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Abstract

Software is increasingly integrated into our daily routines and processes, powering
everything from simple entertainment to critical infrastructure. With countless devel-
opers writing thousands of lines of code every hour, manually ensuring that software
is bug-free is impossible. Automating program analysis is our best chance of securing
as much of this vast software landscape as possible. Despite manifold techniques being
readily available to analyze, test, and verify software, we have not yet found a panacea.
Problems include the misalignment between results reported in some papers and those
observed in practice, the requirement for human intervention in non-standard use cases,
and the risk of equipping malicious actors with more powerful tools.

This thesis advances the state of the art threefold: First, we conduct a thorough liter-
ature analysis of automated software testing techniques in the field of fuzzing, analyzing
whether the results of the proposed fuzzers are reproducible. Such reproducibility is vi-
tal to enable follow-up research and facilitate industry adoption. Based on our insights,
we provide future work with recommendations for evaluating fuzzers. Second, we ob-
serve that state-of-the-art automated exploit generation approaches are inflexible and
only work within a narrow set of common tasks. We propose a new approach with un-
precedented flexibility toward generating so-called gadget chains that allow us to model
arbitrary constraints. At the same time, our technique can prove that no such chain can
exist for the given conditions. This can help developers assess the exploitability of re-
ported bugs, supporting them with prioritizing critical vulnerabilities. In the third and
last contribution, we study how advancing to more powerful automated analyses hurts
software protection. Code obfuscation protecting intellectual property, for example, in
DRM systems, relies on security-by-obscurity, usually achieved through complexity.
We find that current automated program analysis techniques are highly effective in
stripping away this protection, even for commercial state-of-the-art obfuscators. To
step up protection, we show how a combination of obfuscation techniques relying on
inherent weaknesses of the analysis methods can achieve resilience against automated
deobfuscation attacks. This work underlines how improving automated analyses in one
domain may pose risks to another, calling for research to exercise prudence.
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Introduction

Software is a ubiquitous cornerstone of our modern, digital lives, connecting us with
friends, peers, and the world. Its ever-growing role in our daily lives and reliance on its
continued availability and correct function make securing software an imperative goal.
With the vast diversity of available hardware, software, and technologies, manually
ensuring the safety and security of all systems and applications in this ecosystem is no
longer feasible. There are dedicated teams and even companies providing code audits
as their sole service, yet the number of employees writing new code or changing exist-
ing code easily outpaces them. The most promising solutions to address this imbalance
are to enforce security by design and to automate software testing. The former proac-
tively limits the attack surface and provides significantly stronger security guarantees
than the latter. As of today, security by design is also elusive. For many different rea-
sons, security is often still an afterthought when planning and implementing software
projects. One cause are wrong incentives, where security breaches are priced into the
product rather than spending the additional money on security beforehand. Worsen-
ing the situation, it is difficult to measure security, which leads to scenarios where a
cheaper yet potentially insecure design is more appealing to many companies. In gen-
eral, the multitude of companies and individuals writing code for different purposes
renders it unlikely that humanity will arrive at a widespread mentality of security by
design within the foreseeable future. However, even when assuming that any code writ-
ten from tomorrow on is secure by design, our huge legacy codebases still expose ample
attack surfaces. Rewriting all existing code is hardly attractive due to the associated
costs, the risk of introducing new errors, or simply for fear of losing compatibility with
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1 Introduction

understand bugs
(root cause analysis)

find bugs
(fuzzing)

exploit bugs

fix bugs
vulnerability
assessment &

bug prioritization

Figure 1.1: Multi-step pipeline of (1) finding bugs, then (2) understanding them and their
actual root cause. Once we have sufficient knowledge, we can (3) either derive an exploit or
patch the underlying bug. When dealing with many bug reports, assessing and ranking them
by their criticality can help prioritizing more severe bugs.

other software. That said, we emphasize that pushing towards security by design—to
ensure future code is more secure than existing one—is a worthwhile goal, but it is
not a panacea. Compared to this concept of security by default, automated testing
appears pale: It can only find some bugs but never guarantee the absence of bugs. Still,
absent security-by-design, it is our best attempt at uncovering as many programming
errors as possible and steadily raising the cost for a malicious actor by fixing at least
the easy-to-find, “low-hanging fruits” of the bugs. Even though many different forms of
testing exist, not all are well-suited for our goal of securing as much code as possible.
For example, testing programs manually fails to address the sheer amount of code that
exists and is produced every day. Our best and only realistic chance at scaling testing
to more software than a handful of selected ones is the automation of program analyses.

When breaking down this problem of scaling and automating the testing process, we
quickly appreciate that this is a complex problem consisting of multiple steps [169]. We
can consider this testing process as a pipeline with three distinct steps (see Figure 1.1):
First, we need to find bugs, for example, by generating some input that causes the target
program to crash. Then, we need to understand the bug, the capabilities it provides an
attacker with, or even its root cause. In some cases, the root cause and bug may be
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synonymous, while millions of instructions may separate them in others [24]. Once we
have a sufficient understanding of the bug, we can either attempt to exploit it or try
to derive a patch to fix the issue. When fixing the bug is not an option, for example,
due to the lack of access to the source code, we can still attempt to assess the bug’s
exploitability and help with prioritizing critical bugs. Prioritization may be particularly
important when dealing with a large influx of bugs, which we can often observe when
a program is fuzzed for the first time [72].

Even when focusing on a single step in this pipeline of observing a crash, under-
standing the underlying bug, and working towards an appropriate fix (or exploit), it is
challenging to come up with a single generic solution. In fact, much research has been
conducted on individual steps without finding a conclusive solution yet. While all this
research belongs to the field of program analysis [131], we can make more fine-granular
distinctions, such as between static techniques that reason on all possible program be-
haviors and dynamic ones that work on concrete execution traces. For finding bugs,
dynamic techniques have proven highly effective: Even though they cannot reason on
all possible program behavior and, thus, never prove the absence of bugs, they have an
excellent track record in finding bugs based on concrete program input [72], thereby
avoiding false positives which plague static analysis [100, 110, 125]. A key driver behind
this immense success is fuzzing, a comparably straightforward approach that executes
the system under test in quick succession with different inputs, slightly mutating these
inputs between executions, and tracking the execution path of each one. Receiving
information on the covered code as feedback, the fuzzer can make informed decisions
on which inputs have observed new parts of the program and steer the execution to-
wards novel, unseen behavior. By creating many different inputs and not adhering to
implicit assumptions programmers may have encoded in their programs, fuzzing has
turned out to be effective in creating such inputs that cause the program under test
to crash. In short, fuzzing is an automated bug-finding technique that produces inputs
crashing the program [113, 202]. Such an input proves the existence of some bug within
the program but may not necessarily reveal the root cause or other details. In some
cases, more information can be gained using sanitizers [166, 175] that instrument the
program and abort execution on typical memory errors, such as out-of-bounds reads,
use-after-frees, or reading uninitialized memory. In other cases, dedicated approaches
are needed to understand the root cause of the underlying bug [24, 139, 199, 200] or
the capabilities it provides an attacker with [97, 203]. Now, an impressive number of
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new fuzzing techniques has been proposed over the years [11, 18, 22, 26, 27, 32, 33, 60,
61, 63, 82, 103, 112, 113, 127, 143, 155, 176, 178, 201, 202]. With this large amount
of available techniques, industry practitioners and fellow researchers have a hard time
keeping up with the field. The former may want to find a fuzzer that works for their
particular use case, while the latter strive to find problems and oversights of existing
techniques to improve the state of the art further. When looking at current fuzzing
papers, they fall short of providing the necessary requirements for either case: A paper
may not cover a particular use case, and comparing different paper evaluations against
each other is surprisingly challenging, with different setups, targets, or experiments
making the comparison of reported performance numbers usually pointless. In both
cases, the only way forward is reproducibility : A reproducible fuzzer features sufficient
documentation and is open-source, allowing industry practitioners to simply test it for
their individual use case. Similarly, a reproducible fuzzer enables other researchers to
confirm results, build upon a technique, and properly evaluate against it, creating a
solid foundation for future research and advancing the state of the art. Despite the
large amount of proposed techniques, the level of reproducibility remains unknown.

To change this, we study the reproducibility of fuzzing evaluations for 150 papers and
attempt to reproduce the results of eight fuzzing artifacts. Based on the insights thereof,
we then outline revised guidelines to support future work with conducting reproducible
evaluations. We believe reproducibility is vital for a sustainable and reliable automation
of bug finding.

When turning our focus from the first to the last step of the bug-finding pipeline, we
find comparably fewer research works studying automated exploit generation [13, 31,
86, 165, 191, 206]. Essentially, these tools’ task is to turn a crashing input into one that
meets some attacker goal. Depending on the underlying bug, some focus on manipulat-
ing the heap layout [87, 88, 191, 205], while others study how to piece together small
snippets of code, called gadgets in the context of such code reuse attacks. By chaining
these gadgets together, an attacker can implement arbitrary computations [167]. This
type of approach has a long history in the context of exploitation [164, 167, 172]; how-
ever, automatic state-of-the-art tools [7, 121, 152, 157] often rely on inflexible heuris-
tics to find and chain gadgets. Their inflexibility forbids their use under circumstances
where specific conditions must be met. One example could be a DRM system that
computes a checksum over memory contents in which the gadget chain will be placed.
Encoding such atypical constraints is difficult in current tools, restricting their use to
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more common scenarios or requiring a human expert to intervene. Another notewor-
thy property of most research in the domain of automated exploit generation is their
strict focus on the offensive side, i. e., how to automatically generate an exploit for the
sake of exploitation, with little consideration for potential applications in the realms of
assessing and prioritizing bugs. However, with the state of the art in automated pro-
gram repair [68, 124] being unable to replace human intervention reliably [20, 116, 207],
one promising avenue towards at least supporting the developer tasked with fixing a
bug is using such automated exploit generation systems to verify whether the bug is
exploitable. If so, the underlying bug requires urgent intervention to address security
concerns. If this is not the case, ideally, we would like to have some guarantees on
whether the bug can be exploited at all. While such guarantees are challenging to
provide in the general case, current tools provide no information other than failing to
construct an exploit, reducing their appeal to developers.

To address these two shortcomings, this work proposes a new approach that uses a
logical encoding of gadgets to transfer the task of finding a gadget chain to finding a
satisfying assignment of variables, a task where SMT solvers excel. This way, we can
easily encode arbitrary constraints, leading to unprecedented flexibility, and, impor-
tantly, the SMT solver can prove that no gadget chain exists for a specific set of pre-
and postconditions.

With this discussion of how automating program analysis can help us find bugs and
automatically generate exploits, we have only considered the positive aspects of au-
tomation. Yet, strengthening automated analyses leads to stronger automated attacks
that can be used to defeat software protection. When looking at intellectual property
in the form of secret algorithms, Digital Rights Management (DRM) systems, or anti-
cheat engines all depend on the notion of secrecy, complexity, and a general opaqueness
of underlying code and data. They protect the inner workings of their code by making
it hard to extract, analyze, and understand, even in scenarios where an attacker has
complete control over the execution and its environment. Amongst others, they rely on
code obfuscation to achieve protection. Despite the industry’s heavy reliance on obfus-
cation [48, 52, 136, 173, 187], we observe that commercial state-of-the-art obfuscators
can be significantly simplified using automated analyses. Here, program analysis is used
to remove complexity and undo obfuscation, akin to how compilers optimize programs.
More powerful analyses risk intellectual property theft and enable adversarial actors
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1 Introduction

to overcome DRM and anti-cheat systems, undermining the security guarantees that
the industry relies on.

To study the real impact of automated analyses against obfuscated code, we first
quantify their effectiveness against state of the art. This work then proposes a new,
hardened technique that combines multiple obfuscation techniques to achieve lasting
resilience against automated deobfuscation attacks. By relying on inherent weaknesses
of the analysis techniques, we show that automation for adversarial purposes can be
stopped. This switch from the field of finding bugs to software protection highlights
that improving automation can also lead to new risks and downsides that research
needs to address.

Thesis contributions. In summary, we make the following key contributions:

• Reproducibility of fuzzing. We study the reproducibility of automated bug-finding
approaches in the form of fuzzing. To do so, we analyze 150 scientific publications
on A∗ conferences, study their setup, outline potential pitfalls, and attempt to
reproduce eight evaluations empirically. Based on our findings, we make recom-
mendations on how to improve the reproducibility of future fuzzing evaluations.

• Flexible automated exploit generation. Complementing existing approaches in the
realm of automated exploit generation, we propose a novel technique that fea-
tures unprecedented flexibility, allowing us to model all constraints that can be
expressed as logical formulas. At the same time, this technique can prove that
no gadget chain can exist for the given pre- and postconditions, helping to assess
exploitability.

• Hardening against automated deobfuscation. Highlighting the downsides of more
powerful automated program analyses, we turn to software protection and ob-
fuscation in particular. We show that automated analyses can simplify state-
of-the-art commercial obfuscators, and we propose several techniques that, in
combination, achieve lasting resilience against automated deobfuscation attacks.
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Thesis structure. This work is a cumulative dissertation based on three peer-
reviewed papers, and it is divided into two parts: The first one provides an introduction
to relevant topics, in particular fuzzing, automated exploit generation, and code ob-
fuscation, and outlines the broader research context. It is split into the introduction,
followed by a technical background, before focusing on this thesis’ contributions to
automate program analyses. The second part of this dissertation then provides the ver-
batim publications underpinning this thesis in Appendices A to C. Their publication
data is as follows.

[A] Moritz Schloegel, Nils Bars, Nico Schiller, Lukas Bernhard, Tobias Scharnowski, Addi-
son Crump, Arash Ale Ebrahim, Nicolai Bissantz, Marius Muench, and Thorsten Holz.
“SoK: Prudent Evaluation Practices for Fuzzing”. In: IEEE Symposium on Security and
Privacy (S&P). 2024
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Technical Background

This thesis inherently touches on many topics across systems security research in gen-
eral and program analysis in particular. The following section provides a brief intro-
duction to key concepts and techniques that this work is based on.

Program analysis. Broadly speaking, any technique or method used to observe,
study, and understand the behavior of programs is referred to as program analy-
sis [131, 204]. Its goals can vary widely and heavily depend on the respective context.
They can be as small as determining a single program property or as large as ensuring
the absence of bugs for an entire program. This thesis focuses on two distinct scenar-
ios, namely finding bugs (thus ensuring correctness) and identifying a simpler yet equal
representation of a program to “undo” obfuscation (akin to optimizing it). As many
means exist to achieve these goals, we can divide them based on whether they execute
the program (dynamic analysis) or not (static analysis). Throughout this thesis, we
will see techniques from both domains, however, with a focus on dynamic ones. Par-
ticularly for bug finding, dynamic techniques have proven effective while fielding few
false positives [82]. For software protection, where many techniques are used to make
a program as complex as possible, dynamic techniques usually offer better insights, as
they can trace the concrete execution path. Even though we consider various static
approaches, this thesis does not belong to the domain of approaches strongly grounded
in math. For a more formal yet excellent introduction, interested readers may want to
refer to Nielson et al.’s Principles of Program Analysis [131] and Zeller’s hierarchy as
a good overview [204]. In the following, we briefly discuss the domains relevant to this
work: fuzzing, exploitation, and code obfuscation.
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2 Technical Background

2.1 Fuzzing

Fuzzing, also called fuzz testing, is a highly effective, dynamic bug-finding technique [72].
At its core, it generates many different inputs and executes a system under test
with these inputs, monitoring for unexpected or erroneous behavior, such as program
crashes.

Despite many recent advancements, the origins of fuzzing date back almost 40 years.
In the fall of 1988, Barton Miller launched a project to test the reliability of OS utility
programs, proposing that students write a fuzz generator producing random inputs
to break these programs. Two years later, Miller et al. published the results of their
study [122]: Out of 88 programs tested across six operating systems, 42% (37) were
found to cause a crash or hang on at least one of the tested operating systems. On aver-
age, 24% to 33% of programs were found to crash on an operating system. This number
is astonishingly high, especially considering their simple approach that fed random in-
puts to the programs. While this early fuzzing lacks many of the advanced features
common in modern fuzzers, it already employs the notion of bug oracles monitoring
for program crashes or hangs, which are still the primary error detection techniques
used today.

Even though this early success proved its practical viability, fuzzing has received
little attention from academia and industry, primarily due to its limited, brute-force-
esque nature. Then, in 2013, Michał Zalewski made a groundbreaking change with his
fuzzer AFL [202] that relies on lightweight coverage feedback. Here, the target program
is instrumented and reports the edges taken by a specific input back to the fuzzer.
Knowing what parts of the program were covered by one input, the fuzzer can now
judge whether this particular input helped it explore new, unseen program behavior
and, thus, is worthy of being kept for future mutation. This efficient and effective form
of guidance pushed fuzzing back into the spotlight of academia, and many research
works aimed at optimizing different aspects of fuzzing ensued [61, 113].

The success of fuzzing is due to many factors, most notably the automated fashion
it operates in, allowing it to achieve high throughput in terms of executed inputs, its
capability to effectively mutate inputs such that deeper program parts are tested, and
its ability to use bug oracles to identify triggered faults—all without human interven-
tion. Complemented by a good fuzzing harness that allows to explore the system under
test effectively, a fuzzer can quickly identify many faults.
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Nowadays, many different fuzzing techniques exist that focus on improving different
aspects of fuzzing [113]. To better highlight the diversity of proposed techniques, we
differentiate fuzzers based on two (somewhat interlaced) criteria in the following: The
degree and sophistication of feedback they receive and the knowledge of the input
structure.

2.1.1 Blind Fuzzers

Sometimes also referred to as black-box fuzzers, this type of fuzzer is close to the original
fuzz generator proposed by Miller et al. [122]. It receives no feedback from within the
system under test; in particular, no coverage feedback, i. e., information on what path
an input has taken in the target, is available. While comparably simple to implement,
the absence of information leads to situations where the fuzzer has produced an input
solving some complex constraint in the target program without recognizing it did so.
Consequently, it might simply discard the valuable input and generate another one,
constantly having to produce by chance such inputs that reach deeper parts of the target
program. Overall, this type of fuzzer struggles when testing programs that impose
many or complex constraints, as the fuzzer is unlikely to continuously generate inputs
that solve these constraints. At the same time, the lack of instrumentation enables
a high throughput, allowing the fuzzer to test many different inputs. Notably, blind
fuzzing may be the last resort in some scenarios, such as fuzzing on hardware, where no
instrumentation can be inserted and, thus, it is difficult to extract feedback [32, 58, 156].

2.1.2 Feedback-driven Fuzzers

The most prominent category of fuzzers today, feedback-driven fuzzers (also called
greybox fuzzers) rely on some information extracted from the system under test to
guide their exploration and testing process. Dating back to AFL [202], the most popular
feedback is code coverage feedback, where the fuzzer receives information on the edges
a specific input has taken in the system under test. Other feedback can comprise,
for example, data flow [89]. The fundamental advantage of feedback is that the fuzzer
can distinguish whether a newly generated input exercised new, interesting parts in the
program or whether it merely explored the same parts again. Based on this information,
the fuzzer then can decide whether to keep a particular input for further mutation or
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discard it. This cycle of testing an input, receiving feedback on how it performed,
and then discarding or mutating it further is referred to as the fuzzing loop, which is
continuously repeated throughout a fuzzing campaign.

To maintain a high throughput, it is crucial that the inserted instrumentation is
lightweight and not slowing down the execution of the target.

Binary-only fuzzing. In the absence of source code, inserting the instrumentation
needed for collecting and reporting feedback at compile-time is impossible. Instead,
various approaches have been devised to enable fuzzing to profit from the advan-
tages of coverage feedback even without access to the source code. First, Dynamic
Binary Instrumentation (DBI), such as Intel PIN [111] or DynamoRIO [73], can insert
hooks that report coverage at runtime. However„ dynamically instrumenting binaries
comes with a significant performance overhead [127]. Moving the runtime overhead
ahead of the execution, static binary instrumentation or binary rewriting, e. g., as done
by Dyninst [181], RetroWrite [49], or Zipr [84, 91], offers another opportunity to in-
sert instrumentation after compilation. Researchers, especially Nagy et al., have made
various efforts to further increase its efficiency by introducing coverage-guided trac-
ing [126, 128], i. e., only tracing the coverage of inputs that exercised new coverage,
and porting compiler optimization techniques to their rewriting efforts [127]. Instead
of instrumenting the program, hardware features such as Intel PT allow tracing the
program execution [160, 161, 178]. While hardware-assisted approaches exhibit good
performance characteristics, they are only available on systems featuring the particular
hardware feature.

Challenges in fuzzing. Feedback-driven fuzzers show a remarkable capability of
efficiently exploring the code of many programs. Nonetheless, some programs resist
in-depth testing, with two remarkable challenges: fuzzing roadblocks and complex in-
put formats. The former refers to all code constructs imposing constraints that are
difficult to solve for a fuzzer. For example, checksums or magic values [11] are one
notorious source of blockade, as the fuzzer has to correctly guess one particular value
within a large search space to solve the underlying comparison. With this being un-
likely, a naive fuzzer will rarely visit the branch guarded by this comparison, limiting
its potential for exploration. This type of fuzzing roadblock sparked the creation of a
whole new category of fuzzers that rely on more complex program analysis techniques,
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[70, 96, 143, 176, 201] or taint tracking [33, 67, 145, 190], to solve these challenges. As
an alternative with better performance, research proposed lightweight optimizations
that help the fuzzer find the correct value. Among them, LAF-Intel [182] or Compare
Coverage [75] (cmpcov), compiler passes that convert larger comparisons into multi-
ple smaller ones. For example, they replace a single 64-bit comparison with four 8-bit
comparisons. This way, the fuzzer has to guess only a single byte correctly at a time,
which is significantly easier. Guessing the correct value unlocks new coverage, incen-
tivizing the fuzzer to store this input before turning towards solving the next byte.
Another lightweight technique to tackle such fuzzing roadblocks is input-to-state cor-
respondence, introduced by RedQueen [11] and later called cmplog [3]. Its underlying
insight is that input to a program often undergoes few (if any) transformations before
being used in a comparison. Consequently, Aschermann et al. propose to extract the
values that the input bytes are compared to and then set the corresponding bytes in
the fuzzer-controlled input to match the program’s expectation [11]. A third technique
to mitigate the impact of these fuzzing roadblocks is Compare Coverage (cmpcov) [75],
which provides the fuzzer with a hamming distance of how close that provides sub-
instruction information akin in spirit to LAF-Intel and thereby allows the fuzzer to
solve constants or strings byte for byte. While these techniques work well to solve
many constraints, more complex ones, such as checksums or encryption, still stall such
attempts, as the input’s transformation is too complex to follow for such heuristics. In
such cases, the fuzzer needs more domain knowledge, i. e., information on the specifics
of the input format or transformations that are applied to it. Such domain knowledge
can be provided in the form of a human expert, specifically tailoring the fuzzer to the
system under test, a grammar or specification of the input [10, 151], heavyweight pro-
gram analysis techniques [33, 96, 143, 201], or approaches harnessing existing domain
knowledge [18].

Beyond solving individual constraints to unlock deeper code parts, considering the
expected structure of program input is often worthwhile: Programs such as interpreters,
databases, or compilers expect a very specific, highly structured input. Many of these
targets require the input to follow a certain specification, and the program’s parsing
stage, usually occurring early during an execution, rejects non-conforming inputs be-
fore any deeper program logic can be tested. Traditional byte-oriented mutations of an
input, such as bitflips, do not produce another valid input, rendering fuzzing ineffec-
tive. Here, grammar-based fuzzing [10, 77, 189] provides a solution where the fuzzer is
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provided with a grammar or specification describing how the input should look like.
This way, it can generate inputs conforming to the expectations and test the program
effectively. If no grammar is available, grammar inference approaches, where the fuzzer
approximates a grammar on the fly, can help [22, 60, 76].

2.1.3 Heavyweight Feedback-driven Fuzzers

Also called hybrid fuzzing, this category of fuzzers pairs the traditional coverage-guided
fuzzer with some sophisticated program analysis technique. Two popular examples are
symbolic (or concolic) execution [70, 96, 143, 176, 201] and taint tracking [33, 67, 145,
190]. The former is used to sample inputs triggering paths not yet visited by collecting
and solving path constraints, while the latter attempts to establish a correspondence
between input bytes and their usage in comparisons. Then, the fuzzer can directly
modify the relevant bytes, thus helping it advance.

In practice, the anticipated benefits have not fully manifested or have often been
offset by the cost of these heavyweight techniques. While symbolic execution can, in
theory, craft an input for every path in the program, it fails to scale to real-world
programs. Challenges include the high amount of computation resources necessary, the
need to model the environment, and the state explosion problem [14]. In practice, many
approaches resort to concolic execution and focus on a single path.

2.1.4 Input Generation

To effectively explore a system under test, the fuzzer must generate many inputs. We
can differentiate between two categories of doing so: generational fuzzing and muta-
tional fuzzing. The first is often used in the context of grammar fuzzing, while the
second usually applies to traditional byte-oriented fuzzing.

Mutation-based fuzzers use a number of mutators to alter an input and derive a
new input from an existing one. Typical mutators comprise bitflips, simple arithmetic
operations, setting interesting values, splicing inputs together, or randomly stacking a
selection of all these mutators (so-called havoc mutators). These mutations have proven
highly effective in changing inputs when targeting programs using a binary-oriented
input format, which are prominently used for benchmarking fuzzers [44, 50, 74, 85, 120].
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Generational fuzzing often relies on a specification or grammar, which it uses to
generate conforming inputs from scratch. This is used mainly for fuzzing targets where
inputs must have a sophisticated, specific structure. Regular bit-oriented mutations
may be inadequate to generate another valid input in such scenarios. For example, when
trying to fuzz a language interpreter, such as CPython, the input program should have
a valid syntax, as otherwise only the parser is tested (which will reject inputs early due
to their invalid syntax). Given one input, a valid program, typical fuzzing mutations
are unlikely to generate another valid one that is sufficiently different from the first
to yield interesting results. Here, grammar-based fuzzing can help to generate more
diverse and valid inputs to test a broader set of features. In cases where no grammar is
available, grammar inference can help to deduce a grammar on the fly [8, 22, 60, 76].

In summary, the fuzzing landscape consists of many diverse approaches aiming to
improve specific components or tailor a fuzzer toward specific targets. This diversity,
paired with the wide range of application scenarios, naturally led to a high number of
papers proposing different fuzzers over the years.

2.2 Exploitation

In the field of computer security, exploitation refers to the process of using some bug
within a program to induce unintended and often unwanted behavior. In this work, our
focus is on exploitation following memory corruption vulnerabilities [179].

Despite its widespread impact in practice, with a whole industry revolving around
finding bugs, the formalization of exploitation is scarce. Dullien [51] attempts to formal-
ize concepts that are informally known among exploiters, such as the weird machine.
Here, we focus on practical aspects.

2.2.1 Memory Corruption

A fundamental root cause of many bugs, memory corruption, is haunting computer se-
curity despite decades of ever-improving research and fixing bugs. Especially “low-level”
programming languages such as C and C++ leave the task of memory management to
the programmer, leading inevitably to bugs related to mismanaged memory. While it is
easy to propose dropping all programs in these languages, they form the basis of many
of our daily used software, including operating systems themselves. Despite their perils,
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developers in need of high performance often resort to these languages, even though
in recent years safer languages providing similar performance, such as Rust [150], are
increasingly gaining favor.

That said, we can differentiate between spatial and temporal errors that lead to
memory corruption [179]. The first category refers to any bug that allows out-of-bounds
accesses to memory, thus corrupting it. The famous buffer overflows are one example
of this class. The second category, temporal errors, captures any error that occurs due
to memory accesses that must not happen at this point in time; this can be reads of
uninitialized data or using freed objects, referred to as use-after-free. Loosely speaking,
any memory-related bug not intended by the original program represents a violation
of memory safety, potentially leading to memory corruption. While such bugs often go
unnoticed or simply crash the program, gifted exploiters can turn many of these bugs
into a primitive allowing an attacker to do all sorts of unwanted things in the context
of the affected program, such as executing arbitrary code.

We differentiate between three fundamental attack classes, code injection, code reuse,
and data-only attacks, and a multitude of mitigations proposed and deployed to prevent
such attacks. In the following, we briefly introduce them.

2.2.2 Code Injection

The first memory corruption-related bugs, dating back to the nineties [4], were rela-
tively easy to exploit, with little to no protections in place. The most famous attack
is the stack-based buffer overflow, where an attacker writes more bytes into a buffer,
a local variable living on the stack, than it can hold. The von Neumann computer
architecture [188] that has been prevalent in modern computers mixes program code
and program data: Throughout the program execution, software uses the stack to store
both control data, such as return addresses, and program data, including local variables.
Consequently, an attacker capable of writing arbitrary data to the stack exceeding the
buffer can not only affect program data but also overwrite control data.

Without mitigations in place, an attacker can simply overwrite the return address of
the current function, such that the program’s control flow is redirected to a point the
attacker can choose once the vulnerable function returns. As the attacker can simply
place shellcode in the program’s memory and jump to it, they can execute arbitrary
code, such as spawning a shell. Countermeasures quickly moved to mitigate this easy-
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to-exploit vector, and, amongst others, the introduced protection prevents attackers
from executing code that lives on the stack [140].

2.2.3 Code Reuse

With the easy way being barred, offensive research then turned its focus toward reusing
existing code parts. The first famous type of attacks in this category are so-called
return-to-libc attacks [172], where an attacker redirects the control flow to a function
in the standard library. Conveniently, this library is linked into every C/C++ program,
respectively, and with functions such as system(), it provides valuable primitives to
an attacker.

Pushing the idea of returning to existing code even further, attackers can execute
arbitrary operations [167] without returning to a function start. Instead, they can scan
the program for gadgets to chain. A gadget is a short sequence of assembly instructions,
usually ending in a ret statement. Every gadget fulfills a specific purpose, such as
moving a value to another register. Then, the small snippet returns, reading the next
attacker-controlled address from the stack, and thus jumps to the next gadget and so
on. This chaining of gadgets ending with a ret statement is known as Return-Oriented
Programming (ROP) [148]. Effectively, computing arbitrary operations becomes the
task of identifying suitable gadgets. Shacham has shown ROP is Turing-complete given
sufficiently large programs or libraries, such as libc [167].

Further research has focused on minimizing gadget size [92], proposing alternatives to
ret, such as jumps (Jump-Oriented Programming, JOP) [25] or C++ virtual functions
(Counterfeit Object-Oriented Programming, COOP) [162], or demonstrating ROP does
not require knowledge of the attacked program (Blind ROP, BROP) [21] as well as
showing that even fine-grained randomization is ineffective [171].

2.2.4 Data-only Attacks

When increasingly stronger mitigations were proposed and employed, attackers ana-
lyzed whether program exploitation is feasible without having to hijack the program’s
control flow. And indeed, research has shown that the capability to overwrite only
program data is sufficient for exploitation [93, 94].
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2.2.5 Mitigations

To detect, stop, or prevent such attacks, many defensive techniques or mitigations have
been proposed over the years [95, 179]. In the following, we briefly introduce a subset
of techniques that have seen relevant adoption and is interesting for this work.

Data Execution Prevention (DEP) / W∧X. This approach aims at preventing
code injection attacks by marking memory pages as either Writable or eXecutable [140,
183], effectively preventing an attacker from executing the shellcode living in memory
that the program considers data, such as the stack. This mitigation offers no protection
against code reuse attacks, as existing code must be executable by design.

Address Space Layout Randomization (ASLR). The next technique attempts
to complicate exploitation by making addresses, such as those of gadgets, unpredictable
across different executions. To do so, program segments, both of code and data, are
loaded at random offsets upon program start [141]. This method’s effectiveness depends
on the search space within which an attacker has to find the correct address and the
absence of information leaks. For example, the search space on 32-bit operating systems
can be too small, so attackers can simply use a brute force-style attack to guess the
correct address within a reasonable time [170]. However, even when the address space
is large enough, any vulnerability leaking information may help the attacker to infer
the desired addresses [179].

Stack canaries. Stack canaries [42], akin to canaries used in coal mines, refer to
values placed on the stack between user data and control data, such as return addresses.
Before returning, the canary value is checked, and, in case of differences, the execution
is aborted. This way, an attacker overwriting a buffer on the stack cannot overwrite a
return address unless they know the canary value.

Shadow stacks. Shadow stacks [29] are used to store a copy of control-flow data, such
as return addresses. Similar to stack canaries, we can then check whether the return
address has been tampered with by comparing the one on the stack with the one on
the shadow stack. Upon a mismatch, execution is aborted. Thus, simply overwriting a
buffer on the stack to change a return address no longer works, requiring an attacker
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to resort to different means or modify the return address copied to the shadow stack,
too.

Control-Flow Integrity (CFI). CFI [1, 28] aims to ensure that only valid control
flow transitions are taken. Often, code-reuse attacks redirect the control flow to another
function or piece of code that was never intended to be jumped to from this location.
Here, CFI ensures that only valid transitions take place, focusing on forward edges. In
other words, upon jumps or calls, CFI validates that the destination may be jumped
to from the current location.

2.3 Obfuscation

Software obfuscation, descending from the Latin word obfuscare (to darken), aims to
impede the analysis of (parts of) code. In general, we refer to any transformation
that makes code more complicated and less intelligible as obfuscation if it preserves
the code’s observable input-output behavior. Obfuscation is only one technique in the
arsenal of software protection: Collberg et al. [39] propose obfuscation alongside en-
cryption, (partial) server-side execution, and trusted, tamper-proof code as counter-
measures. Here, encryption relies on trusted execution environments, for example, In-
tel’s SGX [16], that promise to execute code securely even if the operating system is
compromised.

