below 1 pixel. Then, it grows rapidly and towards the image borders, where the angle
between the camera axis and pixel projection line exceeds 85◦, the maximal error of our algorithm compared
to the original undistortion algorithm is 9.4 pixels.

Table 1: Maximal error with respect to angle of pixel projection line

Angle of projection line [deg] 10 20 30 40 50 60 70 80 85
Maximal error [pixel] 0.001 0.006 0.018 0.052 0.123 0.281 0.628 1.270 9.404
Maximal error [%] 0.0003 0.002 0.01 0.03 0.06 0.09 0.13 0.18 0.78

2.3 Robust circle detection

The localization of the landing pattern is based on ellipse detection in images produced in the adaptive
thresholding step. The ellipse candidates are selected from continuous areas with convex borders, found by
a method similar to (Krajńık et al., 2014). Selecting only convex objects eliminates a significant number of
false detections and speeds up the target localization.

The points on borders of all convex objects are transformed to undistorted coordinates. Then we calculate
the center, size, and rotation of the ellipse by using the OpenCV ellipse fitting method. Next, we rotate and
rescale the resulting ellipse and detected border points in a way which projects the ellipse on a circle:(

trx
try

)
=

(
1 0

0 ellwidth

ellheight

)
·
(
cosα − sinα
sinα cosα

)
·
(
brx − cenx

bry − ceny

)
, (1)

where (brx, bry) are undistorted coordinates of border points, (trx, try) are coordinates of the transformed
points, (cenx, ceny) are undistorted coordinates of the fitted ellipse center, α is detected ellipse rotation and
(ellwidth, ellheight) are the ellipse axes lengths.



Figure 5: Morphological closing for cross detection: original images shown in the top row, processed images
in the bottom row.

After the transformation, we calculate the distance of each detected border point (brx, bry) to the ellipse.
This distance is determined as the distance of transformed border point (trx, try) to the circle with center
(0, 0) and radius ellwidth.

distance =
√
tr2x + tr2y − ellwidth (2)

The detection is considered as valid if at least 95% of border points fall within 3.5 pixel distance to the
ellipse.

2.4 Robust target detection

Typically, the UAV operates in environments where other circular objects are present. Therefore, to eliminate
false positive detections, we have to detect the pattern’s cross as well. The detection of the cross relies on
three different methods, which are selected depending on the detected circle size. The methods differ because
the target pattern appearance depends on UAV altitude. While the most robust cross detection method is
based on Guo Hall thinning (Guo and Hall, 1989), it cannot be used for targets smaller than 30 pixels, as
the cross lines become too narrow. On the other hand, the Guo Hall thinning for targets larger than 150
pixels becomes too slow.

If one of the axes of the ellipse (circle) is smaller than 30 pixels, then one line of the cross cannot be detected
reliably, though the cross divides the circle into four areas of similar size. In such cases, the cross presence is
verified by searching for these four areas. To do so, a mathematical morphology operation closing is applied
to the image inside of the detected circle, and the number of closed areas inside the circle is computed. The
cross is considered present if there are exactly four closed, similarly-sized areas inside the circle. The cross
detection by closing is illustrated in Figure 5, which shows original images as well as the detected areas.

If the detected ellipse size is between 30 and 150 pixels, the cross is searched for by Guo Hall thinning
(Guo and Hall, 1989), which is very robust, but computationally intensive, and thus applicable only to
small-scale images. Once the Guo Hall thinning finds the cross lines inside the detected ellipse, we verify if
these intersect close to the ellipse center. Figure 6 shows the original images from the camera in comparison
to images after applying adaptive thresholding and Guo Hall thinning.

For circles larger than 150 pixels the Guo Hall thinning becomes too slow. For circles of this size, the cross is
detected by searching for two pairs of parallel lines (see Figure. 7), which form a border of the cross. At least
two pairs of parallel lines with correct size and distance need to be recognized to detect the cross and its
center positively. The algorithm is based on border following, split and merge algorithm, and arc detection.
For more details, see the source code of our detector at http://github.com/gestom/MBZIRC_2017_vision.



Figure 6: Two examples of landing pattern cross detection by Guo Hall thinning: original images, adaptive
thresholding, and Guo Hall thinning.

Figure 7: Cross detection by line search. The left image is the original image from the camera; the right
image is undistorted showing detected lines by colours (tiny red cross shows position of the center).

The same algorithm for detection of lines and arcs is also used when the circle is only partially in the camera
field of view. This situation is selected if no circle with the cross was detected by previous methods and the
altitude is less than 2 m when the UAV is maneuvering aggressively to follow the vehicle. Figure 8 depicts
a pattern that is only partially in the image (the right image contains only two visible lines of the cross). In
the case of circle incompleteness, the landing pattern is considered to be visible if at least four border lines
of the landing cross are detected.