2.3.1 MATE Threat Model

Obfuscation joins the ranks of software protection techniques that assume a so-called
Man-At-The-End (MATE) attacker model [37]. This scenario models the attacker as a
regular end user and, in particular, assumes that they are in possession of the protected
binary and can execute, trace, pause, inspect, or modify the software at will. Given
these strong capabilities, an attacker usually follows one of the following goals [37]:

1. Original or simplified code: An analyst may strive to extract and understand the
protected code, for example, to steal intellectual property.

2. Metadata: An analyst may want to understand if some code was obfuscated and
which techniques or tools have been used in the process.
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3. Data location: An attacker may desire to extract some data, such as a key em-
bedded in a Digital Rights Management (DRM) system.

4. Code location: Similarly, the analyst may want to identify a function executing
specific code.

Subsequent work has summarized the first two goals as code understanding [16, 159].
As visible from these goals, the underlying motivation is often not uncovering bugs or
exploiting an application; usually, the attacker already has full control and respective
privileges on their device, making such goals less relevant∗. Instead, the focus is on
intellectual property in the form of code or data in the program. Competitors may desire
to steal effective algorithms instead of designing their own or interface with some APIs
contrary to the owner’s intentions. Similarly, users may wish to crack software, bypass
DRM systems to access content without paying, or get around anti-cheat systems to
gain an unfair advantage in online gaming.

2.3.2 Obfuscation Techniques

A multitude of obfuscation techniques exist to protect intellectual property in soft-
ware [16, 36, 159]. In the following, we focus on two techniques that are used in practice,
with a particular emphasis on Virtual Machine (VM)-based obfuscation.

VM-based obfuscation. One core technique, VM-based or virtualization-based ob-
fuscation [55, 149], protects parts of a program by translating the to-be-protected code
into instructions for a new, custom instruction set architecture (ISA). Usually, this ISA
is randomly generated and, thus, only known by the obfuscator. After the code is trans-
lated into this new ISA, it is placed as a so-called bytecode in the original program. To
facilitate its execution, the program is equipped with an interpreter that implements a
fetch-decode-execute loop for the custom ISA. To do so, it features numerous handlers,
each implementing one operation. For example, one handle could implement an addi-
tion of two arguments in such a handler. An attacker facing such obfuscation must first
reverse engineer the interpreter of the custom ISA, understand the instruction encod-
ing, and then write a disassembler for this ISA before they can reconstruct the original

∗ An interesting exception is mobile devices such as iPhones where exploits are required to jailbreak
the device and obtain root privileges that are otherwise not available to the end user.
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high-level code. This highly complex challenge makes the VM-based technique one of
the strongest obfuscation schemes. It is, thus, an integral part of many commercial
obfuscators, such as Themida [136], VMProtect [187], and others [48, 173].

Mixed Boolean-Arithmetic (MBA). A technique to obfuscate individual expres-
sions are so-called Mixed Boolean-Arithmetic (MBA) expressions, which Zhou et al.
introduced et al. [208]. The core idea is to transform an expression into a semantically
equal yet syntactically more complex one. In other words, the obfuscated expression,
referred to as MBA, still computes the same value but consists of more operations
that hide the actual computation [54, 208]. To achieve this goal, Zhou et al. define a
Boolean-arithmetic algebra comprising arithmetic n-bit operations and bitwise opera-
tions, and they define MBA expressions as polynomial functions over this BA [n], to
which they then apply transformations (called MBA Transforms). To make an example
of an MBA, (x ⊕ y) + 2 · (x ∧ y) is an equivalent but more complex representation of
x+ y.

2.3.3 Automated Deobfuscation Attacks

Many approaches to deobfuscate code exist. We briefly discuss relevant ones:

2.3.3.1 Instruction Removal

A crucial insight is that code obfuscation usually increases the program’s complexity
(and thus decreases its intelligibility) by adding code that is not relevant to the original
one. With this in mind, instruction removal attempts to find and remove instructions
irrelevant to the actual computation. To this end, there are several strategies:

Compiler-like optimization techniques. Interestingly, simplifying obfuscated code
is not too different from optimizing code during compilation: Both aim to find a shorter,
simpler version of the code with the same semantics. Consequently, deobfuscation can
use well-known techniques such as dead-code elimination, constant folding, constant
propagation, or peephole optimization [69, 109].

Forward taint analysis. Designed to track user input across an execution, taint
analysis [17, 168, 196, 198] can be used to identify code that does not contribute to
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the result of a VM handler or other unit of code. This way, an attacker can identify
statements that have been added with the sole purpose of complicating analysis. To this
end, this analysis starts with one or more tainted input variables and then propagates
the taint to any value that depends on a tainted value [163].

Backward slicing. Working in the opposite direction of the forward taint analysis,
backward slicing [43, 192, 198] starts from some output variable and identifies any in-
struction contributing to the computation of this particular output. The chosen output
can, for example, be the output of a VM handler, allowing to strip code unrelated to
the handler’s actual computation.

2.3.3.2 Symbolic Execution

Various approaches [109, 154, 197] rely on symbolic execution to simplify code. Essen-
tially, such execution abstracts from assembly instructions working on concrete values
to a high-level logical behavior of code [163]. For example, when encountering a branch,
symbolic execution differs between two categories of inputs based on whether the branch
is taken. This way, it can reason on all possible executions rather than a single one. In-
ternally, it uses a state map to track assignments of symbols to variables and memory.
It usually works on an intermediate language (IL) that makes side effects explicit, such
as modifications of the flag register. To explore the program, it collects branch con-
straints and uses an SMT solver to solve these, allowing it to generate inputs for both
cases. This ability to solve constraints is used in various domains, including fuzzing.
In many cases, we use a variant of symbolic execution called concolic execution that
works on concrete values (rather than a purely symbolic state), helping with precision
and potentially simplifying the logical formulas, thus reducing the search space and
increasing performance [163]. Traditionally, pure symbolic execution struggles when it
cannot infer a formula for code outside the target binary, for example, system calls,
which concolic execution can help mitigate by simply executing this call with concrete
values [15, 134]. For code deobfuscation, we are often less interested in generating in-
puts that explore the whole program but want to extract the semantics of obfuscated
code. For example, we may want to extract the semantics of a VM handler [109] or
follow user input through an execution [154, 197, 198]. For these cases, we rely on
the simplification rules many modern symbolic execution engines feature, which allow
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them, for example, to propagate constants and make them aware of arithmetic identi-
ties. Here, a major challenge is expressions for which the syntactic complexity has been
increased, for example, after the application of MBAs.

2.3.3.3 Program Synthesis

Compared to the previous deobfuscation attacks, program synthesis shifts the focus
from analyzing the obfuscated code to retrieving the original code without having to
study the inner workings of the underlying obfuscation itself [23, 45, 119]. Instead,
an attacker relies on the fundamental principle that obfuscation may change the syn-
tax of code but not its semantics. In other words, regardless of the protected code’s
complexity, its observable behavior must remain the same. Based on this insight, an
attacker can sample input-output pairs and use synthesis to generate an equivalent
expression. Many approaches to synthesizing expressions exist [78], including stochas-
tic [80, 102, 158], enumerative [6, 59], deductive [115, 144, 186], or logical ones using
constraint-solving [71, 79, 174].

2.3.3.4 Semantic Codebook Checks

Attackers have noticed that VM handlers are often simple in nature [23, 149], with their
operation being represented as an addition or subtraction. Relying on this insight, they
have derived a list of basic operations, such as those mentioned, and use an SMT solver
to compare the obfuscated code against each of their entries. The SMT solver can then
prove that the two pieces of code execute the same operation, allowing the attacker
to deduce the code’s function without studying the obfuscation [185]. If the code does
not match, the attacker proceeds with the next entry in the list. However, this process
quickly becomes cumbersome if VM handler semantics are complex and target-specific,
as the attacker must compile a list thereof.

Actors interested in automatically simplifying automated code can achieve surprising
results using these techniques. Table 1 in Chapter C shows that even simple analysis
passes, such as compiler-like optimization techniques, can remove a significant portion
of obfuscated code from software protected by commercial state-of-the-art tools like
Themida or VMProtect. This drastically simplifies the analysis of handlers, weakening
the provided protection.
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Risks

Scaling program analysis to practical scenarios requires automation. While many dif-
ferent program analysis techniques and applications exist, we contribute to three dif-
ferent aspects. First, we study fuzzing as a widely popular and successful automated
bug-finding technique, analyzing how the presented techniques published at prestigious
academic venues are evaluated and whether they are reproducible. Then, we turn to-
wards improving the flexibility of automatically generating exploits. Finally, we study
potentially harmful applications of automated techniques using software protection in
the form of obfuscation as a case study, and we propose an improved design that is re-
silient against automated deobfuscation techniques. In the following, we introduce each
contribution and briefly summarize it before then discussing its results, limitations, and
future work.

3.1 Reproducibility of Fuzzing

Ultimately, automation aims to enable program analysis techniques to scale to large
workloads or program sizes a human analyst can not process in a reasonable time. In
particular, the capability to automatically find bugs in new code would be a signifi-
cant step towards improving the security of the overall software ecosystem. Given the
amount of software produced daily, automated solutions are required to scale testing
successfully and, thus, find bugs. Crucially, automated techniques have the significant
advantage that they are cheaper than manual audits by experts, and their results are
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usually available faster. The latter property especially allows the inclusion of automated
security testing as part of the release cycle. Given a low cost, they could even be part of
the continuous integration (CI), testing every single commit. However, before doing so,
we must first settle on a suitable testing technique that matches our specific use case.
Thus, this process inherently relies on the reproducibility of proposed research works.
Without such reproducibility, we cannot trust a technique to provide the anticipated
benefit, making them unfit for industry adoption.

For the scientific community, the concept of reproducibility is equally important:
With a constant influx of papers proposing novel techniques or improving existing
ones, it is often hard to identify the “best” technique, whether for researchers to test yet
another new technique against or for industry practitioners to adopt. For example, when
surveying how many papers have been published in the field of fuzzing at prestigious
A∗ [137] security and general software engineering conferences between 2018–2023, we
count 289 proposing a new fuzzer or improving at least an aspect of it. The sheer
number and the often abstract description make it challenging to easily identify one
fuzzer as “the best”. Only the ability to reproduce claimed results and compare a
technique against others allows others to identify fuzzers that stand the test of time or
are suited to particular tasks.

The first contribution of this thesis is a study of how many scientific papers are
reproducible. To keep the number of analyzed papers manageable, we only include
papers published in recent years, focusing on the time between 2018 and 2023. This is
because science is continuously evolving, including the implicit, general understanding
of how a state-of-the-art research paper should look like, how it should approach a
problem, or how its evaluation should be structured. In this sense, some research works
do not propose new techniques but reflect on others [19, 130] or a whole field and
propose guidelines [2, 9, 38, 47, 104, 117, 184] that help others avoid common errors.
Consequently, older papers may contain flaws that were not obvious at the time, while
newer papers profit from the accumulated knowledge. Our goal is to study the current
state of the art, so we restrict our view to recent papers. We choose 2018 as a lower
bound, as it is the year the influential paper outlining how to evaluate fuzz testing
by Klees et al. [105] has been published. We also limit the type of papers studied
to a single topic, fuzzing : The type and scope of evaluations often differ significantly
between different fields, making a comparison between them challenging. Fuzzing is
well-suited for reproducibility studies, as fuzzing evaluations are highly empirical. The
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Figure 3.1: Papers on A∗ venues matching the regular expression fuzz[^y] in abstract or
title (SEC = USENIX Security Symposium). Note that this only approximates the actual
number of papers relevant to our analysis, as papers may use fuzzing for unrelated purposes.

inherent randomness during fuzzing makes it mandatory to extensively test how a
fuzzer performs in practice. It also opens the gate for a range of subtle flaws that
threaten the evaluation compared to deterministic tools that always (re-)produce the
same results. Beyond that, fuzzing is a field that sees many techniques proposed, with
almost every technique being presented as a new fuzzer, i. e., we have many tools
that can be individually executed and compared against each other. Crucially, fuzzers
depend on high performance, meaning that even small implementation details can have
a relevant impact.

In summary, fuzzing offers itself to such analysis due to the many tools proposed,
their automated fashion, and the potential for subtle errors to threaten the results
of an evaluation. Interestingly, the high number of new techniques proposed and the
surprising effectiveness in uncovering bugs are contrasted by the low industry adoption.
Excluding large tech companies such as Google or Meta, fuzzing has not been broadly
adopted to test products.

Studying the reproducibility of fuzzing papers, we first conduct a literature survey
of 150 out of 289 fuzzing papers published on A∗ venues (according to the CORE2023
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ranking [137]) between 2018 and 2023. Venue-wise, we focus on security and general
software engineering venues, which are most likely to contain fuzzing works. To re-
view this decision, we study how many publications on A∗ venues match fuzz[^y]∗ in
their abstract or title (as available on Semantic Scholar [5]). As visible in Figure 3.1,
security and general software engineering venues are significantly more likely to pub-
lish fuzzing works than other conferences. Note that this only approximates the true
number of fuzzing papers, but we believe the magnitudes to be representative. For
our literature survey, we have studied how these works conduct their fuzzing evalua-
tions, whether they follow established best practices and guidelines, such as those by
Klees et al. [104], FuzzBench [120], or Böhme et al. [30], or if they deviate from them.
This way, we can quantify the adoption, identify potential pitfalls and shortcomings
of concurrent evaluations, and revise recommendations for future work in the field.
Beyond our comprehensive literature survey of roughly half of all fuzzing papers pub-
lished in the past six years, we select eight papers and attempt to reproduce parts of
their experiments in practice. Notably, these works have all caught our attention while
reading the respective paper or studying the accompanying artifact, such as when using
non-common metrics. This way, we can study if deviating from the best practices can
create problems w.r.t. reproducibility.

3.1.1 Key Results

Overall, we find much room for improvement in designing a reproducible evaluation.
In general, we find several issues, ranging from a limited choice of baselines to compare
against to unfair evaluation setups that distribute resources unequally to the misuse
of CVEs as a proxy for impact in practice. The robustness of many evaluations is also
dire, with many omitting a statistical evaluation, using too few trials to achieve robust
outcomes, or not capturing uncertainty in their empirical measurements. To study
whether such problems impact reproducibility in practice, we attempted to reproduce
eight papers where we noticed potential pitfalls. We find that even minor errors may
threaten the validity and reproducibility of an evaluation, making a careful setup and
execution critical. To support future work, we provide updated guidelines and action
items authors can follow. For detailed results of this work, we refer to the full publication

∗ We explicitly avoid matching “fuzzy”, which is not used in the context of fuzzing.
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included in Appendix A. In the following, we highlight two surprising key results and
extend the discussion of some of our findings.

Source code availability. Reproduction is only possible if the implementation of a
new technique is publicly available. An interesting result of our study is that a majority
of fuzzing papers already release the source code; however, comparably fewer partake
in an artifact evaluation. This is surprising, as the difference between releasing an
artifact and participating in the artifact evaluation process, at least when aiming only
for the available badge, appears small. The only differences are the requirements to
use a stable platform for hosting the artifact, to supply some documentation, and the
organizational overhead of applying for the badge.

To identify whether the requirement of publishing stable code is at fault, we extend
upon the results presented in Appendix A and study the used hosting providers across
analyzed papers. As the results in Figure 3.2 show, we find GitHub to be the most
prominent choice, used by 94% of papers that release their code and 42% of papers
that release data. As GitHub is already considered a stable hosting provider, it is
unlikely this is the reason for the observed discrepancy between released and formally
available artifacts. Anecdotally, we have seen some code repositories with little or
no documentation or cases where only a subset of code is made available; however,
the large majority have been shipped with at least a rudimentary README.md file
that provides basic documentation. Based on personal experience, the organizational
overhead of applying for a badge has also been acceptable, raising the question as
to why artifact evaluation is not more widespread. We note that the whole process
is relatively new and not yet offered by all conferences. Conferences in the security
field have only introduced artifact evaluation in recent years, with CCS doing so as
recently as 2023. Consequently, authors may simply lack familiarity and awareness of
this process, making increased participation more likely as years pass by.

Common Vulnerabilities and Exposures (CVEs). Another key result has been
the (mis-)use of CVEs as a proxy for real-world impact. In the following, we extend
our analysis and discussion.

As a brief background, in 1999, Mitre initiated a program to standardize the enu-
meration of vulnerabilities [114], which quickly found widespread industry adoption.
Essentially, they hand out CVEs, unique identifiers for vulnerabilities that help vendors
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their source code or accompanying data (if any). The longevity of research artifacts is a
concern for reproducibility.
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and users efficiently communicate about a specific bug or discover whether a partic-
ular product suffers from a vulnerability [123]. Anyone can report an identified flaw
in some software. Then, the CVE Numbering Authority (CNA) responsible for the
affected software, such as Microsoft for Windows or Google for Chrome, validates the
report and assigns a CVE that allows everybody to recognize and track this particu-
lar flaw. If no CNA exists for some product, e. g., some open-source software, Mitre

itself reasons on whether to assign a CVE as a last-ditch effort. This is usually only
necessary for open-source software or smaller vendors, as large tech companies have
signed up as the respective CNAs for their products. Crucially, CVEs are designed as
identifiers of vulnerabilities, not as proof of vulnerability, measurement of impact, or
reward for reporting a bug. Orthogonal to CVEs, the Common Vulnerability Scoring
System (CVSS) [64] standard can be used to assign an impact score, as NIST does in
the National Vulnerability Database (NVD) [129].

Now, as our work in Chapter A thematizes, authors of fuzzing papers use CVEs
to show the practical impact of their new tool. In particular, 59 of the 150 papers
claimed at least one CVE, with a total of 662 new CVEs being reported across them.
Anecdotally, reviewers of security conferences have also asked us for CVEs during pa-
per submission. All this suggests that CVEs since have become a metric to measure
if some tool can find bugs in real-world software. Unfortunately, the discrepancy be-
tween original intention and current use opens the gate for abuse. Authors of academic
work now have an incentive to try and obtain as many CVEs as possible, purportedly
boosting the perceived impact of their work. At the same time, the CVE assignment
process does not necessarily include a verification of the soundness and reasonableness
of a bug. While companies acting as CNA for their product have a clear incentive to
verify bugs prior to assigning CVEs†, this is not the case if no CNA (other than Mitre

in its function as fallback) exists. Mitre faces a dilemma for such reports: Either they
attempt to verify the validity of reports for bugs in foreign software, potentially opt-
ing not to assign a CVE for a vulnerability they might not fully understand, or they
conservatively assign a CVE to any plausible report, thereby assigning some CVEs
even if no underlying vulnerability exists. Based on personal experience (and as sub-
sequent experiments show), they understandably chose to err on the conservative side.
However, this combination of an incentive to obtain many CVEs paired with a lack

† In fact, they may even opt not to assign a CVE despite the reported bug being a vulnerability that
per se would deserve one. We do not study this type of misuse in this work.
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of verification is exactly what leads to a potentially subpar quality of assigned CVEs
reported in papers, as actual security considerations take a backseat.

Investigating the 339 claimed by 35 papers, we found less than half of them to
be valid and fixed (or acknowledged). We consider a CVE valid if its formal status is
published, as opposed to disputed or rejected, and we consider it fixed (or acknowledged)
once the developers fix (or at least confirm) the presence and veracity of the reported
vulnerability. As visible, the CVE system provides means to challenge a published
CVE: Maintainers can dispute a CVE, meaning they doubt its veracity but Mitre

sees grounds for discussion. If Mitre sees no such ground, a CVE is officially rejected.
When looking at the 57% of CVEs that are not valid, we find they are either reserved

(i. e., still blinded as the underlying bug has not been fixed nor disclosed) or they
have been refuted, disputed, or simply ignored by the maintainers of the underlying
software. More precisely, the maintainers ignored 20% of all CVEs (69) and considered
11% (37) as invalid, for example, because the reported bug was not security relevant.
Focusing on the ignored CVEs, we find that 14 of the 69 CVEs have been assigned
for no longer maintained projects. While some of these projects have been superseded,
such as Contiki by Contiki-NG, others are small GitHub projects that are seemingly
hobby projects not used in production scenarios. While testing software for bugs is
generally favorable, the benefit of testing unknown, unused, and deprecated projects
remains marginal. It raises the question of whether the goal was to make the particular
software more secure or to increase the perceived practical impact by increasing the
number of assigned CVEs. That said, it may be difficult to assess who still uses or
relies on a particular software, even if it no longer receives updates.

However, even when the software maintainers do not ignore a report, we empirically
found that they are often conservative when it comes to fuzzer-generated bug reports.
Some doubt that a bug would occur in practice, assuming that a regular user would
never supply similar data. In general, this assumption is flawed as a malicious user
may not behave like a regular user. One example of such behavior is cases where a
user can set the packet size of transferred packets. Suppose a server does not validate
the size but trusts the user’s specification. Then, an attacker can easily provoke out-
of-bounds memory accesses by setting a packet size deviating from the real one. In
other cases, maintainer doubts may be justified: For example, finding memory leaks in
short-running client-side programs that are never exposed to the outside bears little
risk per se. Researchers trying to obtain a CVE for such a bug may be perceived as
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pushing the number of credited CVEs rather than actually caring about securing the
software or its users. It is generally difficult to estimate whether a given bug report has
real-world impact or not: Reporters may lack a deeper understanding of the analyzed
code, while maintainers or developers may lack awareness regarding security matters.
Other developers are only discontent with the style of reporting: A fuzzer often finds
many crashing inputs, particularly if the software has been fuzzed for the first time. If
the findings are not manually deduplicated but instead dumped in the project’s bug
tracker, this results in a large number of “low effort” reports that make little to no
attempt to identify the underlying root cause or propose a fix. With unclear impact,
no apparent use case (as fuzzing input often appears random), and little additional
information, maintainers are often more annoyed than happy to receive such reports,
with one calling this type of CVEs even “fuzzer fake CVEs” [118]. In these cases, it
appears high likely that the CVE has been requested by the authors finding the bug
rather than the maintainers themselves, underscoring the existence of this hunt for
CVEs. When contrasting the number of CVEs that are invalid (36) with the number
of CVEs that have been officially disputed (1) or rejected (2), we find that maintainers
are unlikely to formally contest bad CVEs but instead simply close the respective bug
report. Consequently, 73% of assigned CVEs are still considered valid, even though
only 43% have been acknowledged or fixed by the maintainers.

Now, this raises many questions, most importantly whether academia needs to adjust
its use of CVEs. We believe that CVEs are not a suitable metric to show real-world
impact, mainly because the assignment process is not connected to a verification of the
bug’s validity. While companies acting as CNAs for their product are likely to verify
bugs before assigning a CVE, Mitre is assigning CVEs without in-depth verification.
We verify this notion by studying the CNA assigning the CVE if the CVE was ignored
or invalid and display the results in Table 3.1: 104 of the 107 bad CVEs have been
assigned by Mitre, the remaining three by Redhat. We stress again that this is by de-
sign: Mitre functions as a catch-all in case no other CNA is responsible. The reported
bugs are thus not in products they own but can be in any code, meaning they cannot
reasonably verify whether a bug is indeed a bug, nor can they necessarily coordinate
with the maintainers. Likewise, Redhat assigns CVEs for various open-source software,
leaving them in a similar spot.

With such a discrepancy between assigning authority and maintainers, the system
can be gamed by reporting all sorts of bugs in all sorts of software instead of work-
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CNA Outcome #CVEs % of CNA

Mitre

Acknowledged 82 44%
Ignored 69 37%
Invalid 34 18%

Redhat
Acknowledged 11 79%
Ignored 0 0%
Invalid 3 21%

Others∗
Acknowledged 52 100%
Ignored 0 0%
Invalid 0 0%

* Adobe, Apple, dwf, Github, Google (Android, Chrome),
IBM, Microsoft, Oracle, Qualcomm

Table 3.1: Outcome of CVEs assigned by different CVE Numbering Authorities (CNAs). The
percentage is relative to all CVEs assigned by this CNA.

ing with the maintainers towards responsible disclosure—leading to CVEs for non-
exploitable bugs or in software nobody uses. Currently, about every fifth CVE assigned
by Mitre has been refuted by the project maintainers. This serves as a call to action
for academia to reconsider the current use of CVEs as a metric or identify suitable
mechanisms to avoid blatant misuse.

3.1.2 Discussion

The results of our paper warrant more discussion in many directions. In the following,
we focus on the reasons leading to a lack of reproducibility and the future of artifact
availability.

Underlying reasons. One fundamental question our published work has not ad-
dressed is why evaluations cannot be reproduced: The paper merely observes problems
regarding reproducibility among scientific papers in the area of fuzzing, and it outlines
how future work could compensate for current pitfalls. Here, we attempt to elucidate
the reasons leading to this problem in the first place:
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• Publish or perish: The prevailing need to publish as many papers as possible
provides little incentive to critically reflect on one’s work, instead making authors
haste to the next deadline. Without careful review of results, it is easy to miss
errors that may falsify evaluation results.

• Complexity: Fuzzing evaluations are hard to get right. Simple things such as the
CPU clock can massively distort outcomes without this bias being trivially de-
tectable or adequately discussed in the literature. This is even true in cases where
evaluation platforms such as FuzzBench are used locally, potentially generating
a false sense of security.

• Lack of enforcement: At the same time, reviews seem to pay little attention
to proper documentation of the evaluation setup, creating no incentive for the
authors to do so in-depth. Also, reviewers often have no access to the artifact,
making judging the used experiment setup or reproducing experiments hard.

In the current state, neither sufficient incentives to reflect on and document one’s
exact evaluation setup nor repercussions for not doing so exist, making reproducibility
an afterthought for many submissions.

Artifact availability. Despite many papers publishing source code, a non-negligible
number still does not. We see little reason why academic work should be withheld from
publication: In edge cases where releasing an implementation may pose a threat to
society or cause unnecessary harm, releasing code may be rightfully forfeit. However,
this appears not to apply to most works. On the other hand, not releasing an artifact
always reduces the value of a work to science: Neither can others reproduce the results
for confirmation or correction, nor can they easily build upon a proposed technique or
compare against it. Reimplementing a technique solely based on information a paper
provides is costly and may need to fill the gaps in terms of unspecified implementation
details, making it unreliable for comparisons. As the academic benefit of a reimplemen-
tation is low, it is unattractive, and the paper without source code remains a blocker
of follow-up research. Thus, authors should always strive to release artifacts where
morally acceptable or, otherwise, document reasons for not doing so.
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3.1.3 Limitations

Our approach has two particularly noteworthy limitations, namely its focus on the
mechanical correctness of the experiment design and the potential non-applicability of
guidelines to edge cases.

Semantic correctness. These guidelines enable reproducibility by ensuring the eval-
uation design is reasonable. However, this is limited to a mechanical level: The guide-
lines do not allow judging a specific technique’s inherent value. Even mechanically
reasonable evaluated techniques may not make sense: Imagine a new method aiming
at fuzzing library APIs. It is inherently hard to understand the API contracts, i. e., in-
herent assumptions of how the input to a specific input should look like. When picking
a random function and replacing argument values with random fuzzing input, we may
trivially find many “bugs”. However, without knowing whether this particular function
can be reached with such input during regular operations, these findings may be invalid.
Other functions may sanitize the input or the arguments may not be user-controllable,
potentially rendering all presumed findings invalid. Still, evaluating such an approach
in a mechanically correct manner is possible, such that it may appear well-evaluated
and successful. Only when considering the actual context does it become apparent that
such a technique contributes little to securing real-world software.

Guideline applicability. No matter how well-spirited, any guidelines may fall short
of capturing all nuances and edge cases. Evaluating on bugs only makes sense when us-
ing fuzzing to find bugs. Future work may derive other use cases, such as using fuzzing
for its capability of generating a diverse set of inputs, aiming to enrich other analy-
ses [97, 138]. Similarly, evaluating on a specific metric may not be possible in some
scenarios: When fuzzing firmware on a proprietary device in a blind manner [156], we
may have no possibility to extract exercised coverage. Crucially, this does not nec-
essarily imply that the work is inherently bad or should be rejected until it measures
coverage. In short, any guidelines proposed may apply to a majority of cases, yet, judg-
ing a work based on a superficial comparison to guidelines is inherently flawed. Our
guidelines propose a helpful set of things to consider and, if necessary, ignore based on
a case-by-case basis.
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3.1.4 Future work

There are multiple avenues future work could take to improve or extend upon this
work.

Extended literature analysis. Extending the analysis to all 289 (as opposed to
the current selection of 150) may further solidify the results. Beyond A∗ conferences,
multiple other venues, such as the International Symposium on Software Testing and
Analysis (ISSTA), feature fuzzing works. While we do not believe that analyzing more
works would significantly change the results, differences between venues or particular
evaluation flaws may exist that only show in a select number of papers not yet analyzed.
In an even broader scope, a reproducibility analysis could be extended to virtually any
field where new scientific publications are usually accompanied by some tool that is
released. At the same time, future work could email authors who have not publicly
released an artifact to understand the reasons for keeping source code private.

Replication. Instead of reproducing eight case studies as we did, all fuzzing papers
could undergo external validation. Even better than reproducing the results using the
original implementation, replicating the results, i. e., implementing the proposed tech-
nique anew and independently from the original one [12], could further help identify
implementation errors leading to skewed results. The community has already taken this
upon themselves, with the AFL++ project [90] implementing select techniques that
are promising. Similarly, LibAFL [62] provides a platform on which different techniques
can be pieced together. Optimally, significantly more techniques are not only proposed
as a separate fuzzer but re-implemented by other community members on top of ex-
isting fuzzers, thereby allowing improvements to be clearly attributed to a particular
technique rather than implementation-specifics.

39



3 Reproducibility, Flexibility Requirements, and Risks

3.2 Flexibility for Automated Exploit Generation

Fuzzing is only the first step in the pipeline of automatically finding and addressing
bugs: Its findings are usually crashing inputs, functioning as proof that some bug exists
within a program.

To properly address a crash, an analyst or developer must determine the underlying
bug and, potentially, its root cause. Given a sufficient understanding, they can then
derive a proper patch. Now, our goal is to automate as much of this process as possible:
Finding a bug, understanding its implications and root cause, and, ideally, automat-
ically providing a fix. Unfortunately, automated program repair is not yet capable of
deriving patches of developer quality [20, 116, 207] and often lacks the semantic insight
a programmer possesses. When we are unable to resolve the problem automatically,
the next best thing we can do is provide the developers with as much helpful informa-
tion as possible. In particular, we can help them prioritize bugs with critical security
impact over unimportant annoyances. One approach to show whether a particular bug
is security-sensitive is to take an attacker’s point of view and attempt to generate an
exploit automatically.

In this vein, we propose a new technique for automated exploit generation that relies
on a logic encoding of gadgets that it then chains together using an SMT solver. This
contrasts typical approaches that rely on some heuristic that helps them identify “good”
gadgets to chain. Our approach demonstrates unprecedented flexibility, as arbitrary
constraints can be modeled with little effort. Any constraint that can be expressed as
SMT formulas can simply be added, offloading the task of finding a suitable solution to
the SMT solver. Another benefit other techniques lack is the SMT solver’s capability
to prove that a gadget chain cannot exist for the given gadgets and conditions. Where
other tools fail, it simply indicates a failure of the provided heuristics, leaving a human
analyst wondering whether manual effort would prevail. With our approach giving
a mathematical proof, the analyst can focus their effort on other tasks rather than
wasting their time.

On a technical level, we propose to encode the data flow between potential gadgets
as a logic formula. When combining this formula with an encoding of the CPU and
memory state at the time at which control can be transferred to the gadget chains
and the desired CPU and memory state that the gadget chain should achieve, we
transfer the program of finding a gadget chain into a reachability problem that we
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can pass to an SMT solver. If the solver finds a satisfiable assignment for all variables
in the formula, it provides a model containing concrete assignments. In other words,
the solver managed to find a gadget chain leading to the desired outcome. Due to
the logic formula’s nature, it is easy to impose arbitrary restrictions on the gadget
chain process, such as excluding specific bytes from occurring (so-called bad bytes, for
example, the null byte which cannot be transferred into the memory by the exploit
when relying on functions that accept this byte as string terminator). Other scenarios
where our approach’s flexibility might come in handy include scenarios where an anti-
cheat engine checksums values on the stack. We can simply add constraints that the
gadget chain’s checksum must match this particular value.

3.2.1 Key Results

The results show that using an SMT solver to find gadget chains is effective. Compared
to traditional heuristics, its selected gadgets contain more instructions and show a
higher diversity in terms of memory accesses and control flow types used to chain
gadgets together. To evaluate its effectiveness, we chose five realistic targets, ranging
from libc over chromium to apache2, and attempted to find a chain for three attacker
goals. Overall, our prototype, SGC, proved more successful than other evaluated tools,
and it found a gadget chain in all but one case. In this scenario, it proved that no gadget
chain exists for the given pre- and postconditions, which no other evaluated tool could
do. Further, SGC’s gadget chains were more diverse, using different types of control
flows and even including gadgets that write or read memory, which heuristics-based
tools avoid. Our results showed that the comparably long runtime of the SMT solver
can be addressed by randomly sampling a subset of gadgets, which may be required
for a high amount of available gadgets. Crucially, any expression that can be encoded
as a logical constraint can be taken into account, such as requiring all the addresses
of gadgets in the attacker-controlled buffer to add up to a specific checksum. This
capability may be interesting in certain scenarios where tools such as DRM systems or
anti-cheat engines attempt to enforce the integrity of memory, allowing SGC to handle
a broader range of scenarios before requiring human intervention.
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3.2.2 Discussion

We would like to discuss two key points.

Bug assessment. While our technique provides an approach to automatically gen-
erate exploits, it is easy to see how it can be helpful to software developers: When
having multiple bug reports that require time to address, identifying such bugs leading
to vulnerabilities may be desirable. Developers could use SGC to model the capabili-
ties the bug provides them and see whether a gadget chain can be found, signaling
exploitability, or whether SGC proves that no gadget chain may exist for the given set
of pre- and postconditions. While this is no guarantee in terms of non-exploitability, as
an attacker may find different pre- or postconditions that yield a valid gadget chain, it
may indicate that other bugs should be fixed first. Existing work in that domain uses
a fuzzer to identify a set of capabilities an attacker gains from a crashing input [97] or
attempts to infer the severity based on available descriptions of vulnerabilities [53, 83].
Heuristics based on already available descriptions provide only an approximation based
on existing knowledge, thus primarily helping to identify N-days or vulnerabilities that
are similar to known ones. Such approaches are orthogonal to exploring the concrete
bug observed, helping to relate it to potentially similar ones. Using a fuzzer is a promis-
ing avenue to explore the concrete bug, as any identified capability is demonstrably one
that an attacker can use, but is fundamentally more geared towards understanding the
bug than assessing it. Arguably, the boundaries between understanding and assessing
a bug are blurred, as any understanding may contribute towards a more precise assess-
ment. That said, the exploration of the bug provides fundamental capabilities without
trying to see whether they can be pieced together in the context of the program, as
does automated exploit generation.

Ethical considerations. As with any automated exploit generation approach, the
potentially offensive nature of SGC raises questions regarding ethics. After all, it is not
far-fetched to assume that malicious actors might want to misuse this (and similar)
research to build exploits that can be used in practice and harm innocent users. Similar
to Heelan [86], we believe this to be an understandable but fundamentally incorrect
assumption: Bad actors have been, are currently, and will in the future be actively work-
ing on exploitation regardless of whether academic work refrains from publishing on the
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matter. Neither our approach nor others provide a full end-to-end technique that auto-
matically finds a bug, identifies the root cause and exploitability, and builds an exploit.
Such an end-to-end approach would eliminate any required expert domain knowledge,
thus opening exploitation to a wider audience, potentially causing an augmented level
of misuse. To our knowledge, no such approach is currently publicly available. Instead,
tools such as SGC require the domain knowledge of an expert (for example, to identify
suitable pre- and postconditions), who are already capable of finding gadget chains
manually. Consequently, the choice is between researching the topic and potentially
providing malicious but already capable individuals with ideas for their own tools or
not researching the topic and remaining in the dark regarding state-of-the-art auto-
mated exploit generation. Without research, such works also will not be available to
developers intending to use them for assessing bugs, as they have few incentives and
resources to develop such tools on their own (compared to malicious actors, which may
have enough interest and resources to develop automated exploit generation tools).

3.2.3 Limitations

Our current approach has two noteworthy limitations.

PC control. Currently, our approach—as is common [164]—requires control over
the Program Counter to transfer the control initially to the gadget chain. Given some
crashing input found by a fuzzer, it is unlikely to lead to such control directly, requiring
a human analyst to study the bug, its implications, and potential attacker capabilities;
only then can they use our approach to automatically generate an exploit. This gap
between initially identifying a bug and working out concrete preconditions leaves ample
opportunity for future work to address using automated techniques.

Sampling. When the SMT solver finds no chain, the reported UNSAT signals that no
chain exists, functioning as proof of non-existence that helps developers judge whether
a particular bug should be prioritized. However, the performance characteristics of our
approach require us to randomly sample a subset of all available gadgets to speed up
the process of deriving a chain. In this case, the UNSAT outcome only indicates that no
chain exists for the currently sampled gadget pool. This gain in performance leads to
a significantly weaker statement that provides little help to assessing bugs and their
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criticality. Consequently, developers interested in using our approach cannot rely on
sampling as a performance optimization, leading to long runtimes of our approach.

3.2.4 Future Work

Beyond the room for improvement outlined above, we consider the following avenues
to worthy of further reserach.

Performance improvements. First, implementation-wise, a more efficient disas-
sembly procedure would significantly improve performance. Our experiments testing
three scenarios showed that disassembly consistently averaged around 30 minutes (cf.
Table 4 in Chapter B, whereas the solving time averaged to approximately 20 min-
utes. Notably, solving time depends significantly on the complexity of the attacker
goals; for simpler scenarios, it took only 6 and 8 minutes but 45 for the more com-
plex mmap chain. In any case, the constant disassembly time of 30 minutes contrasts
modern disassembly tools such as IDA Pro, Ghidra, or Binary Ninja, which are usually
significantly faster. Similar to improving the implementation in terms of disassembly,
it could be worthwhile to study the differences between multiple SMT solvers. Other
works have observed significant differences in solving time when switching to another
SMT solver [65]. In our case, we use Boolector [133] and rely on its const-array exten-
sion [177] to model memory, which other solvers may not support. However, Boolector’s
successor, Bitwutzla [132], could be an interesting option to improve performance.

Mitigation awareness. Second, a highly interesting avenue of future work could
focus on extending our approach to model other mitigations and defense mechanisms.
In particular, CFI [1] could be amenable to our technique. CFI protects against attack
redirecting the control flow by checking if the target of a control flow transition is valid.
This severely limits the gadget pool and the order in which gadgets can be chained,
as any successor must be valid w.r.t. to the CFI policy. The flexibility of our approach
should allow its application to this restricted scenario, where gadgets have only a limited
set of valid successors. As it stands, our current implementation disassembles gadgets
without respect to legal control flow transitions and would require adaption to model
valid units of code under a CFI policy.
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3.3 Risks of Automation: Weakening Obfuscation

Up to this point, the role of automation has been one of enabling security analysis to
scale. However, its use is not restricted to the purpose of finding bugs nor to companies
or security-oriented individuals with benign goals in mind. In this section, we highlight
one subject where automation has shifted the balance in the arms race between attacker
and defender towards the former: Software protection in the form of code obfuscation.
Here, the capability to scale deobfuscation through automation poses a major threat to
intellectual property. Obfuscation’s inherent reliance on security by obscurity makes it
challenging to quantify the damage or propose concrete security guarantees. However,
if automated analyses succeed in significantly simplifying obfuscated code, it is safe to
consider the used obfuscation scheme as unreliable and broken. While all obfuscation
can eventually be broken by a human analyst spending enough time on a target, this
does not scale to hundreds of different obfuscated binaries and is generally costly. On
the other hand, running a simple, automated analysis requires little expert knowledge
and can easily be scaled to hundreds of obfuscated binaries. From a defender’s point
of view, the increasingly more powerful automation of program analyses helping us to
scale the finding of bugs is hurting us here.

In our work, we first demonstrate that even comparably simple automated analyses
are surprisingly effective in simplifying commercial state of the art: Already a simple
dead code analysis removes half of a handler’s instructions for commercial obfusca-
tors (see Table 1 in Chapter C), paving the way for subsequent analysis. That said,
more complex approaches to deobfuscate these commercial obfuscators exist both in
academia [99, 106, 194] and practice [56, 153].

With this state of affairs in mind, our work studies whether increasingly powerful
automated analyses can be kept within bounds such that we improve our bug-finding
capabilities without sacrificing software protection. To this end, we propose an obfus-
cation scheme that combines multiple techniques to provide strong protection. This
combination achieves resilience, i. e., protection against automated analyses, by rely-
ing on inherent weaknesses of the program analyses. More precisely, we formulate our
goal as preventing an attacker from extracting the core semantics from some function
f . The core semantics refer to f ’s functionality, such as an addition of two variables.
While abstract and generic in nature, f can be used to model a VM handler, in which
case its core semantics would represent the operation implemented by the handler. Our
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prototype, in fact, uses a VM-based obfuscation approach to implement our proposed
techniques. However, we point out that hiding the VM or making its structure more
resilient is orthogonal to our goal: We focus on protecting the VM handlers, or gener-
ically, the function f . In particular, we propose three principles that, in combination,
promise resilience:

1. Merging core semantics

2. Adding syntactic complexity

3. Adding semantic complexity

Merging core semantics. In the first step, we merge multiple core semantics and
intertwine them such that individual semantics can still be invoked using a key, but
at the same time, all semantics are always executed. This preserves functionality (as
we can still invoke each core semantics individually) but ensures the output always
depends on all statements (as each invocation always executes every single statement)
such that deobfuscation attacks based on instruction removal can no longer discard
statements pertaining to core semantics not invoked for a particular execution. At the
same time, we use partial point functions to make the key selection hard to identify and
propose to use mathematically hard problems, here factorization, to prevent a static
attacker relying on SMT solvers from identifying the invoked core semantics.

Adding syntactic complexity. To make the protected code harder to analyze, we
further increase its syntactic complexity using MBAs. In other words, we inflate the
expression while preserving the original semantics. To this end, we propose a generic
approach to generate MBAs of arbitrary depth by recursively rewriting expressions
with syntactically more complex ones.

Adding semantic complexity. Program synthesis simply bypasses all syntactic
complexity, as it works with input-output samples rather than studying the expression
itself. Thus, we need to increase the semantic complexity of our function f to harden
it against this attack vector. We propose chaining multiple, program-specific core se-
mantics into a superoperator. For example, suppose a program executes the operations
A, B, and C in order. Then, we propose creating a superoperator fABC executing all
three instead of invoking three core semantics fA, fB, and fC in sequence. This causes
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our core semantics to be more complex, making it harder for program synthesis to
synthesize.

When combining these techniques, synergy effects arise. For example, when adding
MBAs to increase the syntactic complexity, their diverse nature also makes it more
complicated to identify and pattern-match structures. That said, a risk of any obfusca-
tion scheme is that the ample code transformations falsify the original code’s behavior.
While formal verification of individual expressions (or short sequences thereof) is pos-
sible, a full end-to-end verification of complex code is currently out of scope. Thus,
we use formal techniques to verify the correctness of our MBAs and resort to black-
box differential fuzzing to test the IL and binary produced by our obfuscator, Loki,
comparing it to the original code’s behavior.

3.3.1 Key Results

Our results show that it is possible to provide adequate resilience against a wide range of
automated analyses, including taint analysis, symbolic execution, and program synthe-
sis, by relying on such a combination of techniques. More precisely, these deobfuscation
techniques can simplify significantly fewer expressions than for state of the art. For pro-
gram synthesis, we show the limits of synthesis, deriving how complex expressions must
be to resist such attacks effectively. Throughout our verifying efforts, in particular, our
differential fuzzing, we find that none of our transformations changed the semantics of
the underlying code. This comes at the cost of higher runtime overhead and a larger
memory footprint; still, our work remains in line with state-of-the-art commercial pro-
tection schemes. In any case, it is crucial to selectively apply obfuscation to critical
pieces of intellectual property and avoid hot paths in software.

As this chapter demonstrates, automation can be used not only to find bugs and
improve security but also in the opposite direction. At the same time, our results show
that automated analyses are no panacea: Software can be designed explicitly to thwart
automated analysis. In the case of software protection, this may be desirable; however,
developers may similarly design software to prevent automated analysis of their code,
similar to the techniques proposed by AntiFuzz [81] or Fuzzification [98].
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3.3.2 Discussion

The nature of the arms race between deobfuscation and obfuscation as well as the
relationship of software protection to bug finding warrant further discussion.

Longevity. While our combination of techniques focuses explicitly on exploiting in-
herent weaknesses of analyses, fast-moving advancements in computing power or new
analyses may threaten the security guarantees provided. The current situation resem-
bles an arms race where more powerful techniques are quickly followed suit by stronger
deobfuscation techniques. Given the dynamic nature, a natural concern is whether Loki
will provide lasting resilience, assuming newer and stronger deobfuscation techniques
are already worked on, for example, in terms of MBA deobfuscation [108, 146, 147]:
Here, new approaches grounded in math show promising results in simplifying MBAs
applied to simple expressions such as x + y. Ultimately, predicting the longevity of
Loki, or obfuscation in general, is difficult. In any case, faced with more potent at-
tacks, obfuscators, including Loki, have to ramp up the complexity of obfuscated code.
For example, Loki allows to set parameters such as the rewriting bound or depth of
core semantics. Additionally, obfuscators can incorporate new obfuscation techniques
focusing on weaknesses of new analysis techniques. At the same time, more complexity
further hurts the performance, making it paramount to study orthogonal protection
techniques that can extend obfuscation.

Bug pipeline. Now, the astute reader may wonder how obfuscation relates to the bug
pipeline or fuzzing in the first place, if at all. Intuitively, there is a direct connection:
The former attempts to make the analysis of programs more difficult, while the latter
analyzes programs to find bugs. On the contrary, their usage scenarios widely differ:
Fuzzing is often used by companies or researchers intending to scan as many programs
as possible, while obfuscation has the goal of protecting small parts of code from prying
eyes. Crucially, the code’s interestingness often stems not from potential bugs but its
inner workings, with the attacker’s goal being to steal intellectual property or bypass
some anti-cheat or DRM mechanism. Using a fuzzer barely helps an attacker come
closer to their goal in such cases, so obfuscation has little interest in preventing fuzzing
in the first place. Notably, this does not hold true if obfuscation is chosen intentionally
to make code harder to read for fear of an analyst finding bugs. While not obfuscation’s
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primary application, some companies may choose this path to protect code with a large
attack surface.

That said, many obfuscation techniques are inherently unsuited to impede automated
bug finding in the form of fuzzing: Anything that only makes code more complex to read
has little impact on the fuzzer other than decreasing the number of executions due to
degraded performance. More powerful techniques, such as VM-based obfuscation, may
superficially appear suited to prevent fuzzing. After all, the fuzzer’s coverage feedback
is limited to the VM handlers, as it has no concept of the virtualized code and, thus,
may not fully explore it. This is similar to the case of fuzzing interpreted languages,
e. g., Python, where the fuzzer’s feedback is limited to the interpreter and receives little
feedback on the interpreted code itself. However, even simply identifying the virtual
instruction pointer and using it as additional feedback to the fuzzer is sufficient to
overcome this [193]. Güler et al. have further evaluated how fuzzers can find bugs in
the presence of various obfuscation schemes, with their findings being in line with our
expectations [81].

Unsurprisingly, concerning automated exploit generation, obfuscation has been shown
to have negative consequences, as its increase in code size, i. e., the added instructions,
leads to a larger gadget pool [206]. Given a larger, more diverse gadget pool, automated
exploit generation tools are more likely to find a gadget chain.

Diversity. Beyond offering solid protection against automated and manual attacks
while imposing as little overhead as possible, there is another dimension to obfusca-
tion: diversity. When an attacker succeeds in deobfuscating one binary, we do not want
this to translate to all binaries protected by the same technique being broken. Instead,
deobufscating each binary should always incur a significant cost, thereby ensuring that
other obfuscated binaries are protected even if the obfuscation is broken once. To ensure
diversity of instances, Loki relies on randomness at various points: Both superopera-
tors and MBAs are sampled from a large search space, such that two instances differ
from each other. Crucially, we avoid hardcoded rules that limit diversity. That said,
a high diversity such as that provided by Loki is critical to thwart pattern matching,
preventing attackers from simply matching for identifiable snippets of code.
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3.3.3 Limitations

Two core limitations of our approach are the restriction of our focus on resilience rather
than robustness or secrecy [39] and the shortcomings of our prototype.

Potency and stealth. Our work has put a strong focus on resilience, i. e., the ca-
pability of thwarting automated deobfuscation attacks [39], rather than potency, its
capability to confuse human analysts. Intuitively, there is a relationship between the
two: An attacker that can use automated attacks will succeed faster at deobfuscating
protected code than one that has to first understand the code obfuscation techniques
used. However, common wisdom among practitioners is that a human attacker with
enough time will always succeed in finding and overcoming code obfuscation [149]. That
said, measuring potency is difficult, with the capabilities of a human attacker strongly
depending on their knowledge and background. Similar to potency, our work does not
consider stealth: While originally defined for opaque predicates [41], another obfusca-
tion technique, we argue that any obfuscation technique can benefit from being hard
to find for an attacker, increasing their workload to first finding the obfuscated code
before meaningfully being able to attack it. That said, our work’s focus on individual
handlers does not make any attempt at hiding the obfuscated code but leaves this up
to future work.

Limited prototype. Our current prototype serves more as a proof-of-concept than
providing a tool industry could adopt. Most crucially, it currently does not support
the application of obfuscation techniques across function or basic block boundaries
but instead relies on LLVM’s optimization passes to unroll code prior to processing.
Similarly, memory accesses are implemented via a single handler, which features no
particular protection. Both these decisions have been made to limit the engineering
effort and could be implemented to improve our prototype. Although, we stress that
it is not our intention to provide an industry-grade obfuscator for public use. With
our scope on protecting individual core semantics, or handlers, rather than the entire
VM, the whole VM structure itself is simple in nature and features little protection, for
example, we use no bytecode blinding [23]. As mentioned above, this also includes the
fact that we made no attempt at hiding the code, but our threat model assumes that an
attacker has already successfully bypassed all these orthogonal protection mechanisms.
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3.3.4 Future Work

Besides the limitations of our work, future work could tackle the following avenues.

Extension to more techniques. Future work could foremost further harden code
obfuscation by considering and properly evaluating other obfuscation techniques, such
as opaque predicates [40, 195] or range dividers [15], and orthogonal countermeasures,
including self-modifying code [101] or anti-debugging techniques [34, 35, 66]. A thor-
ough systematization and evaluation of available techniques would allow for the sustain-
able identification of strong ones, and it would permit to identify techniques exhibiting
beneficial synergy effects when combined.

Evaluation metrics & practices. Fundamentally, obfuscation is security by obscu-
rity, a principle long considered obsolete in fields such as cryptography [142]. Still, in
this particular scenario, where provable security incurring reasonable overhead is diffi-
cult, if not impossible, to achieve, raising the bar for an attacker is often sufficient to
protect intellectual property, making obfuscation a viable and widely used practice in
the industry. In any case, the lack of provable properties makes a definitive evaluation
challenging. Other than for fields such as fuzzing, where FuzzBench [120] provides a
benchmarking platform, no standardized means of benchmarking or metrics exist for
obfuscation schemes. Finding adequate metrics and deriving a benchmarking platform
could be an interesting avenue for future research. A first step would be focusing on
resilience, where we expect benchmarking evaluations to be reasonable. In contrast,
more work is required o find suitable metrics to measure potency.
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Conclusions

In this thesis, we have studied different aspects of the automation of program analyses.
First, we have surveyed how reproducible existing research works in the field of fuzzing
are. Without reproducibility, other research cannot build on specific works, nor can the
industry adopt a technique with unclear benefits. Our findings indicate that many works
have ample room for improvement. In particular, existing guidelines ensuring common
grounds and a sane evaluation setup are often not followed, results are not statistically
evaluated, and misuse of CVEs often inflates the practical impact. However, providing
reproducible bug-finding tools is a crucial predecessor to a successful and sustainable
automation of the bug-finding pipeline.

In a second step, we have discussed a new approach towards automatically generating
exploits. Representing the last step in the bug pipeline, the technique achieves high
flexibility: It allows us to encode arbitrary constraints by relaying the problem of finding
a gadget chain to an SMT solver. At the same time, our approach can prove that no
gadget chain can exist for a given set of pre- and postconditions, contrasting existing
works in this realm. While the opportunity for misuse exists, automatically generating
proof-of-concept exploits can help assess the threat arising from a particular bug. Thus,
it can allow maintainers to prioritize fixing specific bugs over others.

Having studied the first and last step of the bug pipeline, for which automation
provides a net positive impact, we then focus on a scenario where automation is pre-
dominantly used in undesired ways, namely the field of code (de-)obfuscation. Here, in-
tellectual property is protected by making code hard to analyze, working on a security-
by-obscurity basis. As our work underlines, existing approaches fail to live up to expec-
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tations, as automated analysis techniques succeed in simplifying the protected code,
making it amenable to further analysis. Studying the limits of the used analysis tech-
niques, we designed a set of obfuscation techniques in the context of VM-based obfus-
cation that exploit inherent weaknesses of used techniques and, in combination, help
thwart automated deobfuscation attacks. This shows that considering adjacent fields
is important when improving automated analyses, but it also demonstrates that such
analyses can be significantly hampered if desired.

Future research directions. Given the steady growth of software and its ever-
increasing impact on our lives, the automation of program analyses will become an
even more pressing issue. A natural goal for the near future is an automated approach
that combines individual steps of the bug pipeline, from finding some input that causes
abnormal behavior to reasoning on the root cause and capabilities of this bug to gen-
erating an exploit or providing a patch that mitigates the undesired behavior. With
AIxCC [46] on the horizon, the arrival of first attempts in this direction that work for
real-world scenarios may be imminent. The competition’s focus on artificial intelligence
as a substitute for human behavior represents a renewed belief that incredible recent
advancements in the field of machine learning (leading to tools such as ChatGPT [135])
can be harnessed to overcome technical gaps that currently must be filled by human
experts. It remains to be seen whether individual components in this pipeline, each
having different requirements and making different assumptions, can be fused together
solely by artificial intelligence to form a working pipeline that succeeds in analyzing
and securing real-world applications.

That said, the immense diversity in hardware, software, and types of security vul-
nerabilities will make a “one-shot” solution challenging, requiring significant further re-
search on individual, directed improvements. For example, when focusing on the field of
fuzzing, we find several limiting factors, including the fuzzer’s capability to sense a bug,
where introducing new bug oracles would extend its capabilities to other bug types, or
the quality of underlying fuzzing harnesses. Currently, human experts write such har-
nesses, leading to incompleteness, decay over time (if not properly maintained), and
a general oversight of attack surface [180]. Automatically deriving a harness tailored
toward the target-under-test, combined with a fuzzing technique optimized depending
on the target’s needs will significantly ease the adoption of fuzzing by non-experts and
allow for further scaling. There is even more to do for automated exploit generation: To
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the best of our knowledge, existing approaches are highly limited to specific scenarios
or require strong assumptions, leaving most of the exploit generation up to a human
expert. In particular, no generic end-to-end exploitation approach exists. With the de-
veloper’s need for bug prioritization in mind, which will only increase with broader
adoption and application of bug-finding techniques such as fuzzing, we have to devise
more and more usable technologies to assess and convey the potential security impact
of bugs. Here, academia will likely shift towards extracting more details from the ini-
tial crashing inputs to better showcase the context and capabilities of a bug and work
towards automatically assessing these bugs. Another natural direction for this combi-
nation of bug finding and assessment is a better inclusion into Continuous Integration
(CI) to enable analysis of patches and smaller snippets of code rather than testing a
whole project once in an ad-hoc manner. Finally, software protection, in particular code
obfuscation, research needs to keep up with the increasingly powerful deobfuscation
techniques proposed. A promising step in this direction is the even tighter interlocking
of different techniques to reduce the attack surface in terms of clearly separable pieces
that are easy to attack. Similar to this work, we can expect future techniques to rely on
inherent weaknesses of analyses to achieve lasting resilience. In more concrete terms,
we anticipate more complex VM-based approaches that not only harden individual
handlers but also make it difficult for analysts to identify interesting data flows. At
the same time, future work in the domain of automated deobfuscation will increas-
ingly turn towards combining existing techniques to benefit from synergy effects [57].
This will be combined with technical improvements: For example, synthesis, one of the
most powerful simplification primitives, currently struggles with large constants or ex-
hibits performance plateaus [107]. Overall, we can expect that the arms race between
automatically simplifying obfuscated code and hardening it against new or stronger
techniques will continue for the foreseeable future.

Across the board, automated program analyses will become even more important
than they are right now, making it paramount to set the right foundation for repro-
ducibility, thus enabling industry adoption and advances in research. At the same time,
we must ensure our automation provides flexibility for a wide range of scenarios, or
we jeopardize their broad applicability without human intervention. Requiring a high
level of flexibility also ensures that we can use techniques in different contexts, such as
when we turn an approach to generate exploits automatically into one that can help
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developers with an initial, automated assessment of a bug’s severity and exploitability.
Finally, we must be aware that improving analysis techniques also comes with risks in
adjacent fields. As we have seen, these risks can be mitigated to minimize the impact
of nefarious use of automated deobfuscation, but this requires research on its own and
awareness in the first place.
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Abstract

Fuzzing has proven to be a highly effective approach to uncover software bugs over the
past decade. After AFL popularized the groundbreaking concept of lightweight coverage
feedback, the field of fuzzing has seen a vast amount of scientific work proposing new
techniques, improving methodological aspects of existing strategies, or porting existing
methods to new domains. All such work must demonstrate its merit by showing its
applicability to a problem, measuring its performance, and often showing its superiority
over existing works in a thorough, empirical evaluation. Yet, fuzzing is highly sensitive
to its target, environment, and circumstances, e. g., randomness in the testing process.
After all, relying on randomness is one of the core principles of fuzzing, governing many
aspects of a fuzzer’s behavior. Combined with the often highly difficult to control
environment, the reproducibility of experiments is a crucial concern and requires a
prudent evaluation setup. To address these threats to validity, several works, most
notably Evaluating Fuzz Testing by Klees et al., have outlined how a carefully designed
evaluation setup should be implemented, but it remains unknown to what extent their
recommendations have been adopted in practice.

In this work, we systematically analyze the evaluation of 150 fuzzing papers pub-
lished at the top venues between 2018 and 2023. We study how existing guidelines
are implemented and observe potential shortcomings and pitfalls. We find a surprising
disregard of the existing guidelines regarding statistical tests and systematic errors in
fuzzing evaluations. For example, when investigating reported bugs, we find that the
search for vulnerabilities in real-world software leads to authors requesting and receiv-
ing CVEs of questionable quality. Extending our literature analysis to the practical
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domain, we attempt to reproduce claims of eight fuzzing papers. These case studies al-
low us to assess the practical reproducibility of fuzzing research and identify archetypal
pitfalls in the evaluation design. Unfortunately, our reproduced results reveal several
deficiencies in the studied papers, and we are unable to fully support and reproduce the
respective claims. To help the field of fuzzing move toward a scientifically reproducible
evaluation strategy, we propose updated guidelines for conducting a fuzzing evaluation
that future work should follow.
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1 Introduction

1 Introduction

Fuzzing, a portmanteau of “fuzz testing”, has gained much attention in recent years, and
the method has proven to be highly successful in uncovering many types of faults in
software systems. Companies such as Meta, Google, and Oracle have invested significant
resources in this technology and use it to test their products. Large software projects
such as web browsers or the Linux kernel incorporate fuzzing into their development
cycle, and Google is running an extensive and continuous fuzzing campaign for more
than 1, 200 open-source projects via OSS-Fuzz [1]. Beyond the wide acceptance in the
industry, a large number of academic papers have proposed numerous improvements
and novel techniques to enhance fuzzing further. More specifically, we found that, over
the past six years, more than 280 papers on fuzzing have been published in the top
computer security and software engineering venues.

A cornerstone of fuzzing research, and science in general, is that other researchers
can critically assess the correctness of scientific results. To this end, the research results
must be reproducible, meaning that another group should be able to obtain the same
results using the same experimental setup, often by using a research artifact provided
by the authors [2]. Reproducibility is paramount for other researchers to understand,
trust, and build on the research results.

To enable high-quality research and provide a common foundation for evaluating
fuzzing methods, several works describe how newly proposed fuzzing approaches should
be evaluated. In 2018, the first and most influential paper describing a reproducible
evaluation design was published by Klees et al. [3]. It describes guidelines to advise
researchers on how fuzzing research should evaluate their respective contributions. For
example, a crucial insight introduced by Klees et al. is the repetition of experiments
to account for the inherent randomness of the fuzzing process. Although Klees et al.
recommend “a sufficient number of trials” and use 30 trials in their own experiments,
we found that in practice, this recommendation is interpreted as anything between
three and 20 repetitions. Another guideline is to confirm the fuzzers’ performance
statistically; however, this makes little sense with few repetitions and is often skipped.

In this work, we systematically review how the recommendations for evaluating
fuzzing methods are implemented in practice and critically evaluate the reproducibility
of fuzzing research. We propose revised best practices for evaluating fuzzing methods
and point out pitfalls that we have observed in practice. In other fields, such work
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has had a significant impact on improving research from a methodological point of
view [4, 5, 6, 7].

We conduct a thorough literature review of 150 fuzzing papers published in presti-
gious A∗ venues—as ranked by CORE2023 [8]—between 2018 and 2023. While we pri-
marily focus on computer security venues, namely IEEE Symposium on Security and
Privacy (S&P), USENIX Security Symposium (USENIX), ACM Conference on Com-
puter and Communications Security (CCS), and ISOC Network and Distributed Sys-
tem Security (NDSS) Symposium, we also examine three software engineering venues:
IEEE/ACM International Conference on Automated Software Engineering (ASE), ACM
Joint European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE), and International Conference on Software Engi-
neering (ICSE). For all papers, we: (i) systematically analyze how evaluations are con-
ducted (in terms of metrics, targets, baselines, reported bugs, etc.), (ii) check whether
common fuzzing guidelines (as outlined by Klees et al. [3] or embodied in implicit
community wisdom, e. g., “do not use artificial bug datasets”) are followed, and (iii) in-
vestigate potential flaws threatening the validity of the respective evaluation.

Following our literature analysis, we present eight case studies of fuzzing papers
across different fields and attempt to reproduce (parts of) their evaluation. For each
case study, we discuss any shortcomings we have identified because they illustrate
potential pitfalls of which researchers should be aware. Note that these case studies
are not intended to point fingers or criticize any particular work. Instead, we aim
to highlight potential challenges that can affect the outcome of a research paper and
explore what aspects need to be considered when designing the evaluation of a fuzzing
method. Based on the findings of our literature review and case studies, we propose
best practices for evaluating future fuzzing methods to enable reproducible research.

In summary, we make the following key contributions:

• We conduct a systematic literature survey of 150 papers published in the past
six years at top venues to assess how fuzzing methods are typically evaluated.

• We attempt to reproduce eight papers to assess the practical aspect of fuzzing
evaluations. In doing so, we identify several obstacles that illustrate (sometimes
subtle) shortcomings of evaluating fuzzing methods.
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• Based on our lessons learned, we provide revised recommendations and best prac-
tices for future fuzzing evaluations.

Supplementary material for this work is available online at https://github.com/

fuzz-evaluator/, including our reproduction artifacts and recommended best prac-
tices for future work (see https://github.com/fuzz-evaluator/guidelines).

2 Fuzzing Evaluation Guidelines

We first provide a brief overview of fuzzing before describing several generally accepted
best practices that guide a typical fuzzing evaluation.

2.1 Background on Fuzzing

Fuzzing, also referred to as fuzz testing, is a dynamic testing technique with the goal
of uncovering bugs in systems. This typically happens by mutating some initial in-
put(s) to the system or by deriving inputs from input specifications such as grammars.
While processing the provided input, the system under test is monitored for interest-
ing behavior. Beyond easily observable faults, such as program crashes, fuzzers can
use more sophisticated bug oracles, such as sanitizers or differential testing. Moreover,
modern fuzzers often use lightweight instrumentation to receive coverage feedback, al-
lowing them to track inputs that executed previously unseen edges. A comprehensive
overview of various fuzzing techniques can be found in the Fuzzing Book [9], and sev-
eral surveys present a comprehensive overview of this topic [10, 11] or open challenges
in this domain [12]. Most fuzzing research proposes an improvement by way of new
techniques, new components, or entirely new fuzzers—few works focus on the theory
behind fuzzing [13, 14, 15, 16].

A fundamental principle of all fuzzers is the inherent inclusion of randomness into
the testing process. Starting from the scheduling order of the process, through the
input and the mutations applied to it, to the fuzzing environment (including functions
such as getpid, time, or rand, or shared resources such as the filesystem), there are
numerous sources of randomness that make deterministic and reproducible execution
challenging.
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2.2 Guidelines of Evaluating Fuzz Testing

The randomized nature of fuzzing needs to be taken into account during the evaluation,
which leads to challenges with reproducibility of research results in practice. Hence, the
seminal paper by Klees et al. [3] outlined several guidelines on how a proper fuzzing
evaluation should be conducted. For a reproducible and fair evaluation, they propose
the following recommendations:

Recommendation 1 – Baseline: A comparison with a relevant and reasonable base-
line is imperative to show what improvement a particular fuzzer provides.

Recommendation 2 – Targets: A relevant sample of targets to compare against is
necessary. This includes benchmark programs with known bugs that can be used as a
ground truth to measure bug detection capabilities.

Recommendation 3 – Setup & Parameters: Due to the inherent randomness of
fuzzing, individual runs with the same configuration can yield significantly different
outcomes. To address this problem, Klees et al. propose repeating the experiment
multiple times. Similarly, fuzzing performance may vary within a single run, so short
runtimes are not appropriate for extrapolating the behavior of a fuzzer over longer
times. They propose 24 hours as a reasonable fuzzer runtime and recommend plotting
the performance over time. Seed sets must be well documented and carefully selected;
ideally, various sets, including the empty or uninformed seed, are tested.

Recommendation 4 – Evaluation Metrics: Ideally, fuzzing evaluations should not
be based on proxy metrics such as code coverage alone, but on a fuzzer’s ability to find
bugs, i. e., the goal for which it was designed. In particular, an evaluation should not
rely on heuristics such as AFL’s coverage profiles or stack hashing. Complementing the
evaluation on bug detection, Klees et al. recommend code coverage in terms of basic
blocks or edges as secondary metric.

Recommendation 5 – Statistical Evaluation: Finally, the fuzzing evaluation should
undergo statistical evaluation to rule out that the observed behavior is by mere chance.
This requires a sufficient number of trials (Klees et al. themselves use 30); then, a sta-
tistical test such as the Mann-Whitney U-test or bootstrap-based methods should be
used to test the null hypothesis that the new method exhibits no difference compared
to a reasonable baseline.
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2.3 Guidelines of FuzzBench

FuzzBench [17], a benchmarking suite for general-purpose fuzzer evaluation developed
by Google, provides several target programs and aims to provide a standardized setup
for fair comparison of fuzzers. FuzzBench is the successor to the Google Fuzzer Test
Suite (FTS) [18]. During their extensive evaluation, the authors made two key obser-
vations that can serve as a guideline for future fuzzing research. First, the performance
of a fuzzer varies significantly depending on the number of initial seeds; running with-
out seeds allows for studying the difference when only a particular fuzzer can solve
some comparisons/branches. Second, using a saturated corpus for fuzzing is not rec-
ommended, as fuzzers are barely capable of augmenting it. Even though this is common
in practice, it is not well suited to discern or measure the performance of fuzzers.