2.5 Global pattern position

The final step is the calculation of the landing pattern’s position in the global coordinate system. Suppose
that we calculated the undistorted coordinates of the pattern’s center x′ = (x′, y′), we know that the pattern’s
relative position to the camera is dx = d (x′, y′, 1), where d is an unknown positive number corresponding to
the pattern-camera distance. Knowing the UAV’s camera position u = (ux, uy, uz) and its rotation Ru in the

Figure 8: Line detection during the terminal phases of landing, when only part of the landing pattern is
visible. The left image is the original image from the camera; the right image is undistorted showing detected
lines by colors (tiny red cross shows the position of the center).



global coordinate frame, we can exploit the knowledge of camera altitude uz and target height above ground
tz to eliminate the unknown distance d and calculate the landing pattern’s global coordinates g = (gx, gy, gz)
as

g = u+ (uz − tz)Ru x. (3)

Equation 3 requires a precise estimate of the UAV’s altitude. However, experiments showed that the altitude
error could be up to 1 m when relying on the laser- or GPS-based altitude estimation. Therefore, for the
pattern detection, we compute the distance to the pattern from the apparent size of the ellipse by a method
similar to the one described in Section 3.5.

2.6 Visual system calibration

A successful landing depends on precise localization of the landing pattern in world coordinates. The precision
of the localization depends not only on camera intrinsic calibration, but also on the accuracy of the camera
pose estimate at the moment the processed image was acquired. This requires not only calibration of the
camera coordinate system with the UAV coordinate system, but also synchronization of UAV’s position to
the time of image acquisition.

The following steps describe the parameters taken into account when calculating the global position of the
vehicle:

• position translation of camera origin relative to the UAV body,

• angular shift of camera mount to UAV body,

• time shift of camera data to the time of known position and orientation of the UAV.

The position shift of the camera coordinate system to the UAV coordinate system was measured on a bench
during the UAV construction. However, later tests showed that the best way to estimate the angular shift is
to use real-world data. The time shift of camera data has to be determined by a special procedure because
it depends on many hidden parameters of Robot Operating System (ROS), the software and the hardware
used. We found it difficult to set all parameters at once, due to the entanglement of the time and angular
shift. Consequently, we designed two separate flight scenarios to automate the estimation.

Both scenarios rely on RTK-GPS up to 3 cm localization precision. The UAV takes off from the center of
the landing pattern, and therefore the target’s position in world coordinate system can be automatically
detected. The first scenario was designed to detect the angular shift of camera, so the UAV was flown as
smoothly as possible along a predefined trajectory around the landing pattern. The second scenario employs
aggressive maneuvers with a high angular rate of the UAV to detect the time shift of the camera image to
UAV’s position. From both scenarios, we receive a data set with camera images and the UAV’s positions
with a precise time stamp. Using these data, we can calculate angular shift of camera as minimizing position
error of computed target position and real target position.

Finding the camera parameters splits into two parts. First, the yaw angle α and roll, pitch parameter dx, dy
is estimated using the dataset from the first scenario. Since a calm, slow-moving flight was selected in the
first scenario, the effect of the time delay on the calculated position is negligible. The effect of yaw angle α
change on the detected target position is reflected by the following transformation:(

x′

y′

)
=

(
cosα − sinα
sinα cosα

)
·
(
x
y

)
. (4)

The point (x, y) is target position in image using undistorted coordinates with (0, 0) in center of the image
and point (x′, y′) is transformed position using yaw angle α. To estimate the angular correction using roll



angle β = tan dx

fx
we apply transformation

x′′ =
(x′ − dx) · f2

x

f2
x + dx · x′ . (5)

To estimate the angular correction using pitch angle γ = tan
dy

fy
we apply transformation

y′′ =
(y′ − dy) · f2

y

f2
y + dy · y′

. (6)

Using these transformations we receive point (x′′, y′′) of corrected target position in undistorted coordinates
system, that is then used to compute new global position of target in world coordinates system.

The search for the angular shift can be defined as an optimization task with variables α, dx, dy. The task
was solved by finding parameters α, dx, dy such that they minimized the sum of squared differences between
the computed target position and real target position for all data from the first scenario. Minimization is
achieved by calculating the difference of positions for all combinations of values α from interval < −5◦, 5◦ >
with step 0.5◦, values dx, dy from < −50, 50 > with step 2 using focal length fx = fy = 261 pixels. The task
was solved offline using recorded flight data.

In the second scenario, we aimed to determine the time delay of camera data relative to the UAV position.
Similar to the previous step, we want to find the time delay ∆t that minimizes the sum of squared differences
between the computed target position using UAV’s position from time t + ∆t and real target position for
all data from the second scenario. As the second scenario is using more aggressive maneuvers, the time
shift can be detected more precisely. Minimization is done by calculating the difference of positions for all
combinations of values ∆t from interval < −0.1, 0.3 > s with 0.02 s steps. We are testing negative values
for ∆t because the UAV’s position data has also a delay, which can exceed the delay of the image transfer.
Our experiments show that for the fast BlueFox camera, the image delay caused by reading data from the
sensor and transferring data to the computer can be smaller than the post-filtered delay of UAV’s position.

3 Colored target localisation and motion estimation

The colored object detection and localization were intended for the ‘Treasure hunt’ scenario, where several
UAVs had to search for small objects in the contest arena, pick them up, and deliver to a specific location.
Some of these objects were supposed to be stationary, some were attached to moving robots, and some were
too heavy to be carried by a single UAV – these were intended to be carried cooperatively by multiple UAVs.
Each object had an assigned score, which the given team obtained if its UAVs brought the object to the
designated drop–off zone.

Unlike the landing pattern, which consists of high-contrast black and white elements, the objects in the
Treasure hunt scenario were supposed to be covered by a uniform color with an optional indication of the
score. The organizers indicated the primary colors (red, green, blue, yellow, and black) and maximum sizes
of these objects ∼0.2 m, but the exact shape, color, and score indication were not announced initially. Thus,
we designed the colored object detection pipeline in a way which would allow its easy modification after
the disclosure of exact object specifications. Apart from the adaptability requirement, the image processing
pipeline had to be computationally efficient, because picking up a small object in outdoor conditions requires
fast vision-in-the-loop control. Furthermore, the requirement of outdoor operation meant that the algorithm
had to be able to deal with varying illumination and shadows cast by the UAV over the objects during
their pickup. Finally, since the camera used had a rolling shutter 3 the object detection method had to
deal with the so-called ‘jelly’ or ‘wobble’ effect (see Figure 9) caused by vibrations induced by the UAV
motors (Afolabi et al., 2015). To satisfy these requirements, we decided to base the colored object detection

3Earlier tests indicated that (in contrast to the landing pattern recognition), our color target localization achieved better
performance with a high-resolution rolling-shutter camera than with a lower-resolution, global shutter camera of similar price.



Figure 9: Object detection in onboard camera images affected by the ‘jelly’ or ‘wobble’ effect, which deforms
lines (left image), as well as circular and square objects (right image). The detection results shown overlayed
in the images indicate the 3d relative position (top line) and attributes like roundness, eccentricity, and type
(values 1,2, and 3 for red, green, and blue static objects respectively; and 5 for the yellow, moving object.)

method on a computationally efficient segmentation algorithm originally used for black-and-white pattern
detection (Krajńık et al., 2014). The method combines flood fill techniques and on-the-fly calculation of
the segments’ statistical properties. The statistical properties are used in consecutive tests with increasing
complexity and allow to efficiently determine if a candidate area represents a pattern with th desired shape.
The advantage of these statistics is not only computational efficiency but also robustness to the ‘jelly’ effect.
The object detection method can process the entire image, finding all relevant objects in the camera field of
view, or it can be set to track only a specific number of objects, which boosts its computational speed by
a factor of 2. The ‘complete’ mode, which processes the entire image, was used when the UAVs created a
coarse overview map of the objects in the arena; while the ‘tracking’ mode was employed when descending to
and picking up a specific object. Both of these settings proved especially useful during the contest because
the map created during an initial high-altitude flyover allowed our UAV team to create an efficient plan for
the objects’ collection. Thus, the drones did not have to search for the objects randomly, but they could fly
directly to the objects’ approximate locations provided by the planning module.

The method presented here shares similarities with the solution used by another very successful team from
the University of Bonn (Nieuwenhuisen et al., 2017). However (Nieuwenhuisen et al., 2017) based their seg-
mentation on Maximally Stable Extremal Regions (MSER) (Matas et al., 2004) rather than on flood-fill
technique from (Krajńık et al., 2014), and they report that their method is slower than the camera frame
rate.

3.1 Method overview

The method first retrieves an image from the UAV bottom camera and starts to label the image pixels into
the object or background classes. Once it encounters an object-colored pixel, it initiates a flood-fill scheme
to search for a continuous object-colored segment around it. Upon finding the segment, it establishes its
bounding box, number of pixels, centroid, convexity, and compactness and uses these statistics to determine
if the segment can correspond to an object of the desired shape. After that, using the known object size and
camera parameters, the method calculates the relative 3d position of the object to the UAV. The relative
position is transformed into global 3d coordinates based on the data from the UAV navigation system.
Optionally, the method employs a näıve Bayesian classification scheme to determine the score obtainable
by picking up the object. Finally, global 3d positions of the detected objects are forwarded to a mapping
module, which integrates multiple detections of the objects into a single 3d representation, which is then
used by the localization and planning systems. The performance of the method both during tests and the
contest indicated not only good computational efficiency but also robustness to changing illumination.



3.2 Pixel labeling

The core of the method is efficient pixel-wise labeling based on a 3d RGB look-up grid, where each cell
contains a label indicating if the RGB value represented by the cell coordinates could represent an object or
not. Classifying a pixel is performed by retrieving a label from the grid cell with coordinates corresponding
to the pixel’s RGB values. The principal advantage of this method is that it can be used to implement any
classification algorithm in constant time – one needs to precalculate the grid only during system initialization.
In our case, the grid was initialized from a parametric model, where each object color was represented by
a mixture of Gaussians in the hue-saturation-value color space. To allow further refinement of the color
labeling, we developed a GUI, which displays the current results of the colored target localization and the
hue-saturation projection of the 3d RGB look-up grid. This GUI can be used to alter the model’s components
or add and remove regions with a given label in the color grid. Thus, if a given object type could not be
accurately detected, the user can delimit the image area containing the object, which triggers the display of
the hue-saturation histogram within the area. The user can then indicate which colors (in hue-saturation
space) in this area correspond to the object and which do not. Apart from labels indicating background or a
given object class, the colormap can also contain ‘ambiguous’ labels, corresponding to colors which can but
might not represent the searched object color. The ‘ambiguous’ labeled pixels were classified according to
their neighboring pixels – this was particularly useful for white numbers with the object score, because the
contest area also contained uncollectable white objects.