2.4 Guidelines of On the Reliability of Coverage

More recently, Böhme et al. [15] made a number of recommendations based on their
evaluation of the reliability of coverage. In particular, they recommend to use at least
ten representative programs, each tested at least ten times for at least 12 hours (prefer-
ably, each value should be doubled). The selected programs should be real-world pro-
grams, and a bug evaluation should be done on real-world bugs. In addition to bugs,
code coverage should also be evaluated—both using established metrics. In particular,
fuzzer-specific measures such as AFL’s unique paths should be avoided. For compari-
son, authors should choose a suitable baseline, such as the fuzzer on top of which the
new technique is implemented. Authors should consider splitting benchmarks into a
training and validation set to avoid overfitting. To confirm evaluation results, authors
must measure significance and effect size using established techniques. They should
discuss threats to the validity of their evaluation and how they mitigated them. Fi-
nally, authors should carefully document their setup and publish evaluation artifacts
on long-term stable platforms such as Zenodo.

2.5 Fuzzing Benchmarks

Over the years, several standardized benchmarks and platforms to conduct fair and com-
parable fuzzing evaluations have been proposed, e. g., Google’s Fuzzer-Test-Suite [18]
(2016; superseded by FuzzBench), LAVA-M [19] (2016), CGC [20] (2018), Magma [21]
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(2020), FuzzBench [17] (2020), Unibench [22] (2021), ProFuzzBench [23] (2021), and
RevBugBench [24] (2022).

These benchmark platforms aim to measure the performance of general-purpose
fuzzing, except for ProFuzzBench, which focuses on stateful protocol fuzzing. Over-
all, we can distinguish between benchmarks focusing on the comparison of achieved
coverage (Google’s Fuzzer-Test-Suite, Unibench, FuzzBench, and ProFuzzBench) and
those focusing on the bug-finding capabilities of the fuzzing technique (LAVA-M, CGC,
Magma, and RevBugBench). In the latter category, some utilize artificial bug injection
(LAVA-M and CGC), make efforts to port actual vulnerabilities to the latest version of
a program (Magma), or to revert fixes (RevBugBench). Artificial bug injection meth-
ods often introduce shallow bugs that are amenable to fuzzers, and are generally no
longer recommended for an evaluation [17, 24, 25, 26].

3 Literature Analysis

With these guidelines and benchmarks in mind, we now study their adoption to better
understand what best practices are used in fuzzing research. To this end, we perform
a comprehensive literature survey of recent fuzzing papers.

3.1 Method

We examine all fuzzing papers published at the top computer security and software
engineering conferences between 2018 and 2023∗. We include a paper in our analysis if
its focus is on fuzzing, e. g., it proposes a new method or extensively evaluates existing
ones. In contrast, we exclude papers using fuzzers as a means to support their primary
focus, e. g., solely to generate some diverse inputs. We identify 289 candidate papers for
which we collect metadata about the underlying evaluation method, including whether
the paper successfully participated in an artifact evaluation process. We then randomly
select 52% (150) from these 289 papers and manually review them, i. e., study the design
and evaluation of the work in detail. Table 1 shows an overview of analyzed papers.

We investigate whether the fuzzing evaluation guidelines outlined in Section 2 are
followed or whether an evaluation deviates from them. We want to stress that there
∗ For 2023, ASE and FSE have not published the papers at the time of writing. We therefore work

with available preprints.
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Table 1: Overview of analyzed papers. © 2024 IEEE

Year Venue Papers Studied

2023

ASE∗ [27], [28], [29] 3/7
FSE∗ [30] 1/6
ICSE [31], [32], [33], [34], [35] 5/11
CCS [36], [37], [38], [39] 4/9
NDSS [40], [41], [42] 3/4
S&P [43], [44], [45] 3/9
USENIX [46], [47], [48], [49], [50], [51],[52], [53], [54], [55], [56], [57] 12/29

2022

ASE [58], [59] 2/4
FSE [60], [61] 2/6
ICSE [62], [63], [64], [65], [66], [67], [68], [69] 8/17
CCS [70], [71], [72], [73], [74], [75], [76] 7/8
NDSS [77], [78], [79] 3/6
S&P [80], [81], [82], [83], [84] 5/9
USENIX [85], [86], [24], [87], [88], [89], [90], [91], [92] 9/19

2021

ASE [93], [94] 2/6
FSE [17], [95] 2/4
ICSE [96], [97], [98] 3/6
CCS [99], [100], [101], [102], [103], [104] 6/13
NDSS [105], [106], [107] 3/6
S&P [108], [109] 2/7
USENIX [110], [111], [112], [113] 4/13

2020

ASE [114], [115] 2/4
FSE [116], [117], [118] 3/7
ICSE [119], [120], [121], [122] 4/6
CCS [123] 1/2
NDSS [124], [125], [26] 3/4
S&P [126], [127], [128], [129], [130], [131] 6/7
USENIX [132], [133], [134], [135], [136], [137], [138], [139], [140], [141], [142] 11/19

2019

ASE – 0/0
FSE [143] 1/4
ICSE [144], [145], [146], [147], [148] 5/7
CCS [149], [150] 2/3
NDSS [151], [152], [153] 3/4
S&P [154], [155], [156], [157], [158] 5/5
USENIX [159], [160], [161], [162], [163], [164] 6/6

2018

ASE [165] 1/2
FSE – 0/0
ICSE – 0/0
CCS [166] 1/2
NDSS [167], [168] 2/2
S&P [169], [170] 2/3
USENIX [171], [172], [173] 3/3

total #papers analyzed 150/289
∗ limited to available preprints
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may be good reasons to deviate from these guidelines, making a manual review and
judgment on a case-by-case basis mandatory. We also study whether the evaluations
performed expose flaws that future fuzzing papers could avoid.

3.2 Results

We study the papers regarding their reproducibility, targets, fuzzers, evaluation setup
in terms of resources, common metrics, and statistical evaluation.

3.2.1 Reproducibility

A crucial aspect of verifying and advancing science is the ability to reproduce existing
research results. When examining the metadata we collected for all 289 fuzzing papers,
we find that 74% (214) publish the code of their technique, while 23% (66) do not
share their code. Some do not contribute new code, upstreamed their code, or have
not yet released the code (applies to FSE, which will take place after time of writing).
Regarding other data (excluding code), we find that 11% (31) share data, 20 of which
publish data as a substitute because they do not share their code or have no code to
share. All software engineering conferences (ASE, FSE, and ICSE), USENIX Security,
and CCS (since 2023) offer an artifact evaluation process where independent reviewers
assess the published research artifact (for 2023, ASE and FSE have not yet published
this data). Our analysis found that 36% (103) of the papers did not have access to such
an artifact evaluation; 37% (107) had access but opted to not participate or failed to
receive any badge. Only 23% (66) of the papers have one or more badges. Of these,
64 are considered available and 63 functional or reusable, a crucial requirement for
reproduction. USENIX Security and CCS offer to reproduce the results of a paper,
which only 16 out of 57 eligible papers achieved. We emphasize that artifact evaluation
has been introduced only in recent years, but participation is rising. CCS offered artifact
evaluation for the first time in 2023, further supporting this trend.

With 74%, a majority of works releases their code. Despite being relatively new,
60% of the papers already had access to artifact evaluation, with adoption lagging
behind at 23% of papers that obtained a badge.
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3.2.2 Targets under Test

To showcase the strengths of an approach, a suitable set of targets is required. Looking
at the distribution of used targets (excluding datasets) in Table 2, we find that they
are strongly biased towards byte-oriented file formats, especially binutils. On average,
fuzzing papers evaluate on 8.9 targets. In summary, we found 753 different targets
used across all studied papers; of these, 76% (576) were evaluated in only one paper.
In addition to real-world targets, a common way of reproducibly measuring fuzzer
performance is using benchmarks. Figure 1 shows how benchmarks have been adopted
in the past years. In total, 61% (91) of the papers use no benchmark, 17% (26) use
LAVA-M [19], 10% (15) use FuzzBench [17], 8% (12) use Google’s Fuzzer Test Suite
(FTS) [18], 5% (8) DARPA’s CGC binaries (CGC) [20], 4% (6) rely on Magma [21],
and 1% (2) build on Unibench [22] for benchmarking purposes. Despite its success,
LAVA-M is nowadays considered flawed because it artificially injects vulnerabilities
into a given target program that are easy for a fuzzer to find but do not correspond
to real bugs [17, 24, 25, 26]. More recent works using LAVA-M often do so only for
comparability reasons [31, 40]. Similar to LAVA-M, CGC is widely considered outdated
and inadequate.

Real-world targets are often limited to binary input-affine programs, while bench-
marks are not used by the majority of papers. Benchmarks with artificial vulnera-
bilities are still used.

3.2.3 Evaluation against State of the Art

Comparison with a strong set of existing work helps to demonstrate that a new method
is particularly suited to solve a specific problem. Yet, only a few techniques published
in the past few years have been broadly incorporated in follow-up work. Instead, the
most famous fuzzers extended with new techniques are AFL [174] with 30% (45),
AFL++ [175] with 6% (9), libFuzzer [176] with 5% (7), and syzkaller [177] with 4%
(6). Interestingly, all of these tools are non-academic works; only for AFL++ a peer-
reviewed paper has been published [175]. Contrasting this number, 33% (49) of the
proposed tools are not based on any existing tool.

When looking at the fuzzers chosen as baselines for comparison, we find that AFL
is compared against by 35% (53) of studies, followed by QSym [173] with 15% (23),
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Table 2: Targets fuzzed in five or more analyzed papers (excluding benchmarks). Some papers
report generically to evaluate on binutils, while others specify exact targets, such that numbers
in practice may differ slightly. © 2024 IEEE

#Uses Target

25 objdump, readelf
20 nm, tcpdump
19 libpng
17 libtiff
13 cxxfilt, jhead, libjpeg
12 libxml2
11 nasm
10 jasper, libming, openssl, size
9 file, ImageMagick, mjs, tiff2pdf
8 djpeg, exiv2, JavaScriptCore, libarchive, SQLite, v8, xmllint
7 ChakraCore, ffmpeg, harfbuzz
6 binutils, lcms, lrzip, mupdf, OpenJPEG, SpiderMonkey

5
bento, bsdtar, catdoc, cflow, curl, freetype2, GraphicMagick,
json, pcre2, proj4, strip, tiff2ps, yara, zlib

AFLFast [178] with 14% (21), Angora [179] with 13% (20), FairFuzz [165] with 8%
(12), and AFL++ with 9% (14). From the 150 papers we analyzed, only QSym (2018),
FairFuzz (2018), and MOpt [164] (2019) have been chosen by more than five follow-up
works for comparison. More recently, only Fuzzilli [41] (published 2023, open-sourced
early 2019) was used by multiple works for their evaluation, even before the paper was
published. This does not account for techniques replicated in AFL++ or LibAFL [72],
which reimplement many successful techniques proposed [153, 164, 178, 180]. On aver-
age, a fuzzing paper evaluates against 3.2 other fuzzers.

Analyzing whether papers omit comparing against a relevant fuzzer in their evalu-
ation, we find that 20% (30) of the works ignore at least one relevant state-of-the-art
method and 3% (4) even omit comparing against their baseline, i. e., the tool on which
they base their own fuzzer.

45% of fuzzing research builds on top of non-academic fuzzers, 33% build a new
tool. 23% percent of fuzzing evaluations fail to compare against relevant state-of-
the-art fuzzers or their own baseline.
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Figure 1: Benchmark usage over the years. The numbers in brackets represent the number
of papers analyzed for the respective year. Note that some papers use multiple benchmarks,
hence the numbers do not add up. © 2024 IEEE

3.2.4 Evaluation Setup

With respect to the evaluation setup, we analyze the runtime, the number of CPU
cores assigned, whether all resources were allocated fairly, and the seeds used for the
experiments.

Runtime. Reviewing the experiment setup used across fuzzing evaluations, we find
that the majority of papers uses a runtime of 24h, more precisely 56% (84) of the
papers run at least one experiment for 24 hours. As Figure 2 outlines, only 27% (40)
of the works use a runtime of less than 23 hours, while 29% (44) use an even higher
runtime. 5% (8) do not specify their runtime or have no own experiments measuring
time.

CPU cores. In terms of CPU cores assigned to fuzzers, we find an inconsistent
picture, with a significantly varying number of CPU cores used. The most common
result was that 25% (38) of the papers did not specify how many CPU cores they used,
27% (40) used one core, and 8% (12) used two cores.

Fair computing resources. When checking whether the available computing re-
sources were allocated fairly (e. g., the same number of cores were allocated to each
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Figure 2: Distribution of runtimes used in practice and cumulative distribution function
(CDF), which shows that 27% of papers use a runtime of less than 23 hours. 26 papers use
multiple, different runtimes; we include all in these cases. © 2024 IEEE

fuzzer and they were run for the same amount of time), we find that this is the case
for 74% (111) of the works. For 15% (23), we could not infer this information from
the description in the paper, and 5% (8) did not evaluate other fuzzers or did not
conduct any experiments where this was an issue. Crucially, 5% (8) unfairly allocate
resources, giving one fuzzer an advantage over another. For these 8, we found one be-
nign case in which an existing method was given more resources, one case in which the
number of executions was fairly distributed rather than the runtime (thereby giving
slow fuzzers an advantage), two cases in which a different number of cores was used
(in one case, giving the new fuzzer twice the cores than others), and four cases where
the new approach was allowed some preprocessing time, e. g., for some static analysis
pass or seed preprocessing, before it was then allotted the same time as all other tools,
effectively giving it more computation time. Unfortunately, the authors rarely explain
their motivation for doing so, nor do they consider consequences for the evaluation.
Also, our analysis does not address manual work, which may be distributed unfairly
between different fuzzers, for example, giving one fuzzer a fine-tuned configuration that
performs better.

Initial seeds. Another crucial factor determining a fuzzer’s performance is the set of
initial seeds [3, 181]. We studied if the type of seeds is specified and if information on
concrete seed files is available. Out of the 150 papers, 11% (16) require no seeds, 25%
(38) use uninformed or empty seeds, 20% (30) use informed seeds, 16% (24) use seeds
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provided by the project as test cases or those that are shipped with a benchmark, and
3% (5) use multiple types of seed sets, while 25% (37) do not specify at all what type
of seeds are used, making a reproduction challenging. Regarding concrete details, we
find that 50% (75) of the papers fail to disclose what seeds they use, compared to 39%
(59) that outline their seeds. A further pitfall potentially threatening an evaluation’s
validity is the fair distribution of the same seeds to all fuzzers. While this is the case in
46% (69) of the studied papers, in 30% (45) of the works this does not become clear,
and 5% (8) even use diverging seed sets. Three of these cases arise due to the fuzzer
design or other fuzzers lacking the capability to process a particular type of input. We
stress that this may be valid, for example, when a fuzzer used for comparison needs
a larger seed set than the proposed fuzzer, yet giving a fuzzer a different set of seeds
requires special attention and documentation.

We find that 5% of the papers allocate computing resources unfairly, and 5% use
different seed sets.

3.2.5 Evaluation Metrics

While many different metrics exist, often specific to the particular technique introduced,
a small number of metrics has found widespread adoption: 77% (115) of the papers use
some sort of code coverage, and 71% (107) use the (re-)discovery of bugs as a metric
to compare fuzzers. The third most widespread metric, Time-To-Exposure (TTE), is
used by 13% (20) of the papers, mainly from the directed fuzzing domain.

Code Coverage. Code coverage comes in different forms; the most popular are the
following: 19% (29) of the papers use branch coverage, 17% (25) employ edge coverage,
13% (19) rely on basic block coverage, and 5% (8) use line coverage on the source
code level. Furthermore, 11% (17) use some notion of paths to measure coverage. We
stress this metric is unreliable without a definition of what the paper considers a path.
Differences exist, for example, between actual program paths and AFL’s path metric,
requiring any paper to specify what they consider a path for their work. Beyond the
type of coverage, the process of measuring coverage is also prone to errors, and the
concrete choice of measurement is often not documented. In total, we find that 45%
(67) of the works lack a clear definition or explanation of how they measure coverage,
whereas 32% (48) document this (the remaining papers do not measure coverage). For
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example, measuring coverage using a binary with instrumentation that not all fuzzers
had access to during the fuzzing campaign gives some fuzzers an advantage. Similarly,
when measuring coverage on a bitmap with collisions, the reported coverage is up to 9%
smaller [182] than the true one. This may cause problems when a different bitmap size
was used during fuzzing, as the inputs saved by a fuzzer may no longer trigger the new
coverage on the bitmap with collisions. A further pitfall affects emulation-based fuzzing,
especially when using QEMU [183]. We observed that papers often provide no clear
distinction between translated blocks as presented by the emulator and actual basic
blocks for the target binary. We found that in at least one case this led to overcounting
the reached coverage, as translated blocks were mistaken for basic blocks.

Known Bugs. As research from Klees et al. [3] as well as Böhme et al. [15] points out,
coverage may not be an accurate proxy for bug finding, even though a strong correlation
exists. Ultimately, a fuzzer’s goal is finding bugs, making the evaluation of whether it
can find known or unknown vulnerabilities an excellent experiment. Known bugs are a
good way of measuring a fuzzer’s performance, yet it is difficult to find suitable bugs
outside well-designed benchmarks, such as Magma [21] or RevBugBench [24].

New Bugs / CVEs. Another commonly used approach is the capability of finding
previously unknown bugs. Ethical handling requires researchers to responsibly disclose
these bugs to the vendors or maintainers. Both sides can additionally request a CVE
that serves as a unique identifier for the found vulnerability. In practice, CVEs have
become a commonly used metric to assess whether a fuzzer can find bugs in real-world
software, presumably showing its impact. Of the 150 analyzed papers, 59 claim one or
more CVEs (9.7 on average, 662 in total). Given the implicit expectation of submissions
to have a real-world impact, the authors often try to obtain as many CVEs as possible.
We randomly selected 35 of these papers [29, 31, 37, 44, 47, 48, 50, 57, 59, 61, 62, 67,
69, 88, 90, 91, 93, 103, 104, 105, 109, 113, 120, 129, 133, 135, 139, 144, 148, 156, 160,
164, 172, 184, 185] and analyze the 339 CVEs they claim (51% of all CVEs claimed
across the 59 papers).

As Figure 3 shows, surprisingly, only 43% (145) of the CVEs are valid (i. e., neither
formally disputed, reserved, nor ignored or rejected by the project maintainers) and
have been fixed (or at least acknowledged). 26% (88) of the CVEs were still marked as
RESERVED, preventing us from viewing and analyzing them (all of them were assigned
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Reported: 339

Acknowledged:145

Invalid: 37

Reserved: 88

Ignored: 69

Reserved: 88

Fixed: 143

Unfixed: 2

Other / Unknown: 55

Project inactive: 14

Bug rejected: 17

Duplicate: 18

Disputed: 1

Wrong CVE ID: 1

Figure 3: Outcome of 339 CVEs that were reported across 35 papers. Only 43% of the CVEs
have been acknowledged by the developers. Pending public disclosure, information on CVEs
in the Reserved state is withhold. © 2024 IEEE

before 2023). For such CVEs and depending on the assigning authority (called CNA),
authors usually have to follow up with the CNA to unblind them once the vulnerabilities
are publicly disclosed. Our analysis found 11% (37) of invalid CVEs, including both
CVEs that were formally disputed or rejected as duplicates by the assigning CNA,
such as Mitre, and such CVEs where the maintainer of the project considered the
report to be invalid or not a bug. In one case, the CVE ID specified in the paper
did not match the target, leading us to believe the authors mistakenly reported the
wrong number. Three CVEs were claimed by more than one paper, raising questions
about who identified and reported them initially. A larger number, 20% (69) of the
CVEs, have been ignored by the maintainers of the respective projects. Investigating
this, we found that in 14 cases, the projects were abandoned several years before the
bug was found, or the projects had not found widespread adoption (with a single digit
number of stars and forks on GitHub). In these cases, the perceived need to report
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many vulnerabilities in a paper appears to be the driving factor in requesting a CVE
for such bugs.

Studying why some bug reports were ignored while other bugs were fixed, we found
that maintainers tend to ignore issues such as memory leaks in client-side software, for
example, an assembler. The reasoning appears to be that the program does not run
continuously and is not exposed to external attackers. Many of the ignored CVEs were
segmentation faults in mjs or yasm. The bug tracker of mjs appears to be flooded with
similar fuzzer-generated bug reports, while the project has not received an update
for two years. Similarly, the maintainer of yasm has moved to other projects, only
occasionally merging pull requests. As security researchers usually only drop the bug
details without proposing a patch, these issues remain unfixed. While studying papers,
we noticed that several papers claim a specific number of CVEs credited to their work
but do not specify any identifier, making it difficult to track them. Interestingly, 18
of the 35 papers report only CVEs that all have been fixed, accounting for 67 of the
CVEs.

In summary, the need to show a fuzzer’s real-world impact results in a large number
of unwarranted CVEs, leading to a situation where only 42% (143) of the 339 assigned
CVEs are valid and have been fixed, while many are what one maintainer referred to as
“fuzzer fake CVEs” [186]. Creating such invalid vulnerabilities causes multiple problems:
It unnecessarily alerts people, reduces maintainer acceptance of fuzzer findings, and
raises the expectations for subsequent papers to find a similar number of vulnerabilities.

20% of the CVEs have been ignored and remain unfixed, 11% are invalid. 26% are
reserved, eluding analysis.

3.2.6 Statistical Evaluation

To confirm the results obtained in the evaluation, a statistical evaluation is highly
recommended [3, 187] to detect whether the observed difference is significant or by
chance. In practice, the most common approach is to compare the final coverage values
achieved by different fuzzers across multiple runs.

In general, a frequently used test for the comparison of the means of two sample
sets—such as the coverage values of two fuzzers operating on the same target—is the
t-test. While powerful for the detection of differences, it requires strong assumptions.
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In particular, the samples have to be approximately normally distributed. This is par-
ticularly true for small sample sizes, such as n ≈ 10. To avoid these strong assumptions,
the Mann-Whitney or the similar U-test (called Mann-Whitney U-test to emphasize
their equivalence subsequently [188]) is often used. Here, the two samples are assumed
to have the same unknown distribution except for a potential shift. The test statistics
for the Mann-Whitney U-test is mainly based on the sum of ranks of the two samples in
the joint sample. This results in a test for the difference of distribution medians, which
is rather robust w.r.t. assumptions that do not hold. For a more detailed discussion of
such tests, we refer to Sachs’ work [188].

However, the Mann-Whitney U test can have low power, especially for small sample
sizes. Suppose, for example, that we have two samples of three runs that achieved the
following coverage:

x = (1000, 1002, 1001), y = (1208, 1207, 1205)

As is easy to see, these samples are strongly separated, and it is hard to explain these
results assuming the similarity of the samples’ distributions. Yet, the Mann-Whitney
U test will not reject the hypothesis of no difference for a significance level α = 5%.
Even worse, it will never reject samples of this size, since it only uses the ordering of
the observations, and the probability of two samples of size 3 generated from the same
distribution to show this pattern of full separation on the real line has a probability
> 5%. In other words, we cannot use the Mann-Whitney U test to statistically confirm
that the difference between two fuzzers is significant if only three trials have been
conducted. Such situations frequently arise if sample sizes are small or observations
cannot be approximately described by a parametric distribution that depends only on
few parameters, such as a normal distribution.

In summary, a statistical evaluation should use a sufficient number of trials, ideally
10 or more, and use a robust test. Studying the trials used in the 150 analyzed papers,
we find that 1, 3, 5, 10, or 20 trials are the most common repetitions chosen. Figure 4
provides a detailed distribution. Overall, 55% (83) of the papers use fewer than 10
trials in at least one experiment (8 papers use a different number of trials throughout
their paper). Even worse, 63% (94) conduct no statistical test at all. Only 37% (55)
of the papers run a Mann-Whitney U test to measure statistical significance, which—
paired with few trials—risks that it may never reject the hypothesis. We find that
15% (22) of the analyzed papers conduct a Mann-Whitney U-test while having five or
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Figure 4: Distribution of trials used in practice and cumulative distribution function (CDF).
8 papers use a different number of trials for different experiments; we include all numbers in
this case. Further 21 papers fail to specify the number of trials. © 2024 IEEE

less trials. One work reports p-values without specifying how they have been derived.
Interestingly, we found no other tests, such as bootstrap-based ones, being used, despite
being recommended by Klees et al. [3]. Beyond measuring statistical significance, it is
recommended to quantify the effect size, for example, using Vargha and Delaney’s Â12

test [189]. Yet, we find that only 10% (15) of studies conduct this test; 2% (3) rely on
other means to specify the effect size, leaving us with 88% (132) not using any test to
measure the effect size.

Beyond the use of statistical tests, we find that 73% (109) of the papers provide
no measure of uncertainty, for example, intervals in coverage plots or the standard
deviation. This makes it difficult to assess the robustness of reported results, especially
considering the inherent randomness in fuzzing runs.

63% of the works use no statistical test to assess their results, and 15% use too few
trials to achieve robust outcomes. 73% provide no measure of uncertainty.

3.2.7 Threats to Validity

Scientific works often use a dedicated section on threats to validity to enumerate, reflect,
and address any issue that could potentially render their evaluation invalid. However,
when studying how many of the 150 analyzed papers provide such a section, we find
that only a minority of 20% (30) of the papers does so.
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4 Artifact Evaluation

Beyond studying the evaluation outlined and described in the papers, we select eight
papers and study their artifacts. This allows us to assess the practical reproducibility
of fuzzing research and provide recommendations grounded in practice. As selection
criteria, we pick four recent papers from 2023 and focus on security venues featuring an
artifact evaluation. In our experience, papers undergoing an artifact evaluation process
provide enhanced documentation and significantly ease the process of setting up a
particular tool. However, we test papers that have not undergone artifact evaluation
as well to gain a more complete picture. Note that all papers we chose as case studies
had attracted our attention during the initial reading for the literature survey in terms
of evaluation setup or execution.

In the following, we discuss our lessons learned, pitfalls, and how fuzzing artifacts can
be further improved to enhance their reproducibility. Again, we emphasize that it is not
our intention to point fingers at specific works but rather to highlight potential pitfalls
that researchers in this area should be aware of. More information on all case studies
is available in dedicated reproduction repositories on GitHub: https://github.com/
fuzz-evaluator/. Despite our best efforts, our reproduction may contain errors. If
we become aware of any, we will update the respective reproduction repositories on
GitHub.

Author Contact. We have anonymously contacted the authors of all case studies and
brought up our findings for discussion with them, asking for their help, confirmation, or
clarification. Five groups have responded to our mails. Where desired by the authors,
we publish a statement of them alongside our reproduction artifact.

Setup. All our experiments were performed on two servers running Ubuntu 22.04 with
196 GB RAM, one with an Intel Xeon Gold 6230R CPU with 52 cores at 2.10GHz,
and the other with an Intel Xeon Gold 6230 CPU with 40 cores at 2.10GHz (for
consistency, a case study was fully run on one type of server or the other). We use the
settings provided by the original papers where sensible, otherwise we run 10 trials for
24 hours each, restricting each fuzzer to a single core.

107

https://github.com/fuzz-evaluator/
https://github.com/fuzz-evaluator/


A SoK: Prudent Evaluation Practices for Fuzzing

4.1 Case Study: Artificial Runtime Environment and Unique

Crashes

Our first case study is MemLock [120], published at ICSE’20, which proposes to use
memory usage as additional feedback. This way, the paper aims to identify resource
exhaustion bugs, such as stack exhaustion.

Artifact status. MemLock has undergone artifact evaluation and received the avail-
able and reusable badges. Our additional experiments can be found at https://

github.com/fuzz-evaluator/MemLock-Fuzz-eval.

Observations. After studying the paper and artifact, we observe the following:

1. According to the artifact but not documented in the paper, the authors artificially
alter the runtime environment of one target and lower the maximum stack size.
Manually limiting the stack size makes it easier to trigger stack overflow bugs,
one of the declared goals of the presented technique.

2. MemLock, similar to many other fuzzing papers, relies on unique crashes as re-
ported by AFL to draw conclusions on the fuzzer’s performance. This metric is
generally unreliable since a unique crash depends on the set of exercised edges;
it does not reflect the number of actual bugs. Here, MemLock’s use of the call
stack depth as additional feedback may lead to an inflated number of “unique”
crashes per root cause.

3. To demonstrate practical impact, MemLock reports 26 CVEs. We found multiple
cases among them where up to five CVEs were requested and assigned for a single
bug report, to which none of the maintainers responded.

4. MemLock’s artifact is based on PerfFuzz [190] (itself an AFL-derivative), but the
paper suggests it is based on AFL.

We design three experiments to analyze and reproduce MemLock’s performance. For
full details, we refer the interested reader to our reproduction artifact.
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Experiment 1: Artificial Runtime Limits. We first study the impact of artifi-
cially lowering the stack size for the target flex, which was not documented in the
paper. After recreating the setup and running the fuzzing campaign with and without
the artificial limit, we observe that MemLock finds the claimed crashes only with the
artificially lowered limit. While memory corruption bugs may warrant discussing artifi-
cial scenarios, we believe memory exhaustion created through artificial limits cannot be
considered realistic. In any case, we recommend documenting such limits in the paper.

Experiment 2: Unique Crashes. We investigate whether superiority claimed due
to unique crashes persists when examining the underlying bugs and root causes. Using
a developer patch and manual triaging, we identify the underlying bugs for three eval-
uation targets and find that AFL finds four bugs, while MemLock locates only three,
even though it finds significantly more unique crashes.

Experiment 3: Reported CVEs. When studying the reported vulnerabilities, we
noticed that six CVEs, CVE-2020-36370 to CVE-2020-36375, refer to the same bug in
mjs. This bug was never acknowledged by the maintainers of mjs. This pattern repeats
for other groups of CVEs.

Lessons learned: Unique crashes are not a reliable metric; instead, we suggest
using (known) bugs. We recommend not using artificial runtime environments with-
out good reason and, if done, documenting such limits. We strongly recommend
against the practice of obtaining as many CVEs as possible. Real-world impact
should not be measured based on the number of assigned CVEs.

4.2 Case Study: Exaggerated Vulnerabilities

For the next case study, we selected SoFi [103], published at ACM CCS’21. This work
aims to use a reflection-based analysis to create a syntactically and semantically valid
but diverse set of seeds for fuzzing JavaScript engines.

Artifact status. Artifact evaluation was not available for SoFi, but the authors re-
leased the source code via an independent web page [191]. While trying to set up
the artifact, we noticed that crucial parts of the source code were missing. The authors
stated they would release the missing pieces once the code is polished [191], but did not
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react to our e-mails asking for access to the code. Without a chance to reproduce the
artifact, we solely studied the paper, in particular the reported vulnerabilities summa-
rized in Table 2 of their paper, entitled “Summary of discovered vulnerabilities” [103].

Observations. We find that all seven vulnerabilities claimed in the actively used
modern browser engines (i. e., v8, SpiderMonkey, and JavaScriptCore) are invalid and
have been rejected by the respective developers, six out of seven even before the con-
ference submission deadline. While SoFi manages to find confirmed vulnerabilities in
other programs, we believe it is important to not oversell results by claiming to have
found vulnerabilities in browser engines, when in fact they were not a bug at all. We
assume that the bug report IDs were blinded, as is common practice for submission,
such that the reviewers could not verify the validity of the presumed vulnerabilities.

Lessons learned: We highly discourage marketing invalid bug reports as a vul-
nerability. Feedback from the developers must be taken into account (especially
if bug reports are rejected by the developers). Pledges to release the source code
should be kept.

4.3 Case Study: Missing Baselines

DARWIN [40] was published at NDSS’23 and honored with a Distinguished Paper
Award. The paper focuses on improving mutation scheduling. More specifically, the
authors propose to use an evolution strategy and dynamically adapt the mutation
selection to the target under test.

Artifact status. Artifact evaluation was not available to DARWIN, but the authors
publicly released an artifact. Our reproduction artifact is available at https://github.
com/fuzz-evaluator/DARWIN-eval.

Observations. Analyzing the paper and artifact, we found a number of issues:

1. Coverage differences between DARWIN and tested baselines on FuzzBench are
not statistically significant nor consistent with the paper’s FuzzBench results.
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2. The results on MOpt [164] listed in the DARWIN paper indicate that the port
implemented for MOpt may have erroneously restricted the number of usable
mutations. We find that this strongly influences the results.

3. The artifact appears to be based on Git tag 2.55b of Google’s AFL fork and not
2.54b, as listed in the paper.

4. The artifact does not provide the AFL 2.55b port for MOpt or their baseline
AFL-S, preventing reproduction or analysis.

We design three experiments to analyze DARWIN. More experiments and details are
available in our artifact.

Experiment 1: Coverage. We use FuzzBench to reproduce DARWIN’s coverage
measurements (in particular, Table III of their paper). Running all targets for 24 hours,
we compare it against AFL 2.55b and MOpt, which is based on AFL 2.52b. Notably, we
do not use DARWIN as configured in FuzzBench but follow the author’s recommended
configuration (see Experiment 3). In our FuzzBench results, MOpt does not show the
major performance degradation shown in the paper results. Overall, FuzzBench ranks
DARWIN above MOpt and AFL, both by score and rank. In individual targets, DAR-
WIN is the best performer in nine of the targets, but only with statistical significance
in four. Our results show the difference between DARWIN and its baselines to be less
than reported in Table III of their paper. Where they find DARWIN’s median relative
coverage to be the highest for 15 out of 19 targets, we find this to be the case for 4 out
of 18 targets† (DARWIN is worse than at least one baseline in two cases and tied with
at least one baseline in the other cases). Note that the original paper evaluates over
a six hour period instead of the 24 hours recommended by Klees et al. [3]. While we
provide the statistical data for the 24 hour data here, we emphasize that the results
reported in the paper for the six hour mark are similarly not reproducible and invite
the reader to view our full evaluation report data available on GitHub.