Not all pixels of the image need to be labeled – if the system works in the ‘tracking’ mode, the labeling is
performed only as long as the method finds a specific number of objects. Thus, if the pixel labeling starts
at some of the searched object’s pixels, the method does not process any pixels apart from the ones that
belong to the object itself, which results in a significant speedup.

3.3 Segmentation

In the first phase, Algorithm 4 uses the RGB grid to consecutively examine if the image pixels could belong to
the searched object. Whenever a pixel is classified as being a pixel of a potential object, a flood-fill procedure
shown in Algorithm 3 is initiated to search for a continuous segment of the object color. In other words, the
method (Algorithm 4) labels the image pixels, and once an object pixel is detected, a queue-based flood-fill
Algorithm 3 is initiated to find a segment around it. The queue used in Algorithm 3 contains positions of
the segment’s pixels and is implemented as a buffer with two pointers qstart and qend. This ensures that
at the end of the flood-fill calculation, the queue contains all the positions of the segment pixels, which are
then used for further processing.

In particular, once the flood fill finishes, the segment is tested for a minimal size (in terms of the number
of pixels belonging to the segment) and a roundness measure within acceptable bounds. These two simple
constraints can be validated quickly, which results in a fast rejection of false positives. If either test fails,
Algorithm 3 reports that the segment is not valid, and detection for other segments continues from the
following pixel position (i.e., a pixel at the position i+ 1) by Algorithm 4.

The roundness test, see Algorithm 3, is based on the pattern’s bounding box dimensions and the number of
pixels, where number of pixels s of an ellipse with dimensions bu, bv should be s = π bu bv/4. Therefore, the
segment dimensions and number of pixels should satisfy the inequality

ρtol >
∣∣∣ π
4 s

bubv − 1
∣∣∣ , (7)

where the value of ρtol represents a tolerance range, which depends on the camera radial distortion, possible
pattern deformation, and spatial orientation.

If the segment passes the minimum size and roundness tests, its final validation is performed by calculating
a more sensitive circularity measure described in the following subsection (see also Algorithm 4). Once it



Algorithm 3: Flood-fill segmentation

Input: (p, rgb grid, object class): p – starting pixel position; class – searched segment label
Output: (S): S – positions of segment’s pixels
sid ← sid + 1 // increment segment ID

qend ← qstart ← 0 // initialise queue

umax ← umin ← pu // initialise bounding box

vmax ← vmin ← pv // initialise bounding box

pixel label[p]← sid // mark pixel as processed

queue[qend ++]← p // and push its position to the queue

// #3.1 perform the flood fill search

while qend > qstart do
q ← queue[qstart ++] // pull pixel from the queue

// #3.2 and check its neighbours, (w is image width in pixels)

foreach offset ∈ {+1,−1,+w,−w} do
r ← q + offset
// #3.3 if a pixel is not labeled yet, then assign it a label

if pixel label[r] = unknown then
pixel label[r]← rgb grid(Image[r])

// #3.4 if it has object color, then

if pixel label[r] = object class or ambiguous then
queue[qend ++]← r // add it to the queue

pixel label[r]← sid // label it as belonging to the current segment

// #3.5 update bounding box params

umin ← min(umin, ru), umax ← max(umax, ru)
vmin ← min(umin, rv), vmax ← max(vmax, rv)

S ← {∅}
// # 3.6 test for the pattern size

if qend ≥ min size then
ρ← πbubv/(4s)− 1 // # 3.7 calculate roundness

// # 3.8 test segment roundness

if ρtol > ∥ρ∥ then
S ← queue // push queue to output and mark as valid

passes this test, the pattern is considered to be valid, and its centroid position is used as a starting point
i0 for the next detection run. If the method works in ‘tracking’ mode, the image processing finishes. If not,
Algorithm 4 continues to search for objects in the rest of the image pixels.

3.4 Calculating ellipse semiaxes

To finally verify if the pattern is elliptic, we calculate its semiaxes’ lengths and compare those to the number
of segment pixels. The pixel positions to calculate the ellipse center u, v and the semiaxes e0, e1 are stored
in the flood-fill queue formed by Algorithm 3. First, the ellipse center (u, v) is calculated as an arithmetic
mean of the pixel positions. Then, the covariance matrix C is calculated as

C =

(
cuu cuv
cuv cvv

)
=

1

s

s−1∑
i=0

(
uiui uivi
uivi vivi

)
−
(

uu uv
uv vv

)
, (8)



Algorithm 4: Pattern detection

Input: (i0, rgb grid,mode, Image): i0 – search start position ; rgb grid – RGB lookup grid; Image –
image to be processed,mode – either search a ‘complete’ image or ‘track’ a single segment

Output: (P): P – set of detected segments, each described by its centre u, color h, and semiaxes e0,1;
i ← i0 // #4.1 set current position to search start

// #4.2 search through the image and label pixels

repeat
if pixel label[i] = unknown then

if rgb grid(Image[i]) = object class then
pixel label[i]← object class

// #4.3 if pixel at position i has object color, initiate flood fill

if pixel label[i] = object class then
S ← flood-fill seg(i, rgb grid, object class) // #4.4 perform flood fill, see Algorithm 3

// #4.5 if the flood fill proposed a segment candidate

if |S| > 0 then
h←

∑
s∈S HSV(Image[s]); // #4.6a calculate mean HSV of the segment pixels

u←
∑

s∈S(sx, sy); // #4.6b calculate mean of the segment pixels positions

C← covs∈S(sx, sy);// #4.6c calculate covariance of the segment pixels positions

(λ0, λ1,v0,v1)← eig(C); // #4.7 covariance matrix eigenanalysis

e0,1 ←
√
λ0,1v0,1; // #4.8 determine ellipse semiaxes

// #4.9 final circularity test

if |S| ≈ 4π |e0 e1| then
P = P ∪ (u,h, e0,1) // add segment information to the set of segments found

if mode = track then
break // if in ‘track’ mode, then terminate

i← (i+ 1)mod sizeof(Image) // go to next pixel until you reach i0
until i ̸= i0;

where ui and vi are the pattern’s pixel coordinates stored in the queue. Since the matrixC is two-dimensional,
its eigenvalues λ0, λ1 are found as a solution of a quadratic equation:

λd = max (
√
(cuu + cvv)2 − 4(cuucvv − c2uv), 0),

λ0 = (cuu + cvv + λd)/2,
λ1 = (cuu + cvv − λd)/2.

(9)

If λd equals 0, then the pattern is a perfect circle and we assume the corresponding eigenvectors v0,v1 to be
(1, 0)T and (0, 1)T respectively. Otherwise, the eigenvectors are calculated by

v0 = 1√
c2uv+(cuu−λ0)2

(
cuv

λ0 − cuu

)
, v1 = 1√

c2uv+(cvv−λ1)2

(
λ1 − cuv

cuv

)
. (10)

Having the eigenvectors and eigenvalues, we can calculate the ellipse semiaxes e0, e1 by

ei =
√
λivi. (11)

The final test verifying the pattern roundness is performed by checking if the inequality

ρprec >

∣∣∣∣4π |e0||e1|s
− 1

∣∣∣∣ (12)

holds, where s is the pattern size in the number of pixels. Unlike in the previous roundness test (7), the
tolerance value of ρprec is much lower because (11) establishes the ellipse dimensions with subpixel precision.



3.5 Position estimation in relative 3d space

Once the ellipse center, dimensions, and orientation are calculated, we determine its 3d position in the
camera coordinate frame. First, we calculate the ellipse’s characteristic equation in the canonical camera
coordinates, which correspond to an ideal pinhole camera model with unit focal lengths and zero radial
distortion. Then, we retrieve the position of the ellipse in 3d space utilizing its characteristic equation
eigenanalysis.

3.5.1 Transformation to canonical camera coordinates

To compensate for the radial distortion of the image at the position of the detected ellipse, we calculate the
camera characteristic equation from the coordinates of the pattern’s canonical vertices. First, we calculate
the image coordinates of the ellipse vertices a0,1 and co-vertices b0,1. We transform those to the canonical
camera (i.e. camera with no radial distortion and unit focal lengths) coordinates a′0,1,b

′
0,1. These coordinates

are then used to determine the pattern’s canonical center and canonical semiaxes.

The ellipse center and semiaxes u,e0, e1 are known and thus, the canonical (co-)vertices a′0,1 and b′
0,1 are

obtained by adding the semiaxes to the ellipse center and transforming the result:

a′0,1 = g′ ((u± e0x − cx)/fx, (v ± e0y − cy)/fy)
b′
0,1 = g′ ((u± e1x − cx)/fx, (v ± e1y − cy)/fy)

,

where g′ stands for the undistortion function and fx,y, cx,y are the camera focal lengths and optical center
respectively. Using the canonical coordinates of the ellipse vertices, the ellipse center u′

c and axes e′0, e
′
1 are

then determined by
e′0 = (a′0 − a′1)/2,
e′1 = (b′

0 − b′
1)/2,

u′
c = (a′0 + a′1 + b′

0 + b′
1)/4.

3.5.2 Characteristic equation

Each point u′, v′ lying on an ellipse satisfies its characteristic equation: u′

v′

1

T  qa qb qd
qb qc qe
qd qe qf

 u′

v′

1

 = XTQX = 0, (13)

where Q is a conic, and the parameters of the matrix Q are calculated from the ellipse center and axes by:

qa = +e′0ue
′
0u/|e′0|2 + e′0ve

′
0v/|e′1|2

qb = +e′0ue
′
0v/|e′0|2 − e′0ue

′
0v/|e′1|2

qc = +e′0ue
′
0u/|e′1|2 + e′0ve

′
0v/|e′0|2

qd = −u′
cqa − v′cqb

qe = −u′
cqb − v′cqc

qf = +qau
′2
c + qcv

′2
c + 2qbu

′
cv

′
c − 1

. (14)

3.5.3 Retrieving the 3d position

Finally, the position of the pattern is calculated by eigenvalue analysis of the conic Q (Yang et al., 2012).
Let us denote the Q’s eigenvalues and eigenvectors as δ0, δ1, δ2 and q0,q1,q2, respectively. Since the conic
Q represents an ellipse, its signature is (2, 1) and δ0 ≥ δ1 > 0 > δ2. According to (Yang et al., 2012), the
position of the circle in the camera coordinate frame is:

xc = ± d√
−δ0δ2

(
q0δ2

√
δ0 − δ1
δ0 − δ2

+ q2δ0

√
δ1 − δ2
δ0 − δ2

)
, (15)



where d is the real-world pattern diameter, and the sign is determined taking into account that the pattern
is located in front of the camera, and therefore, the first component of the xc vector should be positive.
Finally, the position xc of the target is transformed to the global coordinate frame using the TF framework
of the ROS operating system. This allows to verify if the detected object lies on the ground plane – objects
that are not close to the ground are discarded.