In summary, our results show a similar tendency to their paper, but the difference
observed between DARWIN and its baselines is smaller. Notably, DARWIN reports
a coverage improvement of only 1.73% over AFL, making it difficult to judge the
difference between these fuzzers meaningfully.

† FuzzBench has meanwhile removed the target php.
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Table 3: Comparing the code coverage reported by FuzzJIT to our measurements. © 2024 IEEE

Reported Measured
Engine Fuzzilli FuzzJIT Rel. Increase Rel. Increase

JSC 16.47% 21.90% 33% -2%
V8 13.82% 16.67% 21% -3%
SM 15.53% 17.97% 16% -12%

Experiment 2: New Baseline. We propose a second baseline to test DARWIN’s
contribution of a dynamically adapting mutation selection: we replaced its proposed
weighting with a random selection (that is reweighted at a constant interval). This
implementation, DARWINRAND, provides a new baseline that allows to better judge
DARWIN’s contribution, as any improvement can be directly attributed to DARWIN’s
evolutionary algorithm rather than other fuzzer implementation details, such as dy-
namically adapting mutation selection. We find in our FuzzBench results no statistical
significant difference between DARWIN and DARWINRAND, meaning we were unable
to demonstrate that the evolutionary aspects of DARWIN’s approach significantly con-
tributed to the improvement compared to randomly changing mutation selection over
time.

Experiment 3: Per-Seed Mutation Scheduling. After contacting the authors,
they noted that the per-seed mutation scheduling (-p flag) set by FuzzBench should
be disabled for the evaluation because it worsens performance and was not intended as
part of the paper. To confirm this, we separately evaluated DARWIN with and without
per-seed mutation scheduling on seven targets: we found that disabling the per-seed
mutations slightly improved performance overall, leading to higher median coverage in
some targets, but not statistically significantly so for any target by Mann-Whitney U.
We have used the author-recommended configuration (no -p flag) for Experiments 1
and 2.

Lessons learned: A baseline suited to test the proposed technique is necessary
to detect differences that can be attributed to the proposed technique rather than
the new fuzzer implementation as a whole. We further recommend publishing all
evaluation artifacts, also including benchmarking reports and raw data.
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Table 4: Comparing the semantic correctness rate reported by FuzzJIT to our measurements.
© 2024 IEEE

FuzzJIT Fuzzilli
Engine Reported Measured Reported Measured

JSC 90.33% 65.88% 62.80% 66.56%
V8 97.04% 63.67% 64.34% 66.74%
SM 93.28% 63.93% 64.13% 67.47%

4.4 Case Study: Non-reproducible Measurements

A recent paper published at USENIX’23, FuzzJIT [55], aims to detect bugs in JIT
compilers, including those used in modern browsers.

Artifact Status. FuzzJIT underwent artifact evaluation and was awarded the avail-
able and functional badges. Our reproduction artifact can be found at: https://

github.com/fuzz-evaluator/fuzzjit-eval.

Observations. After studying the paper and testing the artifact, we observe several
shortcomings:

1. Coverage does not reproduce as outlined in the paper; in our experiments, Fuz-
zJIT performed worse than Fuzzilli on all targets.

2. Reported improvements of the semantic correctness rate did not materialize in
our experiments.

3. It is not possible to study the bugs found because the time frame, engine versions,
and resources spent were not specified in the paper, hindering fair reproduction.

We design two experiments to analyze the claims of FuzzJIT in more detail.

Experiment 1: Code Coverage. When trying to reproduce code coverage, we find
significantly different results. As shown in Table 3, FuzzJIT reports a code coverage
improvement of up to 33% over Fuzzilli. In stark contrast, our experiments show a
code coverage decrease of -2% to -12%. Despite searching for the cause, we find none
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explaining this difference. We speculate that the negative outcome of the comparison
experiment is a consequence of benchmarking with different versions of Fuzzilli. This is
based on the observation that the state-of-the-art fuzzers compared to in the evaluation
are taken from UniFuzz [22], which uses an outdated version of Fuzzilli; FuzzJIT itself
is based on a more recent version of Fuzzilli. Unfortunately, the authors have not
responded to our request for help.

Experiment 2: Semantic Correctness Rate. Besides code coverage, FuzzJIT also
evaluates the semantic correctness rate of generated samples, i. e., the number of sam-
ples that do not raise an uncaught exception during execution in the JS engine. As
shown in Table 4, we could not measure any improvement of the semantic correctness
rate, contrasting the paper’s claim of a significant improvement.

Lessons learned: Relying on outdated baseline versions can create a distorted
picture of a fuzzer’s performance. Authors should ensure that they use the latest
version of all tools for comparison.

4.5 Case Study: Uncommon Metrics

Published at USENIX’20, EcoFuzz [133] proposes to replace AFL’s seed scheduling
algorithm with a version relying on the adversarial multi-armed bandit model. This
way, EcoFuzz finds more paths while generating less seeds.

Artifact status. EcoFuzz has undergone artifact evaluation and was awarded the
passed badge, indicating that the artifact is available and ready to be reproduced. Our
independent reproduction repository is located online at https://github.com/fuzz-
evaluator/EcoFuzz-eval.

Observations. When studying the paper and artifact, we noticed that the evaluation
deviates from typical fuzzing evaluations: The work does not report achieved code
coverage over time. Instead, the paper visualizes the total number of paths discovered
over executions. This aligns with the paper’s goal of finding more path (bandits in
EcoFuzz’s multi-armed bandit model) with fewer executions (trials in the model). The
presented results may lead readers to infer that a higher number of total paths equates
to higher code coverage, which is not necessarily true.
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Figure 5: The upper two graphs published in the EcoFuzz paper [133] show a strong advantage
over all competitors on the non-standard metric number of totals paths over the number of
total executions. The two plots at the bottom compare EcoFuzz on the standard metric branch
coverage over time. On the standard metric, EcoFuzz performs significantly worse. © 2024 IEEE
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Experiment: Code Coverage. We design an experiment in FuzzBench where we
compare EcoFuzz against its best-performing competitor, AFLFast, and its baseline,
AFL. We test these fuzzers on three targets, nm, libpng, and objdump, where the orig-
inal evaluation‡ found EcoFuzz to be the fuzzer to find the most paths. Our results,
shown in Figure 5, demonstrate that EcoFuzz achieves less code coverage than the
other fuzzers in all scenarios, except for a statistically insignificant one, where it per-
forms similar to AFLFast on libpng. This underlines that finding more paths does not
necessarily translate to achieving a higher coverage. The full results and the generated
FuzzBench reports can be found in our reproduction repository.

Corresponding with the authors, they state they have been following fuzzing evalua-
tions at the time that focused on path coverage, and they have confirmed that EcoFuzz
may cover fewer branches on some binaries, stating that its goal is to optimize for paths
over executions rather than branches over time.

Lessons learned: A fuzzer may excel at one metric but not on another; hence,
selecting a suitable set of evaluation metrics is crucial to provide a reader with
the full picture. Evaluating on established metrics is required, as new metrics may
imply a completely different picture.

4.6 Case Study: Unclear Documentation

Another paper published at USENIX’23, Polyfuzz [57], targets programs containing
code in different languages, such as interpreter languages calling into native bindings.

Artifact status. PolyFuzz has been awarded the available badge. Our reproduction
artifact is available at https://github.com/fuzz-evaluator/PolyFuzz-eval.

Observations. While studying the artifact, we noticed irregularities regarding the
seed sets used by PolyFuzz compared to the other fuzzers. An example of such a case
is the image_load harness for the Python image processing library Pillow. In this
particular case, the fuzzer Atheris gets 39 seed files, while PolyFuzz’s seed directory
has 58 files.
‡ The evaluation used readpng, which internally uses libpng, while we use libpng_read_fuzzer as

bundled with FuzzBench.
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Experiment: Fair seed allocation. We intended to run both fuzzers with their
respective seed sets to measure the impact of these different seed sets on the coverage.
Unfortunately, the authors’ extension of Atheris (called Atheris-Cext in the PolyFuzz
paper), which would allow to compute combined coverage for both Python and the
native code, was not released alongside their artifact. Hence, as proxy measurement,
we compute the initial coverage achieved by PolyFuzz on both seed sets. For the seed
set given to Atheris, PolyFuzz covers 218 edges, while for its own seed set, it covers
814 edges. Evidently, one seed set provides more than three times as much coverage as
the other, giving PolyFuzz a headstart during the evaluation.

When contacted, the authors clarified that they did not keep the seed sets from
their evaluation, but they assured us that they used the seeds from the corresponding
benchmarks for all fuzzers.

Lessons learned: Seeds have an impact on fuzzer performance. We recommend
to give all fuzzers the same set of seeds and to publish the seeds used.

4.7 Case Study: Incomplete Artifact

Firm-AFL [161], published at USENIX Security’19, aims to fuzz Linux-based IoT
firmware via augmented process emulation. To do so, the core fuzzing loop targets
a single binary under user-mode emulation, while selectively forwarding system calls
to a full-system emulator.

Artifact status. Artifact evaluation was not available to Firm-AFL, but different
versions of its source code are publicly available across multiple repositories. Our re-
production artifact is available at https://github.com/fuzz-evaluator/firmafl-

eval/.

Observations. During our analysis of the artifact, we noticed that the repository
lacks documentation. Crucial steps are missing, like correct build instructions for dif-
ferent configurations, making it hard for researchers to reuse the artifact and set up the
fuzzer and its environment correctly. Furthermore, when setting up the experiments,
we noticed that some of the experiment configuration files were missing and target
harnessing is heavily inlined with core emulation logic. Not only do these issues hinder
extensibility, but they also prevented us from getting all targets working to reproduce
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the Firm-AFL experiments. The fuzzer binaries are shipped in a pre-compiled binary
version and fail to build from the provided source code. Moreover, the provided baseline
uses an older version of AFL (2.06b), while the augmented mode uses AFL v2.52b.

Experiment: Crash Triggers. Being the only experiment with enough documen-
tation to reproduce, we aim to measure the number of crashes produced by both the
augmented and full-system emulator versions. We were able to run fuzzing campaigns
for 9 out of 11 targets, where one of them only ran for the baseline and not Firm-AFL.
The remaining two targets lack the required target-specific configurations. Unfortu-
nately, we could only partially reproduce the claims as presented in the Firm-AFL
paper and observed one case where the baseline performed better than Firm-AFL. The
full results of our experiments can be found in our reproduction repository.

Lessons learned: While it is unreasonable to expect each academic artifact to be
of production quality, we recommend to strive for a reasonable level of readabil-
ity and documentation that allows others to understand and use the code, thus
promoting reproducibility.

4.8 Case Study: Unfair Coverage Measurements

The final case study analyzes FishFuzz [48], published at USENIX’23. The paper pro-
poses an input prioritization strategy based on a multi-distance metric that allows for
optimizing the fuzzing efforts towards thousands of targets (e. g., sanitizer labels) in
the sense of direct fuzzing.

Artifact status. FishFuzz has received the available and functional badges. Our ad-
ditional experiments are available at https://github.com/fuzz-evaluator/FishFuzz-
eval.

Observations. When studying the artifact in detail, we notice that FishFuzz’s way of
measuring coverage may erroneously give FishFuzz an unfair edge. From all evaluated
fuzzers, FishFuzz was the only fuzzer to place coverage instrumentation not only within
the actual target but also in the added ASAN instrumentation. Consequently, FishFuzz
also stored inputs that exercised new coverage in the instrumentation; other fuzzers
discarded these inputs, as no new coverage was observed. This became a problem
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when the binary instrumented by FishFuzz was used for coverage measurements for all
fuzzers during evaluation since—by design—only FishFuzz would keep inputs exercising
coverage in the ASAN instrumentation.

Experiment: Fair coverage measurement. To demonstrate the impact of mea-
suring coverage in instrumentation code, we measure the coverage for a binary both
with and without FishFuzz instrumentation. The result is depicted in Figure 6. If the
FishFuzz coverage binary is used for coverage computation, FishFuzz covers 8.44%
more edges on average over all runs. When using a binary with standard AFL instru-
mentation (i. e., where coverage is not measured in the additional instrumentation),
the observed coverage increase is reduced to 1.69%. Furthermore, the total number
of edges is considerably smaller, showing that edge counts between different binaries
do not translate. Note that both coverage binaries rely on colliding bitmaps since the
artifact tooling of FishFuzz expects standard AFL bitmaps to be used. We recommend
to not use colliding bitmaps for coverage measurements.

Lessons learned: Unintended side effects may skew coverage measurements; we
recommend using standardized methods of measuring coverage.

5 Revised Best Practices for Evaluation

Based on our literature analysis and the case studies, we now provide recommenda-
tions on ensuring a fair and reproducible fuzzing evaluation. A comprehensive check-
list that summarizes these recommendations is available in our GitHub repository at
https://github.com/fuzz-evaluator/guidelines. Overall, we recommend that au-
thors thoroughly review the threats to validity for their respective works to reflect
potential issues that could invalidate their evaluation.

5.1 Reproducible Artifact

For reproducibility, it is crucial to open-source the source code including documenta-
tion. We highly recommend participating in an artifact evaluation if available. Fur-
thermore, it is essential to (i) specify the exact versions of targets (and harnesses) and
fuzzers used for comparison, (ii) use runtime environment abstractions, such as Docker
(where feasible), (iii) name the baseline on which the new technique is implemented
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Figure 6: Median coverage over time for cxxfilt: In one case, we measure coverage via a
standard AFL binary and, in the other we use FishFuzz’s binary that contains additional
coverage instrumentation. For each fuzzer, the target was run 10 times for 24h each. The
displayed intervals enclose all ten runs of the respective fuzzer. If the coverage is measured on
the biased binary with FishFuzz instrumentation ( ), FishFuzz++ finds on average 8.44%
more edges than AFL++. Measuring coverage on a standard AFL binary ( ) (without
additional instrumentation introduced by FishFuzz), the coverage delta is only 1.69%. © 2024

IEEE

upon (if any) as well as its version, and avoid squashing commits of this baseline. In
the long term, a mandatory artifact evaluation as part of the submission process could
improve the quality and reproducibility of research artifacts.

5.2 Targets under Test

Selected evaluation targets should form a representative set that shows strengths of the
proposed approach and allows for comparability with previous work. It is therefore de-
sirable to include targets that have been tested in other works. Actions such as patches
applied to targets should be explained. If a fuzzer has certain restrictions (such as sym-
bolic execution-based techniques not being able of modeling all syscalls), we recommend
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outlining those. We also highly recommend using well-established benchmarks, such as
FuzzBench, to facilitate easy reproducibility.

5.3 Comparison to Other Fuzzers

It is crucial to compare against the state of the art in the respective field and the
baseline (if any) on which the new technique is implemented. This also includes well-
established and actively maintained fuzzers, such as AFL++. Including the new fuzzer
in benchmarks such as FuzzBench allows for comparing against a wide range of fuzzers.
If presenting a new technique with separable design choices, review them individually
via ablation studies, for example, by designing baselines that successively enable or
disable individual components.

5.4 Evaluation Setup

The chosen evaluation setup should be well documented. This entails details regarding
the used hardware, experiment runtime, number of allocated cores, and processes per
fuzzer. The conducted experiments and how to reproduce them should be explained.

For the runtime, we recommend choosing at least 24 hours. Longer runtimes may
be appropriate if the evaluated fuzzers do not flatline at the end of the experiment.
Regarding CPU cores, choosing a single core may not be representative of modern
systems. Special care must be taken to avoid congestion in the kernel when running
multiple fuzzers in parallel on one system; even if using Docker, the kernel may become
a bottleneck in resolving certain syscalls, unfairly slowing down one fuzzing process.
Individual fuzzer instances can be encapsulated in separate virtual machine instances
to avoid such situations.

Regarding seeds, we recommend running with uninformed seeds or multiple seed
sets. Seeds must be described and accessible (in the case of informed seeds) to allow
for reproducibility. All fuzzers should have fair access to all seeds. If using informed
seeds, we recommend plotting or analyzing the coverage achieved by the initial seed
set. This avoids attributing a high coverage achieved to fuzzer performance instead of
the initial seeds.
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5.5 Evaluation Metrics

A fuzzer comparison should use standardized, well-established metrics (at least as a
complementary metric if a technique requires the introduction of a new metric); this
includes both coverage and found bugs. Optimally, both code coverage and bug-finding
capability are evaluated, as both suffer from individual drawbacks [3, 15, 192]. We
recommend using modern benchmarks that aid in setting up the experiment and ensure
a fair, bias-free execution.

It is necessary to specify details such as how coverage is collected, for example,
whether it is measured on a non-instrumented binary, translated blocks from an emu-
lator, or using established means such as lcov. Ideally, coverage is not measured using
bitmaps with collisions, but using a collision-free encoding or other means. Addition-
ally, the evaluation must ensure that the same notion of coverage is used for each of
the compared fuzzers.

When searching for bugs in new targets to show real-world impact, it is crucial to se-
lect reasonable targets, i. e., projects that are not insecure by design, have been inactive
for years, or are unsuitable for other reasons. We also recommend running other state-
of-the-art fuzzers to see whether they find the bugs as well, thereby addressing concerns
regarding fuzzing previously untested software. Crashes identified by the fuzzer should
be deduplicated before opening a report, and the triaging process should be clearly de-
scribed. When testing crashes, we recommend reproducing them on a binary without
fuzzer or coverage instrumentation to avoid reproducibility issues.

Ideally, only maintainers should request CVEs. If they do not request one, researchers
can still link to the bug report instead. Requesting multiple CVEs for a single bug or
requesting CVEs without coordinating or informing the maintainers must be avoided.
If possible, reporting bugs or CVEs anonymously allows for providing the reviewers
with access during submission, such that they can inspect the CVEs or bug reports
and assess their validity (as opposed to the current practice of blinding CVEs and bug
reports during submission, preventing any analysis by reviewers). That said, we do not
believe that having CVEs should be required to show the practical impact of a fuzzer.
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5.6 Statistical Evaluation

Any evaluation should be backed by statistical tests. To enable these tests, we recom-
mend running at least ten trials. Alternatively, the number of trials can be calculated
via an a-priori power analysis to ensure a sufficient sample size leading to statistically
significant results [193]. This is particularly important if the fuzzer under consideration
only slightly outperforms the state of the art, where n≫ 10 may be required. To avoid
the problems mentioned in Section 3.2.6, we recommend an alternative to the widely
used Mann-Whitney-U test; permutation tests or resampling tests such as bootstrap
methods. These methods avoid strong assumptions regarding a normal distribution.

If more than two fuzzers have been compared for a target, the (bootstrap-based)
two-sample t-test is not a good choice, since we would have to perform more than one
pairwise comparison to test the null hypotheses of no difference between any of the
expected means for the fuzzing methods. This results in the multiple testing problem,
which is the observation that the probability of at least one false positive result in the
set of comparisons performed for a target exceeds the single test level α substantially.
The same argument holds for other strategies based on two-sample comparisons such
as the Mann-Whitney-U test [194].

A solution to this problem is the bootstrap version of the ANOVA method. If the
ANOVA rejects the null hypothesis, it shows at level α that there is at least one
pair of fuzzing methods that perform significantly different for the target considered.
In a second step, a so-called Posthoc-test is performed to determine which pairwise
comparisons are significant, given that the ANOVA has already shown that there are
significant differences at all. Possible Posthoc-tests are, for example, the Tukey-Kramer
method if all pairwise comparisons among all samples are of interest or the Dunnett
method if only the comparisons to a reference method, such as the newly developed
fuzzer, are of interest [188]. For a bootstrap version of these algorithms, we propose
as a simple solution two-sample t-tests with critical values for rejection based on a
bootstrap resampling with replacement of the test statistics. Here, for each simulation,
the maximum value of the test statistics is used for all pairwise comparisons of interest.
We provide more details, algorithms, and scripts implementing examples for these tests
in our artifact at https://github.com/fuzz-evaluator/statistics. Additionally,
evaluations should measure effect size, e. g., using Vargha and Delaney’s Â12 test [189],
and quantify uncertainty, for example, by using intervals in plots.
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6 Conclusion

Reproducibility is a cornerstone of science and the basis for research. In this work,
we have systematically studied how 150 fuzzing papers published in the past six years
at leading conferences design their evaluation. Furthermore, we have performed an
in-depth analysis of the artifacts of eight papers and attempted to reproduce their
results. Based on the insights gained, we outlined several potential pitfalls and short-
comings threatening the validity of fuzzing evaluations. Ultimately, we provided re-
vised recommendations and best practices to improve future evaluation of fuzzing
research. We published a concise set of guidelines at https://github.com/fuzz-

evaluator/guidelines and welcome community contributions.
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Towards Automating Code-Reuse Attacks Using

Synthesized Gadget Chains

Moritz Schloegel, Tim Blazytko, Julius Basler, Fabian Hemmer, and Thorsten Holz

Ruhr University Bochum

Abstract

In the arms race between binary exploitation techniques and mitigation schemes, code-
reuse attacks have been proven indispensable. Typically, one of the initial hurdles is
that an attacker cannot execute their own code due to countermeasures such as data
execution prevention (DEP, W^X). While this technique is powerful, the task of finding
and correctly chaining gadgets remains cumbersome. Although various methods au-
tomating this task have been proposed, they either rely on hard-coded heuristics or
make specific assumptions about the gadgets’ semantics. This not only drastically lim-
its the search space but also sacrifices their capability to find valid chains unless specific
gadgets can be located. As a result, they often produce no chain or an incorrect chain
that crashes the program. In this paper, we present SGC, the first generic approach to
identify gadget chains in an automated manner without imposing restrictions on the
gadgets or limiting its applicability to specific exploitation scenarios. Instead of using
heuristics to find a gadget chain, we offload this task to an SMT solver. More specifi-
cally, we build a logical formula that encodes the CPU and memory state at the time
when the attacker can divert execution flow to the gadget chain, as well as the attacker’s
desired program state that the gadget chain should construct. In combination with a
logical encoding of the data flow between gadgets, we query an SMT solver whether
a valid gadget chain exists. If successful, the solver provides a proof of existence in
the form of a synthesized gadget chain. This way, we remain fully flexible w.r.t. to the
gadgets. In empirical tests, we find that the solver often uses all types of control-flow
transfer instructions and even gadgets with side effects. Our evaluation shows that SGC
successfully finds working gadget chains for real-world exploitation scenarios within
minutes, even when all state-of-the-art approaches fail.
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1 Introduction

Early exploitation techniques relied on code-injection attacks, where an attacker in-
jects shellcode into the memory space of an application and then executes it. However,
quickly established mitigations forced attackers to adapt. Especially the introduction
of the W^X policy (commonly referred to as data execution prevention (DEP)) made
the execution of injected code infeasible, as memory is marked as either writable or
executable. This forced attackers to develop novel exploitation techniques that reuse
already existing code (e. g., return-to-libc) [1, 2, 3]. As an additional line of defense,
modern operating systems randomize a program’s address space layout (ASLR). Still, a
single information leak or small, non-randomized parts of the executable often provide
an attacker the capability to mount their attack. In the past years, control-flow in-
tegrity (CFI) [4] has gained popularity. This technique enforces the property that only
legitimate control-flow transitions inside a benign set required by the program are per-
formed. While greatly limiting the attacker’s freedom to chain arbitrary code snippets,
so-called code-reuse attacks are still feasible in practice [5, 6, 7]. In general, code-reuse
attacks have been shown to be Turing complete [8, 9]. Note that in practice, attackers
often only need to disable W^X before they can execute arbitrary shellcode in the con-
text of the exploited program. This is commonly achieved by chaining so-called gadgets,
(short) sequences of instructions ending with an indirect control-flow transfer such as
ret [2]. Even medium-sized programs contain thousands of gadgets, making the pro-
cess of extracting and finding a suitable combination cumbersome. Various techniques
to automate the process were proposed: Initial attempts used pattern-matching-based
strategies to identify a chain [10, 11]; later approaches [12, 13, 14] make use of sym-
bolic execution to classify gadgets and identify undesirable side effects, e. g., writing
values to memory. However, even the most advanced approaches to date rely on various
heuristics to confine the large search space [5, 6, 7]. While sometimes effective, pruning
may lead to false negatives: these heuristics try to find generic chains to work across
many targets, but in some cases no such chain exists.

In this paper, we propose a novel method to find gadget chains efficiently without
pruning the search space. One category of tools that particularly excels at finding
solutions for decision problems involving a large search space are SMT solvers [15];
they check if a (potentially large) set of logical formulas—so-called constraints—can
be satisfied [16]. By building a logical formula that describes (1) the CPU and mem-
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ory state before executing the first gadget, (2) the CPU and memory state desired by
the attacker, and (3) the data flow between gadgets, we can model the gadget chain
synthesis as a reachability problem and use an SMT solver to decide it. This approach
is similar to bounded model checking [17], a software verification technique used to
determine whether a system meets a given set of requirements: it combines a set of
assumptions that have to hold before execution (preconditions) and a set of require-
ments that have to hold after execution (postconditions) with a logical encoding of the
program semantics and then queries an SMT solver. If the solver returns SAT (satis-
fiable), it provides a model representing a concrete variable assignment that satisfies
the given constraints. In our case, this implies that the solver successfully synthesized
a gadget chain. If the result is UNSAT (unsatisfiable), the SMT solver mathematically
proved that the constraints cannot be satisfied and, thus, no chain can exist for the
given set of gadgets.

We introduce the design and implementation of SGC, a generic approach capable of
automatically identifying gadget chains without relying on any classification or heuris-
tics to prune the search space. At the same time, the logical formula offers a framework
to specify target-specific constraints. Our evaluation demonstrates that SGC not only
outperforms all state-of-the-art tools with regard to finding gadget chains, but the syn-
thesized chains always work in real-world scenarios. For instance, we demonstrate how
we can craft a gadget chain that spawns a shell for a stack-based buffer overflow in
dnsmasq: After defining the concrete CPU state as preconditions, we encode the target
state right before executing the system call execve(&"/bin/sh", 0, 0); running SGC

provides us with a gadget chain spawning the shell without requiring any other infor-
mation. We further demonstrate that even complex constraints (e. g., the sum of all
values in the gadget chain must be equal to a specific value) can be satisfied by SGC.

In summary, our main contributions are:

• We introduce a generic approach to synthesize gadget chains in an automated way
based on bounded model checking. Our approach does not require heuristics or
pruning of the search space; instead, the SMT solver provides a proof of existence
in the form of a gadget chain or proves that no gadget chain can be found for the
given gadgets and constraints.
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• We present the design and evaluation of our prototype SGC. We show that it
not only outperforms all state-of-the-art approaches, but also works in real-world
settings.

• Our approach provides unprecedented flexibility: SGC allows an attacker to spec-
ify arbitrary constraints and, thus, model even complex or unusual exploitation
scenarios.

To foster further research in this area, we open-source SGC at https://github.com/

RUB-SysSec/gadget_synthesis.

2 Shortcomings of State-of-the-Art Approaches

In the following, we discuss state-of-the-art approaches from academia and industry
that can be used in practice to generate gadget chains automatically and analyze their
shortcomings in this regard (cf. Table 1). We find that existing tools can be separated
into two categories, based on their gadget chain generation:

Hardcoded Chaining Rules. Ropper [11] and ROPgadget [10] both fall into this
category. Their main task is to extract gadgets, but both require hardcoded rules
based on regular expressions to chain gadgets. While ROPgadget only supports a single
exploitation scenario (i. e., building a system call to execve(&"/bin/sh\0", 0, 0)),
Ropper allows system calls to mprotect as well. As a result, these tools are inflexible
in practice.

Symbolic Exploration. angrop [12] and ROPium [13] operate on an intermediate
representation of gadgets, which allows them to symbolically determine side effects
and perform a classification. To this end, gadgets are first lifted, then analyzed, and
chained together in the last step. The latter usually involves an algorithm such as depth-
first search (ROPium) or breadth-first search (angrop) to identify a sequence of gadgets
that fulfills the attacker’s specifications, such as specific argument values. While vastly
more flexible than approaches using hardcoded rules, these tools are no panacea. They
still rely on a classification of gadgets, and while they provide greater flexibility by
allowing simple memory and register constraints, they lack support for more elaborate
constraints. P-SHAPE by Follner et al. [14] also uses a symbolic exploration approach.
However, it only focuses on finding gadgets useful for constructing library calls. It does
neither provide a full gadget chain nor allows an attacker to specify any constraints.
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Table 1: Features of different tools capable of automatically chaining gadgets.

SGC P-SHAPE angrop ROPium ROPgadget Ropper

supports chains without ret ✓ ✗ ✗ ✓ ✓ ✓

no hardcoded chaining rules ✓ ✓ ✓ ✓ ✗ ✗

no classification needed ✓ ✗ ✗ ✗ ✗ ✗

supports arbitrary postconditions ✓ ✗ ✗ ✗ ✗ ✗

Overall, all approaches lack flexibility; especially, they fail to support arbitrary post-
conditions (cf. Table 1). Instead, they rely on a classification of gadgets and pre-defined
strategies to identify a gadget chain. Even when finding a chain, we empirically observe
that they often crash the targeted program, e. g., through invalid memory accesses.
Despite this, no tool makes any attempt at verifying the correctness of the generated
gadget chains.

3 Design

In the following, we present a gadget-agnostic design that does not perform any pre-
classification of gadgets while providing high flexibility by allowing to specify arbitrary,
complex constraints. The nature of our approach overcomes the limitations of existing
approaches. Most importantly, we can enforce an arbitrary CPU register and memory
state before and after the exploitation—our design will identify a gadget chain facili-
tating the transition from the initial to the desired state using any gadgets available,
including such using jmp and call instructions. To this end, our approach encodes the
search of the gadget chain as a synthesis problem that an SMT solver decides. More
specifically, our design is based on bounded model checking: preconditions and post-
conditions are represented by the initial and desired CPU state, while a logical formula
encodes the possible gadget chain that facilitates the transition between both states.

Recall that bounded model checking is usually applied to a well-defined unit of code,
such as a function with specific conditions. The goal of bounded model checking is
to qualitatively assert that no diversion from the specified postconditions is possible
(i. e., any diversion implies a bug that must be fixed). In other words, the goal is to
find a counterexample violating the postconditions. For the use case of synthesizing a
gadget chain, the scenario is slightly different: There is no well-defined unit of code
such as a function, but a large number of individual gadgets that can be executed in an
arbitrary order. As a consequence, we are not interested in knowing whether specific
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postconditions can be violated (as this most certainly is the case given the number
and nature of the gadgets); instead, we are interested in whether there exists a chain
of gadgets that satisfies the postconditions. In other words, we task the SMT solver
with finding a satisfying assignment for preconditions∧gadget_chain∧postconditions.
If the solver finds such an assignment, the produced model contains concrete values
for all variables—including stack or other attacker-controlled buffers—which describe
the chain of gadgets. Thus, once a model is found, converting the values into a chain
becomes a trivial task. In the following, we present these steps in detail.

3.1 Gadgets

First, we must extract gadgets from the target program, which can then be further
processed. This step is independent of the subsequent encoding and is covered in detail
by previous works in this area [2, 18, 19, 20, 21]. As such, we omit it here for brevity.
Note that we do not require the gadget extraction to be exhaustive or classify gadgets,
as long as these sequences of instructions end with an indirect control-flow transfer. As
assembly instructions commonly have side effects (e. g., mul rbx implicitly modifies the
rdx, rax, and rflags register), we disassemble and lift the gadgets to an intermediate
representation (IR) with explicit side effects. An example for two gadgets is visible
in Figure 1a. Noteworthy, each IR instruction has no implicit side effects. We reiter-
ate that—other than most state-of-the-art tools—our design imposes no restrictions,
ranking, or classification on the gadgets.

3.2 Logical Encoding

Given a pool of gadgets, we want to query an SMT solver to find a chain of gadgets
that transitions the initial program state (formulated as preconditions) into the desired
program state (formulated as postconditions). For this, we need to logically encode the
semantics of gadgets and chains. Especially, we must model the semantics of gadgets,
the data flow between instructions, and the data flow between gadgets. Once we have
encoded all components, we must combine them into a single formula, which we then
pass to an SMT solver. To construct such a formula, we connect each statement through
conjunctions. In the following, we first describe how individual gadgets are encoded and
then explain how gadgets are interconnected to form a chain.

154



3 Design

1 gadget_a:
2 mov rbx, [rsp+8] ; rbx := @64[rsp + 8]
3 mov [rsp], rdx ; @64[rsp] := rdx
4 ret ; rsp := rsp + 8
5 ; rip := [rsp - 8]

1 gadget_b:
2 pop rax ; rax := @64[rsp]
3 ; rsp := rsp + 8
4 inc rax ; rax := rax + 1
5 jmp rbx ; rip := rbx

(a) Assembly code and the corresponding intermediate representation (IR) of the instructions
as comments. Note that side effects are explicitly modeled in the IR, thus a single assembly
instruction may result in multiple IR instructions.

1 gadget_a:
2 rbx_a_1 := read(M_IN, rsp_IN + 8, 64)
3

4 M_a_1 := write(M_IN, rsp_IN, rdx_IN, 64)
5

6 rsp_a_1 := rsp_IN + 8
7 rip_a_2 := read(M_a_1, rsp_a_1 - 8)

1 gadget_b:
2 rax_b_1 := read(M_IN,
3 rsp_IN, 64)
4 rsp_b_1 := rsp_IN + 8
5

6 rax_b_2 := rax_b_1 + 1
7 rip_b_2 := rbx_IN

(b) SSA form of the IR representation. The variable’s locality is specified by an unique iden-
tifier, here _a or _b. Suffix _IN represents the initial definition.

rax_p1_IN

rbx_p1_IN

. . .

gadget_a gadget_b

rax_p2_IN := ϕ(rax_p1_IN, rax_b_p1_2)

rbx_p2_IN := ϕ(rbx_a_p1_1, rbx_p1_IN)

. . .