3.6 Digit recognition

Objects in the Treasure hunt have a value representing the score awarded after they are successfully grasped
and dropped into the designated box. A preliminary version of the MBZIRC scoring mentioned that digits on
the objects’ surface will indicate the score, but no specific details were provided. Therefore, we developed an
easily adaptable system for recognizing the scores of the detected objects. The advantage of our approach is
that it can be used for both rectangular and round objects with any graphical representation of the object’s
score, such as Arabic or Roman numerals, binary codes, etc. Since the digit-based scoring system was not
used in the final version of the MBZIRC 2017 rules, we provide only a coarse description.

The number-labeled objects had square, not circular cross-section, so we altered the tolerance of roundness
test in Algorithm 3 and omitted the circularity test mentioned in Algorithm 4. Instead, we tested if the center
of the detected segments contains brighter pixels corresponding to the white digits – if not, the segment was
discarded. Furthermore, we did not determine these objects’ 3d positions by the method from Section 3.5,
but we estimated their distance based on their size only and then applied a method from Section 2.5.

Having obtained quadrilateral image projections of the square objects from the detection method, we first
transform them into squares of uniform size. Then, we convert the image to grayscale and stretch its contrast
by histogram equalization. Since we know the approximate ratio of the pixels that constitute the number to
the rest of the object pixels, we calculate a threshold, which separates 15% of the brightest pixels from the
background ones. By applying this threshold, we obtain a binary image. Finally, we use a pixel-wise näıve
Bayesian classifier, trained on labeled binary images, to determine the object number. Since the digit on a
square object can appear in four orientations, the Bayesian classifier is applied for all orientation and returns
a result with the maximum likelihood. The stages of the number recognition are illustrated in Figure 10.

Figure 10: Digit recognition stages from left to right: image provided by the detection system with indicated
corners, transformed image, grayscaled image, result of histogram equalisation, and thresholded image

3.7 Mapping module

The mapping module integrates the individual transformed detections into a global 3d coordinate frame
shared by the UAV team. The map building algorithm used was inspired by a system described
in (Kusumam et al., 2017), which proved reliable operation in field conditions. To associate the object
detections coming from the perception system with the objects in the map, we assume that the maximal
error of object position estimation is below a specific value, which we denote as emax. Let us assume that
the map is a set M where each element m ∈ M contains the object’s global 3d position gm, vector of
likelihoods of all possible scores sm, object’s rgb color cm, most likely score smax, and number of detections
nm. Let us assume that the perception system analyzed an image from the UAV camera and that it detected
a set of objects D (these have the same descriptions as the objects in the map). For each detected object
d ∈ D, the mapping module finds the closest (in terms of distance between cd and cm) object in the map.



If the distance between the detected gd and mapped gm object position is lower than emax, we associate
the detected object d with the one in the map m and update m accordingly (Algorithm 5). If the distance
exceeds emax, we simply add the detected object d to the mapM.

Algorithm 5: Update step of color target map

Input: (D, emax): M – mapped objects; D – detected objects; emax maximal error of object
localisation

an object o = (g, s, c, n), where g is its global 3d position, s is a vector of its score likelihoods, s is the
most likely score, c is its rgb color and n denotes the number of times the object was detected.
Output: (M): M – updated map;
foreach d = (gd, sd, cd, n) ∈ D do

(gm, sm, cm, nm)← argmin{||gi,gm|| |gm ∈M}} // #5.1 the closest object from M to d;
// #5.2 if the object was seen before

if ||(gd, gm)|| < emax then
gm ← (ngm + gd)/(n+ 1); // #5.3 update its position

cm ← (n cm + cd)/(n+ 1); // #5.4 update mapped object’s color

sm ← sm + sd; // #5.5 update likelihoods of the scores

smax ← argmax{sm}; // #5.6 update the most likely score

n← n+ 1; // #5.7 increment the number of observations

else
M←M∪ d; // #5.8 add detected object to the map

As the images from the bottom UAV camera are analyzed, and objects are detected, the Algorithm 5
determines if these belong to existing objects in the map and updates the map accordingly or uses the
detections to initialize new objects in the map. Thus, each new detection of an object refines the map.

4 Experiments

4.1 Landing pattern detection

To determine the accuracy of the landing pattern localization system, we compared its position estimates
with a ground truth provided by a RTK-GPS. In the experiments performed, the UAV was first centered
at the landing pattern, and it used its RTK-GPS to measure its position. After that, it took off from the
landing pattern and performed several maneuvers above it at different altitudes between 0 and 4 m.

In the first flight, the UAV maneuvers were performed with an acceleration limit of 0.2 ms−2, while during
the second flight the maneuvers were more aggressive. The positions of the landing pattern provided by
the pattern localization system are shown in Figure 11. The Figure 11 indicates that when the acceleration
of the UAV was limited, the pattern localization accuracy was ±5 cm. However, aggressive flight with
abrupt changes in UAV attitude affects the pattern position estimation negatively. This indicates that the
error of the localization is significantly influenced by the accuracy of the synchronization of the camera and
UAV position estimation system. Reducing this error would be very difficult without the use of a real-time
operating system on board the drone.

The primary comparison of our algorithm was made at the MBZIRC competition. The team from the
University of Bonn that (Beul et al., 2017) received the third place at autonomous landing. They used a
system with two cameras, one with a wide (195◦) and second with a narrow (65◦) field of view. Their
method first undistorts and rectifies the entire image and searches for circles using a Hough transform. From
the method description, we deduce that their method does not process every image from their onboard, 40
FPS camera. The team from the University of Catania (Canteli and other, 2017) uses Tracking Learning
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Figure 11: Experiment with limited acceleration (left) and with aggressive maneuvering (right), described
in Section 4.1

Detection (Kalal et al., 2012) algorithm processing an image from a fish-eye camera. The vision system
of the University of Zurich team (Falanga et al., 2017) combines two standard-FOV cameras: one looking
downward and second angled down by 45◦ used for visual odometry. Their detection algorithm, which
combines thresholding with segmentation, can process the captured images in 12 ms ± 5.7 ms. The team
from the University of Sevilla (Acevedo et al., 2017) is using an Ocam camera with a 110◦ field of view.
Their method, which takes 20 ms, is based on contour-based localization of the landing’s pattern cross.
While the teams used different target detection methods, only those with fisheye cameras were able to land
on vehicles moving at full speed of 15 km/h.

To evaluate the success rate of the detection algorithm, we select parts of data from MBZIRC competition
where the target is visible. The data were stored from ROS to individual files called rosbags during the real
competition. The data contains five experiments from Abu Dhabi with different weather, ranging from dark
clouds to bright sun where the UAV cast shadows onto the landing pattern.

The dependence of the success rate of target detection on the UAV altitude is provided in Table 2. The first
line contains success rates of low altitudes when the detection is problematic because the target does not fit
in the camera’s field of view and UAV landing gear is occluding the pattern partially. The second line in
the table shows the detection results from optimal altitudes, where the detection rate is 100%. The last line
shows the success rate for high altitudes when the target’s image is small. The detection can be qualitatively
evaluated using rosbags and videos available at http://github.com/gestom/MBZIRC_2017_vision.

Table 2: Success rate of landing pattern detection

Training Challenge 1 Challenge 1 Grand challenge Grand challenge
Day 1 Day 2 Day 3 First run Second run

Altitude Total Rate Total Rate Total Rate Total Rate Total Rate

0 - 2 [m] 253 47.4% 162 67.3% 337 67.4% 75 62.6% 66 69.7%
2 - 6 [m] 1149 100.0% 1724 100.0% 1114 100.0% 253 100.0% 330 100.0%
6 - 9 [m] 291 88.6% 64 95.3% 246 97.9% 60 98.3% 54 100.0%

The module for landing target detection is implemented as a ROS node, which subscribes to the camera
topics and publishes the target pose in world coordinates. The entire computation, performed in one thread
and measuring a time between the reception of the camera image and publication of the target position, takes
approximately 12 ms per image. The final framerate achieved was 50 FPS, with 12 ms for the detection itself
and 8 ms for ROS and Operating Systems overheads. Note that the framerate information was established
from ROS logs collected during the contest and not from the rosbags. This is because we could not store
more than 25% of the captured images due to hard drive data transfer limitation.



4.2 Colored object detection

To assess the robustness and accuracy of the color object detection pipeline, we have performed two separate
experiments. The first experimental evaluation of the system was performed during preliminary outdoor tests
in Czechia. The primary aim of this evaluation was to test the entire object detection pipeline, which, at the
time, was supposed to detect cuboid objects with white digits on their top side. During the experiment, we
placed 14 objects in the test area, ground-truthed their positions with a RTK-GPS, and then we performed
three subsequent flyovers, which were planned by (Pěnička et al., 2017). The resulting dataset, which covers
a continuous, 268 s long flight contained over 2652 images, which were captured by the UAV’s bottom camera
and associated with the drone’s position estimate.

To evaluate the object detection system robustness, we counted the number of correct (1507), false pos-
itive (2), and false negative (126) detections – this corresponds to 99.86% precision and 92.28% recall of
the detection system. The Figure 12 illustrates that another distinct object on the field caused the false
positives, and grass occlusions and sun reflections typically caused false negatives. The results provided
by the detection pipeline were further processed by the mapping module, which created a map contain-
ing all 14 objects, i.e., the entire mapping system achieved 100% precision and 100% recall, see video
at https://youtu.be/E1nUvw12WSM. To estimate the accuracy of the localization, we calculated the dif-
ferences between the objects’ positions provided by the mapping module with the RTK-GPS-based ground
truth; the mean difference was 0.36 m. We attribute this error to aggressive maneuvers of the UAV, causing
incorrect transformation of the UAV-relative object positions to the global coordinate frame due to inac-
curate time synchronization of the image capture and accelerometric data. To get further insight in the
localization pipeline performance in terms of false positive removal, we also calculated the number of de-
tected segments in the individual processing stages, i.e., the number of segments after the test for their size,
roundness, digit presence and position, see Table 3.