(c) Structural overview of the final SMT formula, assuming a chain of two gadgets.

Figure 1: The high-level idea of our logical encoding: We lift assembly gadgets to an in-
termediate representation, make the variable and memory accesses stateful (via static single
assignment form) and encode the data flow between gadgets using ϕ-functions.

Instructions and Gadgets. To use a gadget in the logical formula, we must first
model all implicit state transitions on the instruction level: While a CPU executes a
sequence of instructions in a row, it implicitly tracks state changes in registers and
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memory. To represent this behavior in a logical formula, we must explicitly model it on
the instruction and inter-instruction level. To address the instruction level, recall that
we lift instruction into an IR form that explicitly handles side effects. For the latter,
we have to model the data flow between instructions, e. g., when a register is assigned
to another register or is defined more than once. To achieve this, we make variable
assignments stateful by converting IR instructions into static single assignment (SSA)
form [22]. This implies that each variable definition is assigned a new unique index,
while uses always use the last defined index. To differentiate between gadgets, we prefix
SSA variable names with an identifier that is unique to each gadget. If a gadget uses a
variable that was not defined previously within this particular gadget, we postfix it by
_IN to indicate that the value has been defined outside of the gadget’s scope. In other
words, it is an input to the gadget.

Example 1: Figure 1b shows how rip_a_2 depends on the memory at address rsp_a_1
- 8 (line 7), which itself can be calculated as rsp_a_1 = rsp_IN + 8 (line 6). Note
the identifier _a, which distinctly marks this variable as belonging to gadget a, and
the postfix _IN indicating that this instruction depends on rsp’s definition outside this
gadget.

Memory. Similar to registers, we apply SSA to memory to make it stateful, as other-
wise, the SMT solver has no context information about memory addresses and values.
To transform memory into SSA form, we define memory read and write accesses as
explicit operations: v_j := read(M_i, address, size) and M_i+1 := write(M_i,

address, value, size). Given a stateful memory variable M, we read from and write
to this variable at a given address with a given access size. Note that the write operation
is stored in a new memory variable M_i+1 that encodes the previous write. Internally,
these operations are expressed within a byte-wise memory model similar to the work
of Sinz et al. [17], in which memory accesses with larger sizes are translated to nested
byte-wise memory reads or writes. For a formal definition, we refer the interested reader
to Appendix A. We initialize all memory addresses to contain the value 0.

Interconnecting Gadgets. Up until now, we described how to encode data flow
within a single gadget using SSA for registers and memory. However, our goal is to
combine multiple gadgets in a chain of length n without making assumptions on neither
the order of gadgets nor the particular gadgets used. Especially, we allow gadgets
to occur more than once in the chain. Thus, in the next step, we have to logically
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encode the data flow between gadgets. To achieve this, we first have to ensure that
all variables are unique. So far, variables are only unique with respect to their gadget
due to the SSA form’s unique identifier. However, to encode the order of execution,
each variable must also be unique with regard to the gadget’s position within the
chain. Therefore, we also include the position as index within the SSA variable names:
variable_gadgetId_position_definitionIdx. This way, we can use any gadget at
any position in the chain.
Example 2: If we consider the gadget for the first position in the chain, the definition
rbx_a_1 (line 2 in Figure 1b) becomes rbx_a_p1_1 (with p1 representing the first
position). This way, we can use the gadget in position 2 as well, as rbx_a_p2_1 is a
distinct variable.

Naturally, our encoding must consider that a gadget can be used at any position in
the chain, while, at the same time, we cannot know which gadget is at a specific position
within the chain. In other words, gadget_a and gadget_b can both be at positions 1
and 2, but at the time of formula generation, we do not know which of these gadgets
will be at which position in the chain synthesized by the SMT solver. Therefore, we
must ensure that the gadget at position i+ 1 uses the values derived by the gadget at
position i; a scenario strikingly similar to the problem of merging control flow in SSA
form (for which ϕ-functions are used). We must merge the state of all gadgets at chain
position i such that it can be used as input for the gadgets in the subsequent position.
To achieve this, we apply the following for each register and memory variable: We first
determine the variable’s last definition in each gadget for position i. Then, we merge
the last definitions from all gadgets via a ϕ-function and define a new variable that is
used as input for the next position.
Example 3: Assume that we want to encode the gadgets for a chain of length 2 (cf.
Figure 1c). For each register, we create a ϕ-function that merges the last definitions of
these variables. In the following, we consider this process exemplary for rax at position
1. The initial value of rax is rax_p1_IN—the input of rax for the first gadget posi-
tion. Since we do not know if gadget_a or gadget_b is the first gadget in the chain,
we must account for both possibilities and merge their last definitions of rax in a ϕ-
function. gadget_a does not modify rax, thus we use rax_p1_IN; for gadget_b, we use
its latest definition, rax_b_p1_2. Finally, we define a new variable—rax_p2_IN—that
encodes the merged variables and is used as input for the second position in the chain:
rax_p2_IN := ϕ(rax_p1_IN, rax_b_p1_2).
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To model the data flow between gadgets, the logical formula has to connect each
input variable of the ϕ-function with the gadget that defined the corresponding variable.
On a technical level, we translate this abstract ϕ-function into nested If-Then-Else

expressions that select the corresponding variable based on the program counter, which
has to be equal to one of the gadget addresses. This way, we ensure that the conditions
are mutually exclusive (as the program counter can only point to a single gadget) and,
thus, each register’s value can always be uniquely determined. This approach is based
on work by Sinz et al. [17].

3.3 Preconditions and Postconditions

Following the logical encoding of the gadget chain, we now describe how to set the
initial state (preconditions) and the targeted state (postconditions).

Preconditions. These conditions allow setting the initial state at the time when
the attacker can divert execution flow to the gadget chain. They constraint the inputs
of the first position in the gadget chain, e. g., we can encode relevant context from
the target program, such as the value of specific registers or memory areas (e. g., by
using a debugger). Additionally, we must specify the location where the SMT solver
should place the synthesized gadget chain (and how many bytes are available), e. g.,
by choosing an attacker-controlled buffer on the stack. This area is then considered
a free variable in the formula, such that the SMT solver can place gadget addresses
and data there. We can also enforce specific characteristics for any attacker-controlled
areas, such as constraining memory buffers to hold only values within a certain range.

Postconditions. While the preconditions outline the initial position, postconditions
describe the desired state that the program should reach after executing the gadget
chain. More specifically, we can set any register or memory address to a specific value
(e. g., the system call we would like to execute and its arguments). We encode these
postconditions by asserting that the outputs (i. e., register and memory variables) of
the last position in the chain are equal to the given values.

Furthermore, we also support indirect constraints, so-called pointer constraints. These
constraints support common constructs, where a reference to a specific value or string
(e. g., “/bin/sh”) in memory needs to reside in a specific register. To this end, we add an
assertion that the memory address pointed to by this register must contain the desired
value(s). This does not require us to specify the memory address itself, but we can leave
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the task of choosing a suitable memory address to the SMT solver. On a technical level,
the values are constrained as byte-wise memory read operations relative to the address
chosen by the solver.

Notably, the flexibility of our approach allows us to enforce arbitrary constraints
between registers and memory locations. For instance, we could enforce that (1) cer-
tain register values must be odd, (2) the sum of registers must be equal to a specific
value, or (3) the sum of two specific registers must be prime. To put it differently, our
design allows to constraint exotic, target-specific conditions that may be useful in some
exploitation scenarios.

3.4 Formula Generation

Our final formula consists of three main components: preconditions, gadget chain, and
postconditions. The preconditions describe the initial state, which is used as input
for the chain’s initial gadget. The chain contains the encoding of individual instruc-
tions, the data flow between instructions within a gadget, and the data flow between
gadgets—in short, the complete semantics of the gadget chain. Finally, the postcondi-
tions define the state which should be reached after executing the gadget chain. Here,
the attacker encodes the desired CPU state. We combine these three components with
logical conjunctions to the formula:

formula := preconditions ∧ gadget_chain ∧ postconditions

We then pass this formula to an SMT solver that supports the combined quantifier-
free theory of fixed-size bit vectors (registers) and arrays (memory), QF_ABV [23]. If
the solver finds a satisfying assignment, it provides a model, i. e., concrete values for
each relevant variable in the formula. For all variables of gadgets that are not relevant
for the synthesized gadget chain, no values are assigned. As a consequence, the model
describes not only the initial state (e. g., values on the stack) but register and memory
values for each gadget in the chain; in other words, we receive sort of an instruction
trace that includes the intermediate values for each variable in the chain. In a final step,
we can extract the initial values for each controlled buffer and use them as exploitation
payload. When the payload is inserted, the gadget chain is executed as described in
the model. Because a satisfying assignment produced by an SMT solver is a proof of
existence, the gadget chain is guaranteed to reach exactly the specified postconditions.
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This is in strong contrast to state-of-the-art approaches, which often use heuristics
rather than proofs to construct a gadget chain.

3.5 Algorithm Configuration

A few parameters define the performance of our approach, most of which affect the
SMT solver: (1) For larger numbers of gadgets, the SMT solver needs more time in
its decision process. To reduce its runtime, we can sample a small subset of gadgets
(e. g., 300 gadgets as determined in empirical tests). (2) Due to our logical encoding,
the chain length must be defined beforehand. While this may appear inflexible, our
evaluation shows that testing different chain lengths is feasible in practice; if a shorter
chain is possible, the SMT solver places semantic no-operations as padding gadgets in
the chain. (3) To avoid excessive runtimes, we define upper time limits for the initial
gadget extraction as well as for the SMT solver. While limiting the initial gadget
extraction may reduce the number of available gadgets, this has no major impact if we
only sample a subset.

4 Implementation

To demonstrate the practical feasibility of our proposed approach, we implemented a
prototype of SGC in roughly 5, 000 lines of Python code (see https://github.com/RUB-
SysSec/gadget_synthesis). While SGC’s initial gadget extraction is based on Binary

Ninja [24] (version 2.3.2660), all further steps are built on top of Miasm [25] (commit
218492cd). Especially the logical encoding of gadgets is facilitated in Miasm’s IR. We
extended its internal memory model to be stateful. The logic formula generated in
the encoding step is then passed to the SMT solver Boolector [26], which is particu-
larly suited to solve problems within the domain theory of bit vectors and arrays [27].
As Boolector supports the const-array extension [28], we use it to model memory
and initialize it with a default value of 0. As memory accesses should not happen in
read/write-restricted regions, we allow the user to specify which memory addresses may
be accessed. In general, the user can add any constraint they need, such as excluding
specific bytes from the chain (so-called bad bytes).
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5 Evaluation

Based on the prototype implementation of SGC, we answer the following questions:

1. Is SGC capable of automatically finding valid gadget chains in diverse exploitation
scenarios? How does it compare to state-of-the-art tools?

2. How does SGC perform in real-world exploitation scenarios?

3. How flexible and target-specific are SGC’s chains in comparison to other ap-
proaches?

4. In what regard do SGC’s generated gadget chains differ from the ones found by
state-of-the-art tools?

To answer these research questions, we conduct the following experiments.

5.1 Setup

All our experiments were performed using Intel Xeon Gold 6230R CPUs at 2.10 GHz
with 52 cores and 188 GiB RAM, running Ubuntu 20.04 on x86-64. To facilitate a
deterministic analysis, we disable ASLR. Even if present, we only require an attacker
to leak the base address, e. g., via an information leak, which is a weaker requirement
than other approaches make [5, 6].

We compare SGC against the state of the art discussed in Section 2. While these tools
work deterministically and take all gadgets into account, SGC does not: To keep the
runtime of the SMT solver manageable, a subset of gadgets is randomly sampled for
a provided seed. As a consequence, the sampled gadgets may be insufficient to fulfill
the attacker’s goals. To mitigate this problem, SGC uses by default ten different seeds,
running them in parallel and reporting the first chain found. To add further variety,
SGC attempts to find a chain of length 3 and 5, both for 100 and 300 gadgets, while
not using more than 128 bytes of the attacker-controlled buffer. These values have
been empirically chosen (cf. Section 5.6) In summary, 40 configurations are executed
in parallel. For our evaluation, we run all configurations until completion for later
analysis instead of returning the first gadget chain found. As all other tools operate
deterministically, we only run them once. We emphasize that all tools are provided
equal resources, i. e., CPU cores and RAM. While we restrict SGC to one hour for
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disassembly and the SMT solver, we define a timeout of 24 hours for all other tools.
To verify whether a generated chain is valid, we use GDB to place it in the attacker-
controlled buffer within the program and then execute the chain. This way, we ensure
that the gadget chain works in practice.

As targets, we use a diverse set of programs. In a first step, we replicate the ex-
periments of Follner et al. [14] on recent versions of chromium (version 88.0.4324.182),
apache2 (version 2.4.46), nginx (version 1.19.9), and OpenSSL (version 1.1.1f). All of
these targets are dynamically linked and we configure SGC to ignore shared libraries,
simulating a scenario where only the base address of the main executable is known
but no locations of libraries. To cover scenarios where libc is present, we create an
empty wrapper program that is statically linked against glibc version 2.31. To eval-
uate whether SGC can be used to exploit real-world vulnerabilities, we use dnsmasq

(version 2.77).

5.2 Finding a Chain

Based on the experiments by Follner et al. [14], we evaluate whether SGC is capable
of finding valid gadget chains. While a multitude of possible attacker goals exists, in
reality, attackers mostly aim at either calling library functions such as mprotect (to
change the protection flags of memory regions) and mmap (to map a RWX page in
which their shellcode can be placed), or at executing system calls, such as execve

with the parameter /bin/sh that spawns a shell. Therefore, we pick three exemplary
attacker goals, namely (1) a library call to mprotect(addr, len, prot) with three
parameters, (2) a library call to mmap(addr, length, prot, flags, fd, offset)

with six parameters, and (3) a system call to execve(path, argv, envp) with four
parameters (one being the system call number) and the requirement to place a string in
memory. On the x86-64 architecture, these arguments are passed via registers [29]. As
parameters, we use fixed exemplary values that are common in real-world exploitation
scenarios, such as execve(&"/bin/sh", 0, 0) to spawn a shell or setting prot in
mprotect to RWX, such that an attacker could place and execute arbitrary shellcode.
To compare the tools, we run each of them in the same configuration, analyze whether
it finds a chain, and check—based on our verification tooling—if the chain is valid in
practice. Table 2 depicts the results of this experiment. As ROPgadget only provides

162



5 Evaluation

Table 2: Capability of finding a valid gadget chain to call mprotect, mmap, or execve. Legend:
✓ = valid chain, (✓) = chain found but crashes program, ✗ = no chain found, 1) = chain
found when increasing timeout to 5h, 2) = SGC proves that no chain exists.

SGC P-SHAPE angrop ROPium ROPgadget Ropper

mprotect

chromium ✓ ✗ ✗ ✓ - ✗

apache2 ✓ (✓) ✓ ✓ - (✓)
nginx ✓ (✓) ✓ ✓ - ✗

OpenSSL ✓ (✓) ✗ ✗ - ✗

libc ✓ (✓) ✓ ✓ - ✓

mmap

chromium ✓1 ✗ ✗ ✓ - -
apache2 ✓ ✗ ✗ ✓ - -
nginx ✓ (✓) ✗ ✗ - -
OpenSSL ✗2 ✗ ✗ ✗ - -
libc ✓ (✓) ✗ ✓ - -

execve

chromium ✓ - ✗ ✓ ✓ ✗

apache2 ✓ - (✓) ✓ ✗ (✓)
nginx ✓ - (✓) ✓ ✗ ✗

OpenSSL ✓ - ✗ ✗ ✗ ✗

libc ✓ - ✓ ✓ ✓ ✓

fixed heuristics for execve, we exclude it from the other attacker goals. Similarly,
Ropper is limited to mprotect and execve, and P-SHAPE focuses on library calls.

Most tools find a chain for mprotect, which is the easiest goal since only three
registers have to be set. angrop struggled both with chromium and OpenSSL and crashed
during the attempt to locate gadget chains. Likewise, P-SHAPE crashed for chromium.
Although P-SHAPE found a chain for four targets, none of them were valid in real-world
scenarios: Manual verification revealed that they cause segmentation faults (e. g., due
to write attempts to inaccessible memory regions). For mprotect, only SGC identifies
a valid gadget chain for all targets.

In comparison to mprotect, finding a chain for mmap is significantly more challenging
since six register arguments have to be set, and thus more suitable gadgets are required.
While all chains found by P-SHAPE crashed again, ROPium produced valid chains for
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three targets. However, this was only possible after we fixed a bug in its source code.
SGC found four out of five valid chains. For chromium, we had to increase the timeout
for disassembly and solving to 5h, since we initially did not find suitable gadgets to set
r8 and r9, the fifth and sixth argument to mmap. We discuss the shortcomings of our
disassembly and random sampling in more detail in Section 6. For OpenSSL, no tool
was able to produce a chain. To get more insights, we performed another experiment in
which SGC was given access to all 3045 available OpenSSL gadgets (instead of choosing a
random subset). After 226s, the SMT solver returned UNSAT, which can be understood
as proof of non-existence. In other words, SGC was able to assert that no chain for the
provided gadgets exists that fulfills the postconditions. This saves the user valuable
time as they are guaranteed that even manual analysis will be fruitless.

The last attacker goal, execve, models the common scenario where a shell is spawned
via a system call. It differs from the previous goals in the fact that not only four register
values must be prepared, but the string /bin/sh\x00 must be placed in memory. To
express this behavior in ROPium, the user has to manually set a suitable memory address
at which the string should be placed in memory. As such, the gadget chain construction
is not completely automated. However, we include it since it is the only tool besides
SGC that succeeds in finding valid chains for almost all targets.

In summary, these experiments answer research question 1: SGC outperforms all state-
of-the-art approaches and manages to find valid gadget chains for all targets, even when
other tools fail. For the only case where it did not find a chain, it even provided formal
proof that no chain for the available gadgets can exist.

5.3 Real-World Applicability

To answer research question 2, we are interested in whether SGC proves helpful towards
finding gadget chains in real-world exploitation contexts. To this end, we conduct a
case study for CVE-2017-14493 [30], which describes a stack-based buffer overflow in
dnsmasq (up to version 2.77) [31]. In essence, an attacker can craft a malicious DHCPv6
packet that, when received by dnsmasq’s DHCP server, triggers an overflow in the
dhcp6_maybe_relay function, where the length and data of a memcpy can be controlled
by the attacker. This bug allows for the injection of gadget chains of arbitrary length;
if ASLR is present, an attacker can exploit an information leak in the same version,
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assigned CVE-2017-14494, to leak the base address [30]. For simplicity, we assume
ASLR is already bypassed.

Our goal is to craft a gadget chain that calls execve(&"/bin/sh", 0, 0) to spawn
a shell. Following the System V AMD64 ABI calling convention [29], register rax needs
to hold the execve system call number (0x3b), while the registers rdi, rsi, and rdx

pass the arguments to execve. Therefore, we set the postconditions accordingly. To
define the preconditions, we have to inspect the program state at the time when the
attacker can divert execution flow to the gadget chain. In detail, we dump the CPU
state with GDB and constraint register values accordingly. After defining preconditions
and postconditions, we logically encode the gadget chain and query the SMT solver
with the formula. SGC finds a gadget chain after approximately 8m. A shell is spawned
after embedding the gadget chain in a DHCPv6 packet and sending it to dnsmasq For
a detailed explanation of the bug and chain found by SGC, we refer to Appendix B. To
conclude research question 2, SGC assists in real-world exploitation scenarios. It only
requires the initial CPU state as preconditions and the desired target state.

5.4 Target-Specific Constraints

To answer research question 3 that addresses the flexibility of our approach, we conduct
two experiments that model different exploitation scenarios. In the first experiment,
we aim at crafting chains that do not include so-called bad bytes. Such bytes cannot
be used in an exploit payload since they act as terminators in the underlying program
(e. g., \x00 in C strings). We can avoid using such bytes in our payload by adding
the constraint that each byte in the attacker-controlled buffer must be different from
specific byte values. In this experiment, we try to craft valid gadget chains that call
mprotect, mmap, and execve in the statically-linked libc wrapper, where \x0a and
\x0b are considered as bad bytes. SGC produced a valid gadget chain within, on average,
512s; similarly, all other tools (excluding P-SHAPE, which does not support bad bytes)
were able to produce gadget chains. This is not surprising, as avoiding bad bytes is a
common requirement for many exploits and most tools consider this in their heuristics.
Then, we slightly modify this experiment: We include one of the parameter values
passed to the functions as a bad byte (essentially prohibiting the tools from using this
specific value directly), such that the tools must construct the value indirectly via the
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Table 3: Statistics over all valid chains generated during experiments in Section 5.2.

SGC P-SHAPE angrop ROPium ROPgadget Ropper

avg. instructions 5.9 - 2.9 2.4 2.0 2.6
gadgets w/ mem. write 9% - 7% 6% 3% 14%

excluding execve 9% - 0% 0% - 0%
gadgets w/ mem. reads 30% - 7% 0% 0% 0%

excluding execve 32% - 0% 0% - 0%

CF types

ret 68% - 100% 97% 100% 100%
call MEM 10% - 0% 0% 0% 0%
call REG 20% - 0% 3% 0% 0%
jmp REG 2% - 0% 0% 0% 0%

gadget chain. In this scenario, only ROPium and SGC manage to find valid gadget chains.
This shows that even a standard feature can be problematic for heuristics-based tools.

In the second experiment, we add a more complex constraint: We require that the
sum of all values (quadwords) in the attacker-controlled buffer (where the addresses
and data for the gadget chain are placed) must be equal to the value 0xdeadbeef.
While this constraint seems artificial, similar constraints can be found in commercial
DRM systems that perform integrity checks over specific memory regions. While no
other tool provides the flexibility to model this behavior, we can enforce this within a
few lines of code in SGC and produce valid gadget chains for the same setup as before
(within, on average, 527s).

Overall, we conclude that SGC provides great flexibility and allows to model complex
constraints. Thus, it covers even unusual exploitation scenarios.

5.5 Chain Statistics

To answer research question 4, in what regard differ our gadget chains from the ones
found by state-of-the-art approaches, we inspect which types of gadgets and instructions
are used in the generated chains. To this end, we analyze each valid chain found during
our experiment in Section 5.2. Since P-SHAPE found only invalid chains that crashed
the program, we exclude it from this experiment.
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Table 4: SGC’s timings for initial disassembly and chaining.

Disassembly Chaining Total

mprotect 1845s 363s 2207s
mmap 1617s 2667s 4284s
execve 1845s 494s 2338s

As visible in Table 3, SGC’s gadgets contain on average almost six instructions,
whereas the other tools use two to three instructions per gadget. Further, SGC is the
only approach that makes use of explicit memory reads and writes (excluding instruc-
tions such as push and pop); all other tools only use it in the case of execve to place
the string /bin/sh into the memory. Similarly, most of the tools rely exclusively on
return-oriented gadgets; only ROPium uses call-oriented programming for 3% of its gad-
gets. Contrary, SGC only uses return-oriented programming in 68% of the cases, while
it deploys call and jump-oriented gadgets in 32%. In summary, SGC has on average
longer gadgets, uses more memory reads/writes, and has a significantly higher amount
of non-return-oriented gadgets; in short, it includes gadgets specific to the target with
side effects that are disregarded by other approaches due to their generic heuristics.

Another relevant aspect is SGC’s runtime (cf. Table 4). The disassembly step is com-
parably slow; the time required for instruction lifting, encoding, and SMT solving
is significantly lower. Our disassembly relies on a combination of Binary Ninja and
Miasm: we first analyze the whole binary and disassemble then individual functions in
Miasm. As it is not a focus of this work, we consider improving our disassembly com-
ponent as future work. Only for mmap, finding the chain takes significantly more time
since the SMT solver has to find a valid chain that prepares six function arguments. For
reference, the other tools find a chain on average within 319s. However, this ignores the
runtime when they found no chain (e. g., Ropper hit the timeout of 24h twice), which
was often the case, especially for mmap. In summary, SGC manages to find a valid chain
within minutes.

5.6 SGC’s Configuration

After successfully answering all research questions, we would like to give a better intu-
ition of the configuration parameters relevant for SGC. As described before, our approach
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Table 5: Number of gadget chains the solver decided (i. e., considered SAT or UNSAT) vs.
timeouts when building a chain to mprotect for the targets in Section 5.2 with ten different
seeds each. Format is #Decided by SMT solver/#Timeout. We color the prevalent outcome.

Chain Length
1 2 3 4 5 6 7 8

100 50/ 0 50/ 0 49/ 1 31/ 19 24/ 26 16/ 34 15/ 35 12/ 38
300 50/ 0 50/ 0 37/ 13 20/ 30 13/ 37 10/ 40 7/ 43 6/ 44
500 50/ 0 44/ 6 31/ 19 16/ 34 10/ 40 8/ 42 5/ 45 4/ 46

#
G

ad
ge

ts

1000 50/ 0 31/ 19 25/ 25 11/ 39 9/ 41 2/ 48 0/ 50 0/ 50

is probabilistic: it randomly samples only a small subset of gadgets. As a result, the
chosen subset may not be sufficient to generate a chain that fulfills the postconditions.
We can select another subset of the same size or a larger number of gadgets to overcome
this. The latter, however, increases the time required by the SMT solver to decide the
chain synthesis problem. To get a better feeling for this trade-off, we vary the chain
length and number of sampled gadgets and analyze how often the solver succeeds in
deciding the synthesis problem, i. e., it finds a chain or returns UNSAT within one hour.
For each configuration, we run the solver ten times with different seeds such that di-
verse gadgets are sampled. We do this for all target programs from Section 5.2 and
count how often the solver finds an answer or timeouts in the process of finding chains
for mprotect. In total, we perform 50 independent runs (ten different seeds for five
different targets) for each configuration.

As Table 5 shows, the chain length and the number of gadgets determine the SMT
solver’s performance: For a small number of gadgets and chain length of 1, the solver
always finds an answer. However, for longer chains or more sampled gadgets, the number
of timeouts increases. While the solver can decide some chains of length six or higher,
it increasingly triggers the timeout of one hour. Similarly, for a larger gadget pool
(e. g., 1000 gadgets), the solver already struggles for chains of length three. While the
strategy of randomly sampling a small number of gadgets proved effective, an attacker
can always increase the number of gadgets and set higher timeouts for the SMT solver.

6 Discussion

Limitations of SGC. While SGC has proven overall effective, various aspects can be
improved: (1) Our currently used disassembly is naive since we only consider regular
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instruction offsets. As an improvement, we can search unaligned gadgets since any
sequence of bytes can be interpreted as instructions on x86-64. (2) The SMT solver
is the most significant performance bottleneck of our design as it may require a large
amount of time to identify valid gadget chains. However, as our evaluation shows,
randomly selecting a subset of gadgets provides an effective strategy to reduce SGC’s
runtime. In this scenario, an UNSAT provided by the SMT solver is not a formal proof
that no gadget chain exists, as it only proves that no chain for the selected subset of
gadgets exists.

Mitigations. To prevent exploitation, various mitigations have been proposed.

(1) W^X prevents execution of injected code, however, it is ineffective against code
reuse attacks and thus SGC. (2) Address space layout randomization (ASLR) shuffles
the program’s memory layout such that an attacker cannot rely on addresses. SGC

requires only the base address of the code section and does not require shared libraries
to find valid gadget chains, thus a single information leak suffices. (3) Lastly, control-
flow integrity (CFI) prevents the redirection of control flow to arbitrary code locations.
This severely hampers code-reuse attacks such as SGC because only specific gadgets can
be chained together. However, related work has shown that even fine-grained CFI is
insufficient to prevent code-reuse attacks in general [6, 7]. We believe that an attacker
could add constraints modeling the enforcement policies such that the SMT solver
will only select gadget chains that pass the CFI enforcement policy. We leave this as
interesting future work.

7 Related Work

After initial techniques in the domain of code-reuse focused on functions from libc [1],
the concept was generalized to re-use small snippets of existing code [2, 32]. These
small snippets are often chained via ret instructions (ROP) [2], but other control-flow
transfers work as well (JOP [18, 19] and COP [20, 21]). Mitigations such as ASLR have
been shown to be insufficient [33]. Moving forward with new mitigations such as control-
flow integrity (CFI) [4], even more advanced approaches have been proposed, e. g.,
counterfeit object-oriented programming (COOP) [9] or data-oriented programming
(DOP) [34]. Even fine-grained CFI solutions fail to stop attackers from finding gadget
chains [5].
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In parallel, various techniques to automate the cumbersome task of identifying suit-
able gadgets have been proposed. Early approaches use pattern matching to search
for desired gadgets [35, 36]. Other approaches tackle the task of automating the at-
tack itself: One of the earliest approaches, Q [8], uses software verification methods
instead of pattern matching to achieve this goal. Using identification and chaining of
gadgets similar to Q, Wollgast et al. [37] automate COP, which allows them to bypass
coarse-grained CFI implementations. Tackling the problem imposed by fine-grained
CFI solutions, Ispoglou et al. [6] propose an approach, BOPC, which automates data-
only attacks. Further improving this avenue, Schwartz et al. [7] propose a generic ap-
proach, Limbo, capable of constructing chains using ROP, JOP, COP, or DOP. Their
approach is similar to ours in the spirit of maintaining a generic approach to code-
reuse attacks. However, their focus is on the construction of CFI-compatible gadget
chains. Internally, their search relies on concolic execution and hard-coded heuristics.
In contrast, our approach does not tackle the problem of identifying CFI-aware gadgets
but maintains generality without relying on hard-coded heuristics. Further, Limbo only
works for 32-bit Linux executables, which limits their real-world applicability. As no
code is published, we cannot evaluate against Limbo.

8 Conclusion

In this paper, we presented a generic and flexible approach to automate the task of
finding gadget chains. With our prototype implementation, we have shown that SGC

outperforms state-of-the-art tools. It not only finds gadget chains where all other ap-
proaches fail but also allows to model complex constraints.
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Table 6: Encoding of memory reads of various sizes, returning a value from memory m at
address k.

Name SMT encoding

mem_read8(m, k) select(m, k)

mem_read16(m, k) concat(mem_read8(m, k),mem_read8(m, k + 1))

mem_read32(m, k) concat(mem_read16(m, k),mem_read16(m, k + 2))

mem_read64(m, k) concat(mem_read32(m, k),mem_read32(m, k + 4))

Table 7: Encoding of memory writes of various sizes, returning a memory with value v at
address k.

Name SMT encoding

mem_write8(m, k, v) store(m, k, v0:7)

mem_write16(m, k, v) mem_write8(mem_write8(m, k, v0:7), k + 1, v8:15)

mem_write32(m, k, v) mem_write16(mem_write16(m, k, v0:15), k + 2, v16:31)

mem_write64(m, k, v) mem_write32(mem_write32(m, k, v0:31), k + 4, v32:63)
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A Memory Modeling

Byte-wise memory reads and writes are modeled using single select and store operators,
respectively. Larger reads are modeled by concatenating multiple select expressions,
which we define recursively in terms of smaller read operations. Reads smaller than 64-
bit into a 64-bit register are zero-extended by using concat with the zero bit vector bv0.
Larger writes are similarly modeled using the composition of multiple store expressions.
Table 6 and 7 show memory accesses of various sizes. Given an array m, address k

and value v and bit size n ∈ (8, 16, 32, 64), we use the names mem_readn(m, k) and
mem_writen(m, k, v) to substitute the longer SMT expressions from these tables.
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206 /* RFC-6939 */
207 if ((opt = opt6_find(opts, end, OPTION6_CLIENT_MAC, 3)))
208 {
209 state->mac_type = opt6_uint(opt, 0, 2);
210 state->mac_len = opt6_len(opt) - 2;
211 memcpy(&state->mac[0], opt6_ptr(opt, 2), state->mac_len);
212 }

Figure 2: Vulnerable memcpy in file rfc3315.c triggering the overflow of the mac buffer in
struct state.

B dnsmasq CVE-2017-14493

In the following, we analyze the dnsmasq bug in more detail. The stack-based buffer
overflow in dnsmasq is caused by the absence of a length check of the data copied
to a static buffer on the stack. Figure 2 shows the vulnerable call to memcpy in func-
tion dhcp6_maybe_relay. Sending a malicious DHCPv6 packet allows an attacker to
gain control over the instruction pointer by overflowing the mac buffer of static size
DHCP_CHADDR_MAX (16) in the state structure present on the stack.

The proof-of-concept (PoC) provided alongside the bug report [30] builds up such a
DHCPv6 packet containing an OPTION6_CLIENT_MAC option holding data of excessive
length. While the PoC overwrites the instruction pointer with a dummy value, inject-
ing an arbitrary amount of bytes is possible. As long as the stack is not exhausted,
the packet’s content is copied and remains untouched until the instruction pointer is
overwritten.

In order to synthesize a gadget chain, the information needed to specify preconditions
and postconditions is gathered by extracting the program state before hijacking the
control flow through GDB. Table 8a shows the preconditions set for dnsmasq. The initial
ret instruction, which redirects the control flow to the chain’s first gadget (gadget_0),
is specified by preconditioning rip. The stack pointer rsp points to the part of the
controlled buffer, where the gadget chain will be copied. In the logical formula, this
stack area is a free variable.

Since we want to execute a system call to execve to spawn a shell, the final register
values which the gadget chain needs to reach are specified accordingly. Table 8b shows
the postconditions in preparation for calling execve(&"/bin/sh", 0, 0). Here, rip
holds the address of a syscall instruction available in the program. Using the default
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Table 8: Preconditions and postconditions used for dnsmasq. Registers not mentioned in the
preconditions are free variables, i. e., registers an attacker controls and can set to an arbitrary
value.