Figure 12: False positive (left) and false negative (middle, right) examples of the first experiment.

Table 3: Number of segments after a given processing step

Experiment and used objects
Preliminary testing Grand Challenge
Cuboids with digits Circular objects

Processing step Number Reduction Number Reduction

Segmentation 1167425 — 1740678 —
Size test 41900 96.4% 26512 98.5%
Roundness test 40294 3.8% 19544 26.3%
Circularity test — — 4822 75.3%
Digit presence test 2940 92.7% — —
Position test 1507 48.6% 4051 16.0%

In the first experiment, we also evaluated the quality of the digit recognition, trained on a dataset collected
a few days before. Despite issues caused by reflections and shadows, the system correctly classified 97 % of
the object labels, see also https://youtu.be/qAVKI_DQKw8. The failures were typically caused by incorrect
estimation of the segment corners, which prevented proper transformation of the segment to a square patch.



The second system evaluation is based on the data from the contest itself, where our multi-UAV system,
which was using the object detection and mapping pipeline described, collected more objects from the
contest arena than other teams, and won a gold medal of MBZIRC Treasure Hunt Challenge. We selected
a 12 minute record from one of the UAV’s bottom camera, which contains 19350 images. In this sequence,
our system detected an object 4051 times and failed to detect an object 35 times. The false negatives were
typically caused by a gross deformation of the object due to the jelly effect, or by wrong UAV altitude
estimate caused by temperature-related altimeter malfunction, see Figure 14. Out of the 4051 detections,
4 were false positives: a blue, circular segment on a contest banner (1 detection) and a pole-like contest
object (3 detections). In other words, the detection system achieved to 99.1% recall and 99.9% precision. By
integrating these detection results into a global map, the precision and recall of the entire system achieved
100%. We provide a video indicating the detection results along with the map of the objects in the contest
arena at https://youtu.be/agR0juadp1g and a representative snapshot in Figure 13. In this test, we did

Figure 13: View from the UAV camera with object detection results and a map of the objects on the contest
arena. The UAV releases the last object into the dropoff zone.

not have ground truth positions of the objects, but since the UAV used its gripper to pick them up, the
object localization error was lower than 7 cm. (The object radius was 10 cm, and the gripper’s center had
to be 3 cm from the object edge for a successful grasp.) Similarly to the first experiment, we also calculated
the number of detected segments in the individual processing stages, i.e., the number of segments after the
test for their size, roundness, circularity, and position, see Table 3.

Figure 14: False positives (left,middle) and false negative (right) examples of the second experiment.



5 Conclusions

We presented methods for visual localization and tracking of objects, which were part of the multi-UAV
system deployed in the Challenges 1 and 3 of the MBZIRC competition. These methods, structured in
two separate visual processing pipelines corresponding to the two challenges, proved their ability to detect,
localize, and track dynamic objects in adverse lighting conditions in outdoor, diverse environments.

The first processing pipeline had to reliably localize, track, and predict the movement of a rapidly moving
vehicle, which carried a predefined fiducial marker. The accuracy and reliability of the localization and
motion estimation ensured the ability of the UAV to land on the moving vehicle in a repeatable manner.

The second processing pipeline had to reliably recognize, locate, and track colored objects scattered over a
large area. The information provided by the second pipeline was used to create a map of these objects so
that the UAV team could plan how to collect these objects within a given time. Furthermore, the colored
object detection had to provide accurate positions of the objects relative to the UAV, so that the visual
information could be used to pick these objects up by the UAV gripper.

The efficiency of these methods is evaluated quantitatively in several outdoor experiments and qualitatively
during MBZIRC contest, where the UAV system using these vision methods won gold, silver, and bronze
medals. While the pipelines described here do not represent the bleeding edge of computer vision research,
they were designed to be modular, versatile, and easy-to-modify. The versatility of the methods’ modules
allowed for efficient testing of alternative algorithms in field conditions, where extensive code modifications
are not possible. Thus, we could rapidly identify, remove, and substitute components, which, while efficient,
had reliability or robustness issues. These properties paid off during the contest, where we needed to alter
these pipelines’ components according to the unexpected conditions (e.g., the arena was not precisely flat,
some of the colors were specular, banners around arenas generated false positives, etc.). The advantages
of versatility and robustness of simpler algorithms over state-of-the-art methods along with the need for
extensive testing were also stressed by another successful team of MBZIRC in (Nieuwenhuisen et al., 2017).

Another key factor was that the integrated working system was created several months before the contest and
the system components were integrated continuously, which allowed ‘anytime’ field and simulation testing.
Thus, the team members responsible for control and planning modules became aware of the vision systems’
properties, and the vision system designers understood better the other modules’ requirements. Moreover,
the team members could not only alter their methods accordingly but also suggest modifications of other
modules, which would improve the robustness and efficiency of the entire integrated system.

The source codes of both processing pipelines, along with the datasets used for experimental evaluation, are
available at https://github.com/gestom/MBZIRC_2017_vision.
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