(a) Preconditions

Register Value

rip 0x33dfb

rax 0x223

rcx 0x0

rdx 0x5a

rdi 0x22

r8 0x7fffffffe0e0

r9 0x0

r10 0x7fffffffbc50

(b) Postconditions

Register Value

rip 0x461d0

rax 0x3b

rsi 0x0

rdx 0x0

rdi &"/bin/sh"

configuration described in Section 5.1, SGC finds a gadget chain consisting of four
gadgets within approximately 8m. While most gadgets are straightforward, gadget_3
(shown in Figure 3) writes a value to the stack outside the attacker-controlled buffer,
a side effect that does not harm the chain. The arithmetic operations of the first four
instructions do not change register rax’ value of 0. In line 6, the lea instruction is
used to add 0x5 to the value present in rbp = 0x55555559a1cb. The resulting address,
0x55555559a1d0, is a syscall instruction; the address is placed on the stack at address
0x7fffffffe240 present in register rbx. As this address is writable memory, no harm
results from this side effect.

As mentioned earlier, the PoC crafts a rogue DHCPv6 packet. In order to construct
the payload with our synthesized gadget chain, the length parameter is adjusted and
the dummy value is replaced with the data of the gadget chain. Sending this packet to
the dnsmasq DHCP server successfully spawns the shell.
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1 0x55555558a009:
2 movzx rax, ax
3 imul rax, ax, 0x1DCB
4 shr eax, 0x15
5 movzx eax, ax
6 lea rax, qword ptr [rax + rbp + 0x5]
7 mov qword ptr [rbx], rax
8 pop rbx
9 pop rbp

10 pop r12
11 ret

Figure 3: gadget_3 of the gadget chain used to spawn a shell in dnsmasq.
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Abstract

Software obfuscation is a crucial technology to protect intellectual property and manage
digital rights within our society. Despite its huge practical importance, both commer-
cial and academic state-of-the-art obfuscation methods are vulnerable to a plethora of
automated deobfuscation attacks, such as symbolic execution, taint analysis, or pro-
gram synthesis. While several enhanced obfuscation techniques were recently proposed
to thwart taint analysis or symbolic execution, they either impose a prohibitive runtime
overhead or can be removed in an automated way (e. g., via compiler optimizations).
In general, these techniques suffer from focusing on a single attack vector, allowing an
attacker to switch to other, more effective techniques, such as program synthesis.

In this work, we present Loki, an approach for software obfuscation that is resilient
against all known automated deobfuscation attacks. To this end, we use and efficiently
combine multiple techniques, including a generic approach to synthesize formally ver-
ified expressions of arbitrary complexity. Contrary to state-of-the-art approaches that
rely on a few hardcoded generation rules, our expressions are more diverse and harder
to pattern match against. We show that even the state-of-the-art approach on Mixed-
Boolean Arithmetic (MBA) deobfuscation fails to simplify them. Moreover, Loki pro-
tects against previously unaccounted attack vectors such as program synthesis, for
which it reduces the success rate to merely 19%. In a comprehensive evaluation, we
show that our design incurs significantly less overhead while providing a much stronger
protection level compared to existing works.
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1 Introduction

Obfuscation describes the process of applying transformations to a given program with
the goal of protecting the code from prying eyes. Generally speaking, obfuscation works
by taking (parts of) a program and transforming it into a more complex, less intelligible
representation, while at the same time preserving its observable input-output behav-
ior [1]. Usually, such transformations come at the cost of increased program runtime
and size, thus trading intelligibility for overhead. Although formal verification of code
transformations is hard to achieve in practice [2, 3], obfuscation is used in a wide range
of real-world scenarios. Examples include protection of intellectual property (IP), dig-
ital rights management (DRM), and concealment of malicious behavior in software.
Generally speaking, obfuscation protects critical (often small) code parts against re-
verse engineering and, thus, misuse by competitors or other parties. For example, most
contemporary DRM systems rely on some kind of obfuscation to prevent attackers from
distributing unauthorized copies of their product [4]. License checks and cryptographic
authentication schemes are examples for code that is commonly obfuscated in practice
to prevent analysis. Most copy-protection schemes used by games use some kind of
obfuscation to prevent unauthorized copies. As another example, market-leading com-
panies, such as Snapchat, obfuscate how API calls to their backend are constructed,
preventing abuse and access by competitors [5].

Among the countless obfuscation methods proposed in the literature [1, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20], one of the most promising techniques is Virtual
Machine (VM)-based obfuscation [9, 21]. State-of-the-art, commercial obfuscators such
as Themida [22] and VMProtect [23], as well as most game copy-protection schemes
used in practice [24, 25], make extensive use of VM-based obfuscation. They transform
the to-be-protected code from its original Instruction Set Architecture (ISA) into a
custom one, and bundle an interpreter with the program that emulates the new ISA.
This effectively breaks any analysis tool unfamiliar with the new architecture. Attackers
aiming to deobfuscate code affected by this scheme must first uncover the custom ISA
before they can reconstruct the original code [21, 26]. Since the custom instruction
sets are conceptually simple, VM-based obfuscation software usually applies additional
obfuscating transformations to the interpreter such that it is harder to analyze. For
example, dead code insertion or constant unfolding are often used. At their core, these

182



1 Introduction

transformations inflate the number of executed instructions and mainly add to the
code’s syntactic complexity, but can be successful in thwarting manual attacks.

However, it is often sufficient to apply well-known compiler optimizations, such as
dead code elimination, constant folding, or constant propagation, to reduce the code’s
syntactic complexity and enable subsequent analyses [27, 28]. We tested this hypothesis
and observe that this applies to the state-of-the-art tools Themida and VMProtect,
for both their fastest and strongest protection configurations: We found that a simple
dead code elimination manages to reduce the number of assembly instructions per
handler by at least 50% for five different targets, tremendously simplifying both manual
and automated analyses (cf. Table 1). Subsequently, the resulting code can be further
simplified using a wide range of automated techniques, including taint analysis [27, 29],
symbolic execution [27, 30], program synthesis [31, 32], and various others [21, 26, 28,
33, 34, 35, 36, 37, 38, 39, 40, 41].

The reliance on syntactic complexity in state-of-the-art obfuscation schemes and the
broad arsenal of advanced deobfuscation techniques sparked further research in the
construction of more resilient schemes that aim to impede these automated analyses.
Proposals were made to hinder taint analysis [42, 43] and render symbolic execution
ineffective [6, 12, 15, 16]. For example, the latter can be achieved by triggering a
path explosion for the symbolic execution engine by artificially increasing the number
of paths to analyze. Other promising obfuscation schemes emerged, including Mixed
Boolean-Arithmetic (MBA) expressions [6, 39, 44] that offer a model to encode arbi-
trary arithmetic formulas in a complex manner. The expressions are represented in a
domain that does not easily lend itself to simplification, effectively hiding the actual
semantic operations. Usually, automated approaches to deobfuscate MBAs are based
on symbolic simplification [35, 36, 37, 39]; they rely on certain assumptions about the
expression’s structure, making them unfit to simplify such expressions in the general
case. Other approaches are based on program synthesis [31, 32, 45], which have been
proven highly effective for most tasks. In general, synthesis-based deobfuscation tech-
niques remain unchallenged to date and are valuable methods for automated analysis
of obfuscated code. Recent works aiming at simplifying MBA turned towards machine
learning [46] and algebraic simplification [47]. Especially the latter approach, relying
on a hidden two-way feature between 1-bit and n-bit variables used within MBAs,
provides an automated attacker with unprecedented MBA deobfuscation capabilities.
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Table 1: VM handler statistics for Themida, VMProtect, and our approach called Loki.
The two commercial obfuscators are configured in their fastest (Virtualization and Tiger
White) and strongest configuration (Ultra and Dolphin Black), but without additional se-
curity features (e. g., anti-debug). We track their handlers’ average number of assembly and
intermediate language (IL) instructions before and after dead code elimination (denoted as
the percentage-wise reduction in parentheses). All values are averaged over five cryptographic
algorithms (AES, DES, MD5, RC4, and SHA-1).

VMProtect Themida Loki

Statistics Virtualization Ultra Tiger White Dolphin Black

Assembly instructions 69 (−50.79%) 73 (−51.58%) 219 (−53.68%) 243 (−56.01%) 222 (−1.14%)
IL instructions 75 (−50.88%) 80 (−51.89%) 221 (−53.76%) 247 (−55.94%) 234 (−1.44%)

Handlers executed 46,591 151,303 83,191 290,815 4,123
. . . of them unique 274 4,578 204 337 55

In this paper, we introduce a novel and comprehensive set of obfuscation techniques
that can be combined to protect code against all known automated deobfuscation at-
tacks, while imposing only reasonable overhead in terms of space and runtime. Our
techniques are specifically designed such that a human analyst gains no significant ad-
vantage from employing automated deobfuscation techniques, including compiler opti-
mizations (cf. Table 1), forward taint analysis, symbolic execution, and even program
synthesis (cf. Section 6). We explicitly assume scenarios where these techniques are
specifically tailored to our design (white-box scenario).

To achieve such protection, we propose a generic algorithm to synthesize formally
verified, arbitrarily complex MBA expressions. This is in strong contrast to state-of-
the-art approaches that rely on a few handwritten rules, greatly limiting their effective-
ness. For example, given 7, 000 VM handlers, Tigress—the state-of-the-art academic
obfuscator—uses only 16 unique MBAs, while our design features ~5, 500 unique MBAs.
As a result, our MBAs are highly unlikely to be simplified: In fact, current state-of-
the-art MBA deobfuscation tools such as MBA-Blast [47] can only simplify 0.5% of
Loki’s MBAs. Furthermore, we conduct the first conclusive analysis of the limits of pro-
gram synthesis with regard to deobfuscation. Based on the resulting insights, we present
a hardening technique capable of impeding program synthesis, reducing its success rate
to 19%—for Tigress, it is 67%. In summary, we present a new design featuring both
high diversity and resilience against static and dynamic, automated deobfuscation at-
tacks. While providing more value, our design incurs significantly less overhead com-
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pared to commercial, state-of-the-art obfuscation schemes (up to 40 times). Moreover,
we port modern testing techniques, i. e., formal verification and fuzzing, to our de-
sign and show that complex combinations of obfuscation transformations benefit from
such methods to assert the correctness of complex and non-deterministic obfuscation
transformations.

Contributions. We make the following contributions:

• We present the design, implementation, and evaluation of Loki, a software ob-
fuscation approach resilient against all known automated deobfuscation attacks,
even in white-box scenarios.

• We introduce a generic approach to synthesize diverse and formally verified Mixed
Boolean-Arithmetic (MBA) expressions of arbitrary complexity that withstand
even current state-of-the-art deobfuscation attacks.

• We are the first to propose an approach resilient against program synthesis-based
attacks and map out limits of program synthesis in an empirical evaluation.

We publish the source code of Loki as well as all evaluation artifacts (including test
cases, binaries, and evaluation tooling) at https://github.com/RUB-Syssec/loki.
An extended version of this paper with more technical details is available as a technical
report [48].

2 Technical Background

We start by providing an overview of the required technical information on obfuscation
and deobfuscation techniques.

2.1 VM-based Obfuscation

Virtual machine-based obfuscation, also known as virtualization, protects code by trans-
lating it into an intermediate representation called bytecode. This bytecode is inter-
preted by a CPU implemented in software, adhering to a custom instruction set archi-
tecture (ISA). An attacker must first reverse engineer this software CPU, a tedious and
time-consuming task [21, 26]. Only after understanding the VM, they can reconstruct
the original high-level code.
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VM Interpreter. The original, unprotected code is replaced with a call to the VM
entry that invokes the interpreter. It sets up the initial context of the VM and points
it to the bytecode that is to be interpreted. This is implemented by the VM dispatcher
using a fetch-decode-execute loop: first, it fetches the next instruction, decodes its
opcode, and then transfers execution to the respective VM handler. Often, the handler
is determined via a global handler table that is indexed by the opcode. After handler
execution, the control flow returns to the VM dispatcher. Eventually, execution finishes
by invoking a special VM exit handler aborting the loop.

Abstraction of Handler Semantics. Handlers are often semantically simple [21,
31]; they perform a single arithmetic or logical operation on a number of operands, e. g.,
x ⊙ y. We call the semantic function of a handler, i. e., the underlying instruction it
implements, its core semantics. We can represent core semantics as a function f(x, y),
or more general as f(x, y, c) where c is a constant. To measure the syntactic complexity
of the core semantics, we compute the (syntactic) expression depth of f as the sum
of all variable occurrences and operators. In contrast, the semantic depth refers to the
syntactic depth of the syntactically shortest equivalent expression. Intuitively, it can
be understood as the number of nodes in an Abstract Syntax Tree (AST).

Example 4: We can represent a VM handler’s core semantics x+y as f(x, y, c) := x+y

with a syntactic depth of 3. A syntactically more complex function g(x, y, c) := x+ y−
x+ c− c has a syntactic depth of 9 but a semantic depth of 1, since g can be simplified
to g(x, y, c) := y.

Superoperators. Superoperators [49] are an approach to make handlers semanti-
cally more complex. Intuitively, this is achieved by combining different instruction se-
quences from the unprotected code into a single VM handler. Usually, these sequences
compute independent results such that this VM “superhandler” computes multiple, in-
dependent VM handlers in a single step. As a consequence, superoperators often have
multiple input and output tuples. Related to our function abstraction, we can say the
function fs((x0, y0, c0), . . . , (xn, yn, cn)) computes an output tuple (o0, . . . , on), where xi,
yi, ci and oi represent the core semantics’ inputs/output of a semantically simple VM
handler. While originally developed to minimize the number of handlers executed to
improve performance, superoperators have been used by obfuscators such as Tigress

primarily for obtaining more complex VM handlers.
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2.2 Mixed Boolean-Arithmetic

Mixed Boolean-Arithmetic (MBA) describes an approach to encode expressions in a
syntactically complex manner. The goal is to hide underlying semantics in syntactically
complex constructs. First described by Zhou et al. [6], MBA algebra connects arithmetic
operations (e. g., addition) with bitwise operations (e. g., logical operations or bitshifts).
The resulting expressions are usually hard to simplify symbolically [39, 50], since, for
every expression, an infinite number of syntactic representations exists. In general, the
task of reducing MBA expressions—known as arithmetic encodings [12]—to equivalent
but simpler expressions is NP-hard [6].

Example 5: f(x, y, c) := x+ y and g(x, y, c) := (x⊕ y) + 2 · (x ∧ y) are semantically
equivalent. Both implement the same core semantics, but g uses a syntactically more
complex representation, called MBA.

3 Automated Deobfuscation Attacks

In the following, we detail common techniques used to analyze obfuscated code.
Forward Taint Analysis. Forward taint analysis follows the data flow of so-called

taint sources, e. g., input variables, and marks all instructions as tainted that directly or
indirectly depend on these sources [26, 27, 29, 51]. Taint analyses are implemented with
varying granularity, referring to the smallest unit they can taint. Common approaches
use either bit-level or byte-level granularity. Forward taint analysis can be used to
reduce obfuscated code to the instructions depending on user input. The underlying
idea is that important semantics rely only on the identified taint sources. All other code
constructs, e. g., as added by an obfuscator, can be omitted in an automated matter.
Still, if these constructs perform calculations on the user input, taint analysis can be
mislead [42, 43].

Example 6: In Figure 1, assume eax is a taint source. The analysis taints the first,
third, and fourth instruction since they propagate a taint source. It does not taint the
second instruction. While its value is later used in tainted instructions, it does not
directly depend on eax.

Backward Slicing. Contrary to forward taint analysis, backward slicing is a back-
ward analysis. Starting from some output variable, it recursively backtracks and marks
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1 mov edx, eax ; edx1 := eax1
2 mov ecx, 0x20 ; ecx1 := 0x20
3 add edx, ecx ; edx2 := edx1 + ecx1
4 add edx, 0x10 ; edx3 := edx2 + 0x10

Figure 1: An assembly code snippet used to illustrate forward taint analysis, backward slicing,
and symbolic execution.

all input variables on which the output depends [27, 52, 53]. In code deobfuscation,
slicing can be used to find all instructions that contribute to the output. Applied to
VM handlers, it allows to strip all code not directly related to a handler’s core seman-
tics. Similar to forward taint analysis, increasing the number of dependencies (e. g., by
inserting junk calculations to the output) reduces the usefulness of slicing.

Example 7: When backtracking the value of edx (line 4 in Figure 1) by following each
use and definition, each instruction is marked as they all contribute to the output.

Symbolic Execution. Symbolic execution allows to summarize assembly code al-
gebraically. Instead of using concrete values, it tracks symbolic assignments of registers
and memory in a state map [51]. Often, it works on a verbose representation of code,
called intermediate language (IL). Symbolic executors usually know common arithmetic
identities and can perform basic simplification, e. g., constant propagation. Applied to
code obfuscation, symbolic execution is used to symbolically extract the core seman-
tics of VM handlers [40], track user input in an execution trace [27, 30, 41], or detect
opaque predicates (in combination with SMT solvers) [38]. Typically, techniques to
impede symbolic execution aim at artificially increasing the syntactic complexity of
arithmetic operations (via MBAs) or the number of paths to analyze (triggering a
so-called path explosion) [12, 16].

Example 8: After symbolic execution of Figure 1, we obtain the following mappings:
eax maps to itself (it has not been modified), ecx maps to 0x20 (line 2). The formula
for edx is eax+0x20+0x10. Using arithmetic identities, the symbolic execution engine
can simplify the expression to eax+ 0x30.

Program Synthesis. In contrast to other techniques that rely on syntactic anal-
ysis of obfuscated code, program synthesis-based approaches operate on the semantic
level. They treat code as a black box and attempt to reconstruct the original code
based on the observable behavior, often represented in the form of input-output sam-
ples. Approaches such as Syntia [31] and Xyntia [45] attempt to find an expression
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with equivalent behavior by relying on a stochastic algorithm traversing a large search
space. Other approaches, e. g., QSynth [32], are based on enumerative synthesis: they
compute large lookup tables of expressions which they use to simplify parts of an ex-
pression, reducing its overall complexity. For code deobfuscation, these approaches are
used to simplify syntactically complex constructs (e. g., MBAs) or to learn semantics of
VM handlers. However, program synthesis struggles with finding semantically complex
expressions.

Example 9: Consider the function f(x, y, c) := (x⊕ y) + 2 · (x∧ y). To learn f ’s core
semantics, we generate random inputs and observe f(2, 2, 2) = 4, f(10, 13, 10) = 23,
and f(16, 3, 0) = 19. A synthesizer eventually produces a function g(x, y, c) := x+y that
has the same input-output behavior. Notably, it learns that parameter c is irrelevant.

Ideally, superoperators provide such expressions. However, our experiments (cf. Sec-
tion 6.3) demonstrate that current designs (e. g., as used by Tigress) are still vulner-
able; since superoperators combine different core semantics (represented as individual
inputs/output tuples), an attacker can synthesize each core semantics separately by
targeting each output oi.

Semantic Codebook Checks. A semantic codebook contains a list of expressions
that an attacker expects to exist within obfuscated code. For a syntactically complex
expression f , an attacker checks if f is semantically equivalent to an expression g in
the codebook by using an SMT solver [54]. If the SMT solver cannot find an input
distinguishing f and g, it formally proved they behave the same for all possible inputs.
A typical application scenario are VM handlers: They often implement a simple core
semantics (e. g., x+ y) [21, 31]. Thus, an attacker can construct a codebook based on
simple arithmetic and logical operations. As codebooks must contain the respective se-
mantics, increasing the semantic complexity of expressions requires an (exponentially)
larger codebook, making the approach infeasible for a practical application.

Example 10: Consider a function f(x, y, c) := (x ⊕ y) + 2 · (x ∧ y) and a codebook
CB := {x− y, x · y, x+ y, . . . }. An attacker can consecutively pick an entry g(x, y, c) ∈
CB and verify whether f = g using an SMT solver. To this end, the solver searches an
assignment that satisfies f(x, y, c) ̸= g(x, y, c). Only for g(x, y, c) := x + y no solution
can be found. Thus, the attacker proved that f can be reduced to a syntactically shorter
expression, x+ y.
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4 Design

We envision a combination of obfuscation techniques where the individual techniques
harmonize and complement each other to thwart automated deobfuscation attacks.
In line with this philosophy, we now present a set of generic techniques where each
constitutes a defense in a particular domain. However, when these techniques are ef-
fectively combined, they exhibit comprehensive protection against automated attacks.
To achieve lasting resilience, we focus on inherent weaknesses underlying existing au-
tomated attack methods, instead of targeting specific shortcomings of a given imple-
mentation. We further underline our techniques’ generic nature by discussing their
application on an abstract function f(x, y, c) as introduced in Section 2.1. Next, we
first discuss the design principles of our approach, present the attacker model, and
afterwards explain the individual techniques in detail.

4.1 Design Principles

We have seen outlined automated attack methods can succeed in extracting a func-
tion f ’s core semantics (cf. Section 3). To mitigate these attacks, our design is based
on three principles: (1) merging core semantics, (2) adding syntactic complexity, and
(3) adding semantic complexity. In the following, we present techniques incorporating
these principles and discuss their purpose as well as synergy effects emerging for our
overall design.

Merging Core Semantics. Our first technique extends f by merging different,
independent core semantics to increase the complexity. This can be understood as
combining different, independent VM handlers in a single handler, or—in a more generic
setting—combining different semantic operations of an unprotected unit of code in a
single function f . The merge is facilitated in such a way that each core semantics
is always executed. Still, as these semantics are independent of each other, we must
ensure they are individually addressable, i. e., f ’s output is equivalent to the result of
a specific core semantics. To allow the selection of the desired semantics, we extend
the function definition to f(x, y, c, k), where k is a key selecting the targeted core
semantics. Formally, the selection is realized by introducing a point function ei(k),
called key encoding, that is associated with a specific core semantics and returns 1 only
for its associated key, 0 for other valid keys. This guarantees that the original semantics
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are preserved. A consequence of this interlocked, “always-execute” nature is that taint
analysis and backward slicing fail to remove all semantics in f not associated with a
specific k.

Example 11: We want to design a function f that returns, based on a distinguishing
key, either x+ y or x− y. We write this as f(x, y, c, k) := e0(k)(x+ y) + e1(k)(x− y)

where ei(k) can be any point function returning 1 for the associated k and 0 otherwise,
for example e0(k) := k == 0xdead. Assuming that e0(k) returns 1 and e1(k) yields 0,
f returns x+ y.

Adding Syntactic Complexity. Assuming merged semantics using different key
encodings, an attacker can still differentiate between key encoding and core semantics
for a given function f , as ei(k) operates only on the key while the core semantics use
x, y, and c. At the same time, a dynamic attacker with knowledge of k can employ
symbolic execution to simplify f to the core semantics associated with the known k

by arithmetically nullifying operations not contributing to the result. To prevent such
an attack, we increase the syntactic complexity by adding Mixed Boolean-Arithmetic
(MBA) formulas to key encodings as well as core semantics.

Symbolically executing these syntactically complex formulas creates no meaningful
expressions. Even though modern symbolic execution engines feature simplification
rules for basic arithmetic identities and laws, there exists an unlimited number of
MBA representations. In general, simplifying such an expression to its syntactically
smallest representative is NP-hard [6].

Example 12: For f(x, y, c, k) := e0(k)(x+y)+ e1(k)(x−y), we can replace x+y with
(x⊕y)+2 · (x∧y), x−y with x+¬y+1, and replace the multiplication of e1(k)(x−y)

with the rule (a∧ b) · (a∨ b) + (a∧¬b) · (¬a∧ b) for a · b, resulting in the final function
f(x, y, c, k) := e0(k)((x⊕ y) + 2 · (x ∧ y)) + (e1(k) ∧ (x+ ¬y + 1)) · (e1(k) ∨ (x+ ¬y +
1)) + (e1(k) ∧ ¬(x+ ¬y + 1)) · (¬e1(k) ∧ (x+ ¬y + 1)).

To exploit this weakness of symbolic execution and provide a high diversity, we
synthesize and formally verify MBAs instead of using hardcoded rules. This addition-
ally complicates pattern matching and increases the number of instructions marked by
forward taint analysis and backward slicing.

Adding Semantic Complexity. One of the remaining problems are semantic at-
tacks, for example, a dynamic attacker that uses input-output behavior to learn an
expression equivalent to the core semantics (e. g., via program synthesis). Therefore,
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we increase the core semantics’ complexity by applying the concept of superopera-
tors (cf. Section 2.1). These superoperators make core semantics arbitrarily long and
increase the search space for semantic attacks drastically.

Example 13: Instead of using core semantics of depth 3 (e. g., x+ y), we apply more
advanced core semantics such as (x+y) ·(x⊕y)) with depth 7 or ((x ·c)≪ (y∨(x⊕c)))

with depth 9, resulting in f(x, y, c, k) := e0(k)((x + y) · (x ⊕ y)) + e1(k)((x · c) ≪
(y | (x⊕ c))).

While superoperators increase the semantic and syntactic complexity of core seman-
tics, we further extend their syntactic complexity using MBAs. Their synergy addi-
tionally diminishes the effect of automated attacks.

4.2 Attacker Model

Intuitively, we envision a strong attacker to measure how our obfuscation scheme fares
under worst-case conditions. For this purpose, we assume that an attacker has access
to all automated attacks (cf. Section 3).

We assume an attacker has access to the target binary that includes at least one
well-defined unit of obfuscated code at a known location. In line with our previous
abstraction, we say this code unit can be represented by a function f(x, y, c, k). The
attacker’s goal is to reconstruct the core semantics of f associated with a specific k. We
require the reconstructed semantics to (1) contain only the core semantics associated
with the specified k and (2) be comparable to the original code’s semantics in terms
of syntactic complexity. The intuition behind these constraints is to exclude trivial
solutions such as providing the unmodified function f itself (which contains, amongst
others, the core semantics for the required k).

Further, we assume two types of attackers, a static and a dynamic one. The static
attacker knows the precise code locations of x, y, c, and k as well as the location
of function f ’s output. As a result, they can enrich static analyses, e. g., by defining
these code locations as taint sources. A dynamic attacker extends the former by the
ability to inspect and modify the values at these code locations. In particular, they
can observe any key k and propagate it to remove core semantics not associated with
this k. While a dynamic attacker is more powerful (in terms of accessible information),
certain analysis scenarios such as code running on specific hardware (e. g., embedded
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devices), analysis on function-level without context, or the presence of techniques like
anti-debugging [55, 56] may rule out dynamic analysis in practice.

4.3 Key Selection Diversification

We want to prevent static attackers from learning the core semantics via semantic
codebook checks and prevent identification of patterns in the key selection. To do so, we
employ two different key encoding schemes: Key selection based on (1) the factorization
problem, and (2) synthesized partial point functions. To conduct a semantic codebook
check, an attacker uses an SMT solver to check for each entry of the codebook whether
it is semantically equivalent to f . Assuming that f indeed includes a matching core
semantics, the SMT solver has to find a value for k such that the corresponding ei(k)

evaluates to 1. One way to prevent this is to design a key encoding that relies on
inherently hard problems for the SMT solver, such as factorization.

Factorization-based Key Encoding. Factorization of a semiprime n (the product
of two primes, p and q) is an inherently hard problem as long as the size of the factors
are large enough (commonly, a few thousand bits). SMT solvers prune the search space
by learning partial solutions for a given problem [57], but since no partial solutions
exist for factorization, they are forced to perform an exhaustive search.

We define our factorization-based key encoding as ei(k) := (n mod k) ≡ 0 where k is
a valid 32-bit integer representing one of the two factors (k ̸∈ {1, n}). As our evaluation
shows, this encoding suffices to stall SMT solvers. However, its distinct structure makes
pattern matching attempts easy. To increase diversity, we use MBAs and a second key
encoding.

Partial Point Functions. Instead of restraining our set of key encodings to a
specific type, we synthesize generic point functions without any predefined structure.
This is based on the insight that the ei(k) impose only a single constraint: they must be
defined for all valid keys (returning 1 for their associated one, 0 for others). Invalid keys
may return arbitrary values, making our synthesized functions partial point functions.
Consequently, we are not restricted to specific point functions, such as the factorization-
based encoding, but can use arbitrary point functions fulfilling this constraint.

Given a grammar containing ten different arithmetic and logical operations (such as
addition, multiplication, and logical and bitwise operations), we generate expressions by
chaining a randomly selected operation with random operands. This operand is either
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an arbitrary key byte or a random 64-bit constant. We chain at most 15 operations to
limit the overhead resulting from this expression. Finally, we check if the synthesized
expression satisfies the point function’s constraint.

Example 14: Let (k0, k1, k2) := (0x1336, 0xabcd, 0x11cd) be a set of keys. Then, we
synthesize the point function e0(k) := ((0xff ∧ k) ⊕ 0xcd) · 0x28cbfbeb9a020a33 for a
64-bit vector k. e0(k) evaluates to 1 for k0 and to 0 for k1 and k2. For all other keys,
it returns arbitrary values.

4.4 Syntactic Complexity: MBA Synthesis

To thwart symbolic execution and pattern matching, we use MBAs for all components,
including core semantics and key encodings. As hardcoded rules only provide low di-
versity, we precompute large classes of semantically equivalent arithmetic expressions
and combine them through recursive, randomized expression rewriting. We now detail
the creation of the equivalence classes and discuss our term rewriting.

Equivalence Class Synthesis. To create semantic equivalence classes for expres-
sions, we rely on enumerative program synthesis [58, 59]. To this end, we first define
a context-free grammar with a single non-terminal symbol S as start symbol and two
terminal symbols, x and y, representing variables. For each arithmetic operation, we
define a production rule that maps the non-terminal symbol to arithmetic operations
(e. g., addition) or terminal symbols. To apply a specified production rule to a non-
terminal expression, we replace the left-most S with the rule. Expressions without a
non-terminal symbol can be evaluated by assigning concrete values to x and y. We say
that the depth of an expression represents the number of times a non-terminal symbol
was replaced by a production rule.

Example 15: The grammar ({S},Σ = V ∪O,P, S) with the variables V = {x, y}, the
set of arithmetic symbols O = {+,−} and the production rules P = {S → x | y | (S +

S) | (S − S)} defines the syntax of how to generate terminal expressions. To derive
the expression x+y of depth 3, we apply the following rules: S → (S+S)→ (x+S)→
(x + y). With a mapping of {x 7→ 2, y 7→ 6}, we can evaluate the terminal expression
to 8.

We now describe how we use our context-free grammar in combination with Algo-
rithm 1, which illustrates the high-level approach of equivalence class synthesis. Starting
with a worklist of non-terminal states (initialized with the start symbol S), we itera-
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Algorithm 1: Computing equivalence classes.
Data: n is the maximum depth.

1 states ← {S}
2 for d← 1 to n do
3 terminals ← derive_terminals(states)

4 process_terminals(terminals)

5 non_terminals ← derive_non_terminals(states)

6 states ← non_terminals

tively process all expressions for a certain depth until we reach a specified upper bound
depth N . For a given depth, we derive all terminal and non-terminal expressions (also
referred to as states) before processing the terminals and then repeating the process for
the next depth. The call to process_terminals is responsible for sorting the expres-
sions into the respective equivalence classes. To this end, we evaluate all expressions
for a high number of different inputs (e. g., 1, 000), recording their output. Expressions
with the same output behavior for all provided inputs are sorted into the same equiv-
alence class. This provides an effective but coarse-grained sorting of expressions into
potential equivalence classes. In a final step, we verify that these classes are semanti-
cally correct. For this, we choose the member with the smallest depth as representative
and check with an SMT solver that all other members are semantically equivalent to
this representative. Expressions failing this check are removed from the equivalence
class. All remaining expressions are formally proven to not alter the original semantics.

To prune the search space and avoid trivial expressions (e. g., x+0), we symbolically
simplify each terminal and non-terminal expression. For this purpose, we apply a nor-
malization step to commutative operators, perform constant propagation, and simplify
based on common arithmetic identities (e. g., x+ y − y becomes x).

Expression Rewriting. So far, we generated a large set of diverse equivalence
classes we can use for replacing syntactically simple expressions with more complex
ones. A naive approach replacing expressions with MBAs from the equivalence classes is
bounded by the largest depth found in the respective class. To overcome this limitation,
we propose a recursive expression rewriting approach using the equivalence classes as
building blocks. This allows us to create expressions of arbitrary syntactical depth. Even
assuming an attacker is in possession of all rewriting rules, it is difficult to invert an
expression: Term rewriting is inherently destructive [60]. Without knowing the applied
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rewriting rules and their order, an attacker has to check all possibilities: n rewriting
rules applied over m layers, resulting in the prohibitively large number of nm candidates.

Given some expression e, we pick a random subexpression and check if it is a member
of an equivalence class. If it is, we randomly choose another member from this class and
use it to replace the picked subexpression within e. We recursively repeat this process
for a randomly determined upper bound n. As all members within an equivalence class
are proven to be pairwise equivalent, each replacement is guaranteed to produce an
equivalent expression. Consequently, the final expression is provably equivalent to the
first.

Example 16: Assume that we want to increase the syntactic complexity of e := (x +

y) + z with the upper bound n = 2. First, we randomly choose the subexpression x+ y.
We then pick another member of the same equivalence class—(x⊕ y)+ 2 · (x∧ y)—and
replace it in e. In this case, we obtain e := ((x⊕ y) + 2 · (x∧ y)) + z. In a second step,
we choose x⊕y, pick the semantically equivalent member (x∨y)−(x∧y) and replace it
again. The final MBA-obfuscated expression is e := (((x∨y)− (x∧y))+2 · (x∧y))+z.

Empirical testing showed that for an initial expression the randomly picked subex-
pressions would often be short, causing the resulting recursive rewriting to be very
local in nature rather than considering all of the expression. The previous example
illustrates this behavior. Considering the expression as an abstract syntax tree (AST),
we twice replaced deeper parts of the AST while ignoring the top-level operation (addi-
tion with z). Consequently, subsequent iterations would be even less likely to pick the
high-level operation, considering the wealth of other operations to pick from. Therefore,
the AST would be significantly unbalanced. To avoid this, we prefer selecting top-level
operations in the first loop iterations.

4.5 Semantic Complexity: Superoperators

Up to this point, f ’s core semantics have a rather low semantic complexity (e. g.,
x+ y). To thwart semantic attacks, we use a variation of superoperators that increase
the semantic complexity. The intention is to significantly increase the search space
for an attacker: For example, assume a set of three variables V and a set of six binary
operations O: For semantic depth 3 (e. g., x+y), an expression contains m = 2 variables
and n = 1 operations, such that an attacker has to brute-force at most |V |m ∗ |O|n =

32 ∗ 61 = 54 possibilities. For depth 7 (e. g., ((x + y) · (x ⊕ c))), they must try up to
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34 + 63 = 17, 496 different expressions (or 314, 928 for depth 9). In other words, the
search space grows exponentially, making semantic code book checks as well as program
synthesis infeasible.

However, common superoperator strategies, e. g., as used by Tigress [61], are not
resilient against these attacks (cf. Section 6.3). They usually include independent core
semantics, each having their own output; this causes the handler to have multiple,
independent outputs, which an attacker can target individually. As each core semantics
itself usually implements only a single operation [21, 31] (e. g., x+y with semantic depth
3) attacking one such superoperator is similar to attacking a series of regular handlers.
To avoid this pitfall, we design our superoperators to preserve the signature of f (a
single output and x, y, c and k as inputs) while providing a high semantic depth. In
other words, our superoperators consist of a chain of core semantics that depend on
each other and must be executed sequentially: The output of the core semantics is used
as input for subsequent core semantics; the last core semantics produces the output of
the handler. Even if an attacker is aware of these superoperators, they cannot split a
handler into multiple separate synthesis tasks and forces them to synthesize the whole
expression.

On a technical level, we construct superoperators based on data-flow dependen-
cies, more precisely use-definition chains based on static single assignment (SSA) [62]:
Given an unprotected code unit in form of instructions in three-address code, we as-
sign a unique variable to each variable definition and replace subsequent variable uses
with its latest definition on the right-hand side (called SSA form). Then, we build
superoperators by first randomly picking variables on the right-hand side and then
replacing these uses by their respective variable definitions recursively. By choosing
lower and upper limits for the recursion bound, we can control the superoperators’
semantic depth. To further increase the syntactic complexity, we apply our MBAs.

Example 17: Assume we have three sequential instructions (Figure 2, l. 1-3) imple-
menting semantically simple operations; each represents an individual core semantics.
Notably, the first instruction’s output serves as input for the second and third. Sim-
ilarly, the second instruction is an input to the third. To create a superoperator that
implements a semantically more complex operation, we transform the code into SSA
form, (randomly) pick b1 in the third instruction and replace this use by its definition
(l. 2), yielding d2 := (a * d1) | d1. When picking d1, we replace it by its definition
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1 d := a + b ; d1 := a + b
2 b := a * d ; b1 := a * d1
3 d := b | d ; d2 := b1 | d1

Figure 2: Three different core semantics, each implementing a simple operation. On the
right-hand side, the SSA form of the respective expressions.

(l. 1) accordingly, transforming the expression into d2 := (a * (a + b)) | (a + b).
While the initial expressions have a semantic depth of 3, the superoperator’s depth is
9.

Intuitively, replacing a use by its respective definition is guaranteed to preserve the
semantics, as variable assignments are immutable in SSA form. Additionally, we prove
the rewritten superoperator is equivalent to the original code with symbolic execution.

4.6 Synergy Effects

To summarize, each of our components thwarts specific deobfuscation attacks: MBAs
tackle symbolic execution and pattern matching, while the nature of f with its multiple
core semantics, selected via a key, prevents taint analysis and backward slicing from re-
moving irrelevant semantics. Further, superoperators increase the semantic complexity,
throwing off semantic attacks.

As indicated, especially the combination of our techniques prevents automated deob-
fuscation attacks: They do not only co-exist but have beneficial synergy effects, which
in turn improve the overall resilience of the combination. For example, our MBAs
weaken pattern matching on all levels, including key encodings, and cause the differ-
ences between key encoding and core semantics to blur. Besides the syntactic confusion
introduced, we can propagate the core semantics into the key encoding and vice versa.
For instance, we may use MBAs that extend the key check with the variables x or y

using arithmetic identities that do not alter the key check itself. At the same time,
MBAs benefit from superoperators given they provide ample opportunity to pick and
replace subexpressions.

4.7 Verification of Code Transformations

Obfuscation generally modifies the syntactic representation of code; thus, it is crucial
to verify that it does not change the code’s semantic behavior. One can achieve this by
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checking if the transformed code is semantically equivalent to the original one. While
this works well for short sequences of instructions (e. g., by using SMT solvers) within
a reasonable amount of time, it does not scale to complex programs. In such cases, the
industrial state of the art approximates these guarantees by using extensive random
testing [63, 64].

For our design, we choose the best applicable verification method to ensure correct-
ness: For individual components, we use formal verification to prove their correctness
(cf. Sections 4.3, 4.4, 4.5). To improve the confidence of the correctness of the com-
bination, we use an approach similar to black-box fuzzing [65, 66], where we compare
the I/O behavior of the original and transformed code for a user-configurable number
of random inputs, usually ranging from 1, 000 to 10, 000. These are randomly sampled
depending on the type expected by the program (e. g., ASCII strings, random 64-bit
integers, or known edge cases such as 0 or 0xff..ff), which needs to be specified by the
user. Crucially, we rely on human insight and careful specification of the input domain
such that the sampled inputs cover the full program functionality. We apply this fuzzing
both on the binary level as well as on the intermediate representation; for the former,
we compare the compiled versions of the unprotected and protected programs, while
we emulate the program’s intermediate representation before and after transformations
for the latter. As a consequence of our handlers’ interlocked, always-execute nature, we
achieve full code coverage and path coverage both on the intermediate representation
as well as on the binary level for all handlers needed to represent the original code.

5 Implementation

To evaluate our techniques, we implement a VM-based obfuscation scheme named Loki

on top of LLVM [67] (version 9.0.0) and a code transformation component written in
Rust. Loki consists of ~3,100 LOC in C++ and ~8,700 LOC in Rust. In this scheme,
each function f(x, y, c, k) is represented by one of our 510 handlers. In other words,
each handler can implement any semantic operation that requires no more than two
input variables and one constant. Our handlers support the inclusion of three to five
core semantics (randomly chosen at creation time), which can be addressed by setting
k accordingly. Besides these 510 handlers, we have a VM exit and a handler managing
memory operations. The control flow between handlers is realized as direct threaded
code [68], i. e., each handler inlines the VM dispatcher. Our VM assumes a 64-bit
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architecture. Code operating on smaller bit sizes is semantically upcasted to guarantee
correctness.

Our approach to obfuscate real-world code consists of three major steps: Lifting,
code transformation, and compilation. The lifting starts with a given C/C++ input
program that contains a specified function to protect. We then translate this function
to LLVM’s intermediate representation (IR) and use various compiler passes to op-
timize the input and unroll loops as our prototype does not support control-flow to
reduce engineering burden. Note that this is no inherent limitation of our approach, but
a simplification we made as LLVM’s passes sufficed in creating binaries that our pro-
totype implementation can process. Finally, we lift the resulting LLVM IR to a custom
IR which the code transformation component internally operates on. This component
(a) parses the lifted representation of the targeted function, (b) creates superoperators
based on this input (with recursion bound 3 to 12), (c) instantiates the VM handlers,
applies our obfuscation techniques (e. g., MBAs), and verifies them. For MBAs, we use
a random recursive expression rewriting bound between 20 and 30. We choose from a
pre-computed database of 843, 467 MBAs (all expressions up to a depth of 9), split over
48 equivalence classes. In each class, there are roughly 17,500 entries on average. To
exemplify the dimensions: An attacker has to try up to nm

Loki = 843, 46730 = 6.1 ∗ 10177

possibilities to simplify our MBAs; Based on our reverse engineering efforts, state-of-
the-art obfuscator Tigress features only 47 hand-crafted rules (that are not applied
recursively), such that an attacker has to evaluate nm

Tig = 471 = 47 possibilities. (d) Fi-
nally, the Rust component generates the VM bytecode and translates the handlers back
into LLVM IR. Then, obfuscated and original code are compiled with -O3 and verified.

6 Experimental Evaluation

Based on our prototype implementation, we evaluate if our approach can withstand
automated deobfuscation techniques (resilience), while maintaining correctness and
imposing only acceptable overhead (execution cost). Overall, we follow the evaluation
principles outlined by Collberg et al. [69].

All experiments were performed using Intel Xeon Gold 6230R CPUs at 2.10 GHz with
52 cores and 188 GiB RAM, running Ubuntu. Our obfuscation tooling uses LLVM [67]
(v. 9.0) and the SMT solver Z3 [70] (v. 4.8.7). For tracing coverage, we rely on Intel
Pin [71] (v. 3.23). Our deobfuscation tooling is based on Miasm [72] (commit 65ab7b8),
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Triton [73] (v. 0.8.1), and Syntia [31] (commit e26d9f5). We use our prototype of
Loki and the academic state-of-the-art obfuscator, Tigress [61] (v. 3.1), to obfus-
cate five different programs, each implementing a cryptographic algorithm: AES, DES,
MD5, RC4, and SHA1. This is a common approach: the first three are based on an
obfuscation data set provided by Ollivier et al. [16]; the others are adapted from ref-
erence implementations [74, 75]. These algorithms are representative for real-world
scenarios in which cryptographic algorithms are used to guard intellectual property
(e. g., hash functions used for checksums in commercial DRM systems) [4]. In a case
study, we obfuscate VLC’s DVD decryption routine to show how Loki can be applied
onto real-world use cases. Where necessary, we adapt the programs slightly to allow
Loki to process them (cf. Section 5) without modifying their functionality. Tigress’
configuration [48] resembles our design and works on the same source code files.

6.1 Benchmarking

Our goal is to benchmark the correctness and cost of our obfuscator. We do so by
conducting a series of experiments, measuring the overhead in terms of runtime and
disk size as well as verifying the correctness of transformed code. For each obfuscator,
we create 1, 000 obfuscated instances for each of the five targeted programs and use
them for all experiments. The overhead comparison is given as factor relative to the
original, unobfuscated program compiled with -O3. To measure the MBA overhead, we
create another 1, 000 obfuscated instances without any MBAs for Loki.

Experiment 1: Correctness. For each target, we verify that all 1, 000 obfuscated
instances produce the same output as the original program for more than 1, 000, 000 in-
puts. To obtain a uniform distribution over varying input lengths of our cryptographic
targets, we create 10, 000 random inputs for each supported input length l ∈ [16; 128].
Additionally, we test a number of edge cases ∈ {0x0...0, 0xff...ff, 0x80...00, 0x00...01,
0xaa...aa, 0x55...55} (or their cartesian product if two inputs are required). This amounts
to a total of 1, 134, 068 inputs, for which we assert equal input-output behavior.

All obfuscated binaries (both those with and without MBAs) exhibit exactly the
same behavior for the 1, 134, 068 inputs tested.

Experiment 2: Code Coverage and Path Coverage. To further increase confi-
dence in our correctness tests, we measure both the code coverage and the path coverage
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that the inputs from Experiment 1 achieve on the to-be-protected code both for the
original program and obfuscated instances.

We find that each of the more than 1, 000, 000 inputs from Experiment 1 achieves full
code coverage and full path coverage. This ensures that our inputs cover the complete
behavior of the code we obfuscate and that our obfuscation transformations have not
altered this behavior.

Experiment 3: Overhead. For each target, we measure the average execution run-
time. To this end, each target wraps the to-be-protected code in a single function, which
is called 10, 000 times per input. We then execute each obfuscated binary for 1, 000

random inputs, recording the collected timings. We also compare the original program’s
disk size to the average of the obfuscated binaries.

As evident from Table 2, the runtime overhead ranges from a factor of 301 to 482

compared to the original program’s execution time. While this overhead may appear
excessive—also in comparison to Tigress—state-of-the-art commercial obfuscation
generally imposes an even larger slowdown, up to ten times more than Loki (cf. Ta-
ble 2, [76]). We re-run this experiment on the 1, 000 binaries without MBAs to evaluate
their impact. On average, they are responsible for ~39% of the overhead. Similar for the
disk size, the obfuscated programs are 18 to 51 times larger than the original ones. Size-
wise, MBAs cause ~33% of the overhead. For further details of our MBAs’ overhead,
we refer to the Technical Report [48]. Compared to Themida and VMProtect, our
obfuscating transformations generate almost always smaller programs, while Tigress

always produces significantly smaller binaries.

Overall, we conclude that our overhead is moderate in comparison to commercial
state-of-the-art obfuscators. For further discussion, we refer to Section 7. Tigress’
overhead is impressively small, but it falls short in providing comprehensive protection
as the following experiments show.

Case Study: VLC with libdvdcss. To showcase the practical feasibility of Loki

in real-world scenarios, we obfuscate the DecryptKey function in libdvdcss [77]; this
component of VLC [78] is responsible for decrypting the multimedia content of DVDs
keys. The underlying idea is to protect the decryption algorithm from the prying eyes
of crackers and protect intellectual property. However, the vast majority VLC’s code
is irrelevant to content decryption, such that there is no need to obfuscate the whole
libdvdcss library or even the whole media player. After obfuscating the DecryptKey
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Table 2: Runtime and disk size overhead as factors relative to the non-obfuscated binaries
(compiled with O3). (w/o = without)

Time Factor Size Factor
AES DES MD5 RC4 SHA1 AES DES MD5 RC4 SHA1

VMProtect
Virtualization 2,489 1,859 1,982 1,321 2,524 37 21 40 44 40
Ultra 8,925 9,152 13,047 5,806 15,411 47 37 57 59 53

Themida
Tiger White 1,388 622 203 240 552 58 38 58 58 59
Dolphin Black 11,695 5,052 2,428 3,634 8,354 67 47 85 63 84

Loki 386 301 357 482 386 33 18 39 37 51
w/o MBA 236 185 204 315 233 21 13 25 26 32

Tigress 261 51 101 58 111 3 4 2 2 3

function, which is called before the actual media content is played, we measure the
execution time of the function during initial startup, when the DVD is decrypted.
We average the results over ten executions. We find that without obfuscation, the
function is executed in 2, 952 nanoseconds, while with obfuscation, the decryption lasts
937, 606 nanoseconds. Overall, Loki slows down the initialization by one millisecond, a
negligible cost for protecting one’s intellectual property, especially if the to-be-protected
function is only called in the application’s startup phase.

6.2 Resilience

We evaluate whether our techniques can withstand automated deobfuscation approaches.
To this end, we analyze the impact of syntactic and semantic attacks against the ob-
fuscated code in the presence of both static and dynamic attackers. We design all
experiments by assuming the strongest attacker model. To this end, we test each com-
ponent individually, therefore ignoring beneficial synergy effects. Where applicable, we
first evaluate our techniques on a general design level before testing their concrete
implementations. The former serves as universal evaluation of a technique’s resilience,
while the latter demonstrates that this also holds when actually implemented on the
binary level.

LokiAttack. Fundamentally, attacking the obfuscated VM on the binary-level
has two stages: (1) Identifying a specific handler within the VM, and (2) attacking
(simplifying) this particular handler as far as possible. For our evaluation, especially (2)
is interesting, as all our techniques focus on hardening individual handlers. As such, we
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develop a custom attack framework that we call LokiAttack. It is specifically tailored
to the attacked obfuscators and automates the first stage: It identifies all VM handlers
and provides the attacker (for each handler) with access to the handler parameters
(x, y, c, and—for Loki—k). For a dynamic attacker, it also provides concrete values
for these parameters. Finally, LokiAttack uses symbolic execution to obtain all code
paths through the intermediate representation (IR) of the O3-optimized VM code that
depend on an unknown (static attacker) or known (dynamic attacker) value of k (for
Loki). For each such path, an attacker can launch the actual attack on the handler
(stage 2), for which LokiAttack provides a number of techniques implemented as
plugins, e. g., taint analysis, symbolic execution, or program synthesis. To implement
LokiAttack, we use Miasm; the plugins for stage 2 are based on Triton (byte-
level taint analysis), Miasm (bit-level taint analysis, backward slicing, and symbolic
execution), and Syntia (program synthesis). These plugins include costly operations
(SMT solving, program synthesis, and symbolic execution), from which some may run
for several days. As our evaluation consists of more than 300, 000 analysis tasks, we
limit each one to 1 hour to keep the analysis time manageable. This is a common
use-case and in-line with previous work on deobfuscation [31, 38, 45].

6.3 Evaluation of Key Encodings

We evaluate whether a static attacker can obtain a specific core semantics using seman-
tic codebook checks. Note this experiment is only applicable to Loki as Tigress has no
concept of key-based selection of core semantics. Assume that the function f(x, y, c, k)

includes x + y as one of its core semantics. Then, an attacker can use an SMT solver
to find a value for k such that f is semantically equivalent to g(x, y, c) := x+ y. On a
technical level, we employ an approach called Counterexample-Guided Abstraction Re-
finement (CEGAR) [79, 80] that relies on two independent SMT solvers: While SMT
solver A tries to find assignments for all variables (including k) such that f and g

produce the same output, solver B tries to find a counterexample for this value of k
such that f and g behave differently. Then, A uses the counterexample as guidance.

Experiment 4: Hardness of Key Encodings. We generate 1, 000 random instances
of our factorization-based key encoding and synthesize 10, 000 point functions. Then,
we apply the CEGAR approach independently to both key encodings and check if the
SMT solver finds a correct value for k.
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We observe that the SMT solver found no correct key for the factorization-based
encoding, but hit the 1h timeout in all cases. Considering the point function-based key
encoding, Z3 managed to find a value for k in 6, 932 cases (~69%). On average, it found
the solution in 284s (excluding timeouts). We conclude that an SMT solver struggles
with our factorization-based key encoding, while point functions often can be solved.
Recall though that point functions primarily serve to diversify and erase discernible
patterns to impede pattern matching.

Experiment 5: Key Encoding on Binary Level. To verify if our implementation
properly emits these key encodings, we generate 1, 000 binaries that contain one specific
handler which includes x+y as one of its core semantics. These binaries contain neither
MBAs nor superoperators. Assuming a static attacker uses CEGAR, we check in how
many cases the SMT solver finds a correct value for k.

Using LokiAttack, we obtain the handler’s instructions and use our CEGAR plu-
gin based on Z3 to find a value for k, such that these instructions are semantically
equivalent to x + y. While hitting the timeout in 690 cases, Z3 managed to find a
correct value for k in 310 cases (31%). The SMT solver needed, on average, 444s to
find the solution (excluding timeouts). Overall, we conclude that our key encodings
indeed pose a challenge for a static attacker relying on SMT solvers.

Note that this component is special within our system, as its approach specifically
targets only static attackers. This is due to the fact that dynamic attackers can trivially
observe a value for k. While a dynamic scenario is not always possible, another attack
vector could be to offload 64-bit integer factorization to custom tools (assuming an
attacker manages to locate the key encodings, which in itself is a non-trivial task given
our MBAs and point functions). Thus, our key encodings can be considered to be
our weakest component. However, our design assumes that an attacker can retrieve a
value for k, but we try to make this as hard as possible. The syntactic simplification
experiments show that knowledge of a key k is beneficial but not sufficient to simplify
any handler.

Syntactic Simplification. In the following, we evaluate whether syntactic sim-
plification techniques—namely, forward taint analysis, backward slicing, and symbolic
execution—succeed in extracting a core semantics associated with a specific key, ei-
ther by trying to identify instructions not contributing to a function f ’s output or
by symbolically simplifying f . We use LokiAttack as a basis and conduct the re-
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Table 3: Statistics for backward slicing and forward taint analysis (TA), averaged over 7, 000
handlers. Unmarked instruction can be removed as irrelevant. (Unmark. = not tainted / not
sliced; Dyn. = dynamic attacker)

Byte-level TA Bit-level TA Slicing
Static Dyn. Static Dyn. Static Dyn.

L
o
k
i IR paths 1,950 199 1,451 168 1,656 179

Unmark. 17.49% 17.50% 17.61% 17.62% 5.49% 7.57%
Time [s] 556 58 710 78 630 67

T
ig

r
es

s IR paths 1 1 1
Unmark. 44.70% 44.70% 22.35%
Time [s] 1.3 1.6 1.4

spective attack in stage 2 for both a static and a dynamic attacker. We assume that
an attacker is given a binary containing seven handlers, f0(x, y, c, k), · · · , f6(x, y, c, k)),
each containing between 3 and 5 core semantics. Further, each handler fi contains one
predefined core semantics from the set {x + y, x − y, x · y, x ∧ y, x ∨ y, x ⊕ y, x ≪ y}
that an attacker wants to identify via syntactic simplification. As sample set for our
experiments, we generate 1, 000 binaries protected by MBAs but without superopera-
tors, amounting to 7, 000 handlers to analyze. For each binary, we use LokiAttack

to extract all handlers; for each handler, LokiAttack provides us with the parame-
ter locations (and values for the dynamic scenario) and all code paths. For each code
path (a list of instructions), we then use the respective stage 2 plugin. We apply the
following experiments also to 7, 000 Tigress handlers (with disabled superoperators),
respectively.

Experiment 6: Forward Taint Analysis. For each of the 7, 000 handlers, we con-
duct a forward taint analysis with byte-level and bit-level granularity. The former is
based on Triton, while the more precise bit-level taint analysis is implemented on top
of Miasm. In general, higher precision is expected to produce fewer false positives and
result in fewer tainted instructions. Recall that an attacker’s goal is to identify all in-
structions that do not belong to the core semantics associated with a specific key. Using
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taint analysis, an attacker can remove all instructions not depending on x, y, c, or k

(in a dynamic scenario: on a concrete value for k).

The resulting data is shown in Table 3 (where unmarked instructions refer to instruc-
tions that are not tainted, i. e., instructions that can be removed). The results show two
interesting insights: First, the granularity has negligible impact on the results (differ-
ence of 0.12%). Second, the number of tainted instructions is almost equal for a static
and a dynamic attacker. This is surprising as for Loki the number of visited paths in
the IR’s control-flow graph is significantly lower in the dynamic setting. Intuitively, this
means a dynamic attacker has better chances of removing more instructions. However,
our results show that the sole benefit of a dynamic attacker is spending less time per
handler. In numbers, an attacker is always able to only remove about ~18% of a han-
dler’s assembly instructions. Manually inspecting the instructions not tainted revealed
that these can always be put into two categories: Either they are part of the inlined
VM dispatcher that is responsible for loading the next handler (which is independent
of the current handler’s semantics), or it is an instruction loading a constant value be-
fore it interacts with tainted instructions (comparable to Example 6). To summarize,
forward taint analysis fails to remove a single instruction that is related to the core
semantics or key encodings. For Tigress, on the contrary, only one IR path exists,
meaning the handlers are short and simplistic in nature. No difference between bit
and byte-wise taint analysis exists; overall, an attacker succeeds in removing 45% of
instructions—significantly more than for Loki.

Experiment 7: Backward Slicing. Besides forward taint analysis, an attacker can
use backward slicing to identify all instructions that contribute to a handler’s output. We
again consider both a static and dynamic attacker trying to reduce each handler to the
core semantics associated with a specific k by removing as many unrelated instructions
as possible. Our backward slicing approach is based on Miasm and operates on the
same 7, 000 handlers as Experiment 6.

The results are denoted in Table 3, where an unmarked instruction refers to an
instruction that was not sliced, i. e., it does not contribute to the output. Other than
for taint analysis, a dynamic attacker has a slight advantage compared to a static
attacker (2.08%), as they slice slightly fewer instructions. While the static attacker
marks all instructions but the inlined dispatcher, our manual inspection revealed that
dynamic analysis skips some IR paths depending on irrelevant key values. Compared
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Table 4: Symbolic execution for semantic depth 3 and 5, each averaged over 7, 000 handlers.
(Simplified = percentage of handlers simplified)

Depth 3 Depth 5
Static Dynamic Static Dynamic

Loki

IR paths 4,960 559 5,450 703
Simplified 0% 17.93% 0% 14.64%
Time [s] – 94 – 168

Tigress

IR paths 1 –
Simplified 30.61% –
Time [s] 1.4 –

to forward taint analysis, backward slicing marks more instructions, i. e., it removes
fewer instructions (~7% vs. ~18%). This is due to the backward-directed nature of the
approach, which allows it to slice instructions loading constant values. We conclude
that backward slicing is technically more precise than forward taint analysis, but fails
to remove instructions belonging to the core semantics or key encodings. For Tigress,
slicing succeeds to remove significantly more instructions, however, less than taint
analysis. This is again due to the loading of constant values.

Experiment 8: Symbolic Execution. Besides removing instructions not contribut-
ing to the output, an attacker can use symbolic execution to extract a handler’s core
semantics. To this end, a symbolic executor uses simplification rules to syntactically
simplify the handler’s semantics as much as possible. We use the same 7, 000 handlers
as Experiment 6. We analyze each handler independently with Miasm’s symbolic exe-
cution engine and measure whether it can be simplified to the original core semantics.

We model both a static and more powerful dynamic attacker. In the latter scenario,
the attacker observes a value for k and thus can nullify all core semantics not related
to this specific k. Hence, they obtain a much simpler expression containing only the
desired core semantics, albeit in syntactically complex form (due to MBAs). Recall
that for the 7, 000 handlers, the semantic depth of the core semantics is always 3 (e. g.,
x + y). This intentionally weakens resilience, as superoperators with a higher depth
naturally increase both semantic and syntactic complexity. To show this, we create
another 7, 000 handlers (1, 000 binaries à 7 core semantics) with a semantic depth of 5
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(e. g., x+ y + c) and repeat this experiment. We cannot create handlers of depth 5 for
Tigress, as it is not possible to explicitly set the handler’s semantic depth.

All results are shown in Table 4. Notably, a static attacker fails to simplify any
of Loki’s handlers. Without knowing a value for k, an attacker has to analyze the
expression containing all key encodings and their associated core semantics. In other
words, an attacker fails to nullify irrelevant core semantics. To significantly simplify
the handler, a static attacker has to find a valid key first (reducing the problem to
Experiment 5). A dynamic attacker, on the other hand, only has to simplify the MBAs
as they already identified the core semantics associated with the key. For depth 3, they
succeed in removing all MBAs for ~18% of Loki’s handlers, while, for Tigress, ~31%
of the handlers can be simplified. In other words, an attacker can simplify significantly
more handler for Tigress than for Loki. For a more realistic depth of 5—subsequent
experiments show ~80% of Loki’s handlers are at least of depth 5—the attacker’s
success rate is even lower, namely ~15%. This percentage implies that a number of
expressions can be simplified regardless of the higher base depth. This may be the
case, e. g., when the random combination of applied MBAs cancels itself out. Still,
this demonstrates our synergy effects are indeed helpful to prevent an attacker from
symbolically simplifying the core semantics, leaving them with a complex MBA that
conceals the actual semantics.

We conclude that our MBAs are successful in thwarting symbolic execution, one of
the most powerful deobfuscation attacks. For a more detailed analysis of how a user
of Loki can trade performance against reducing the attacker’s success chances even
further (to 6.79%), refer to the Technical Report [48].

Experiment 9: Diversity of MBAs. An attacker tasked with removing such MBAs
may investigate whether a diverse number of expressions exists for the same core se-
mantics. If this is not the case, they can manually analyze each MBA and extend the
symbolic executor’s limited set of simplification rules by rewriting rules to “undo” spe-
cific MBAs. To this end, we assume a dynamic attacker that already symbolically sim-
plified the expression as far as possible without any MBA-specific simplification rules.
We do this for each handler type (recall that the 7, 000 handlers of depth 3 consist
of 7 different core semantics à 1, 000 handlers) and then analyze how many different,
unique MBA expressions exist.
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Our analysis reveals that, in summary, Loki generates 5, 482 unique MBAs for the
7, 000 expressions analyzed (78.31%), while Tigress creates only 16 (~0.23%) unique
MBAs. Thus, an attacker adding 16 rules to their symbolic executor could simplify
all core semantics. This difference can be explained by the fact that Tigress uses
only a few handwritten rules to create MBAs, while Loki features a generic approach
to synthesize MBAs. To further highlight the difference between both approaches, we
repeat this experiment for another set of 7, 000 handlers—created in the same con-
figuration but with different random seeds—and calculate the intersection of unique
MBAs. Tigress re-uses exactly the same 16 MBAs, while Loki re-uses 109 expressions
but generates 5, 299 new unique MBAs (i. e., 10, 781 unique MBAs in total). Creating
simplification rules specific to Loki is a tedious task (given the high number of unique
MBAs) that does not pay off when analyzing other obfuscated instances. For a dis-
cussion of what an attacker can achieve when they are in possession of all available
MBA rewriting rules, refer to Section 7. We conclude that Loki’s MBAs are superior
to state-of-the-art approaches relying on a small number of hardcoded MBAs, both in
terms of resilience and diversity.

State-of-the-art MBA Deobfuscation. A number of approaches for MBA simpli-
fication have been proposed, most notably SSPAM [36], arybo [37], NeuReduce [46],
and MBA-Blast [47]. The deployed techniques range from pattern matching-based
simplification over machine learning to algebraic simplification. Regardless of the un-
derlying technique, they all share one major drawback: They expect the MBAs to be
available on the source code level in form of a formula, such as “x + y - y”, rather than
dealing with them on the binary level. As a consequence, these deobfuscation tools
lack support for MBAs using different bit sizes and operations such as zero-extension
or sign-extension. Furthermore, they assume that the MBAs are free of constants and
more complex arithmetic operations, such as multiplication or left-shifts. In contrast to
these limitations and assumptions, Loki’s MBAs not only employ all these operators
but also contain constants, thus making a fair, direct evaluation of our MBAs contained
in binaries difficult. To avoid these pitfalls, we use Loki’s term rewriter to generate
simpler MBAs—called artificial MBAs—and emit them as a formula rather than de-
ploying them in the binary. We make the following artificial restrictions: We (a) emit
no constants, (b) do not intertwine the MBAs with the key encoding, (c) remove any
information (or operation) relating to size casts, and (d) avoid complex, unsupported
operations such as multiplications or left-shifts. Instead, the resulting MBAs are a for-
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mula containing only the following operations {+,−,∧,∨,⊕}. While this significantly
weakens Loki’s MBAs, aforementioned state-of-the-art MBA deobfuscation techniques
can now process these artificial MBAs, allowing a fair evaluation. For NeuReduce,
we use the Gated Recurrent Unit (GRU)-based Long Short-Term Memory (LSTM)
model provided by the authors. We further adapt MBA-Blast to recursively attempt
simplification for subexpressions. MBA-Blast cannot deal with nested arithmetic ex-
pressions; only expressions on the root level of the expression’s abstract syntax tree
may contain arithmetic operators. All subexpressions must consist purely of Boolean
operators. As our MBAs are highly nested, we apply the respective tool recursively on
each subexpression until it cannot simplify the expression any longer. We considered
evaluating arybo [37]; however, we noticed it does not terminate for 64-bit expres-
sions within one hour. Further, arybo outputs truth tables in form of expressions
representing the relations between different bit positions. Its goal is aiding a human
analyst rather than automated simplification. Thus, we exclude it from the following
experiment. As a baseline, we port our deobfuscation tooling, LokiAttack with the
SE plugin, to the source level: We first use aggressive compiler optimizations (“-O3”)
to simplify the MBA and then—as a stage 2 plugin—symbolically summarize it using
Miasm’s symbolic execution engine. This is the same approach as has been used for
the previous experiments.

Experiment 10: MBA Formula Deobfuscation. For each core semantics from
the set {x + y, x − y, x ∧ y, x ∨ y, x ⊕ y}, we use Loki to generate 1, 000 artificially
simplified MBAs on the source code level. We do this for each recursive term rewriting
bound from [1, 30] (during normal operation, Loki’s rewriting bound is randomly chosen
between [20, 30]). In summary, we generate 5, 000 MBAs per rewriting bound, i. e.,
150, 000 obfuscated expressions in total. We then pass each MBA to the deobfuscation
tools MBA-Blast, NeuReduce, SSPAM, and LokiAttack and observe how many
expressions they can simplify to the ground truth.

The number of simplified expressions, averaged over the five different core seman-
tics, are depicted in Figure 3. As the data shows, our custom deobfuscation tooling,
LokiAttack, significantly outperforms all state-of-the-art deobfuscation techniques.
NeuReduce can only simplify a handful of expressions in total. One limitation is
that it can only work with inputs up to 100 characters; however, our artificial MBAs
with a rewriting bound of 20 contain, on average, 7, 960 characters (after removing all
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Figure 3: Number of artificial MBAs that have been successfully simplified (averaged over
5 different core semantics). The gray-shaded area marks the recursive rewriting bounds ran-
domly picked by Loki for our regular MBAs.

whitespaces). We have tried a similar approach as we have employed for MBA-Blast,
however, found it does not improve its accuracy. Studying their dataset used to train
the model, we believe that their approach heavily overfits on the training data, a set
of simple and short (on average 75 characters without whitespace) MBAs. SSPAM

fails to deal with the highly recursive nature of our MBAs, frequently hitting the stack
recursion limit. MBA-Blast performs better and manages to simplify a number of
simple MBAs. However, the success rate of all tools decreases with a higher term rewrit-
ing bound. Loki’s default is to use a random recursive rewriting bound between 20

and 30, for which all but LokiAttack fail to simplify basically any MBA. For exam-
ple, MBA-Blast simplifies only 157 of 55, 000 MBAs for Loki’s recursive rewriting
bounds, [20, 30]. While the success rate of LokiAttack may seem high, recall that we
artificially weakened these MBAs by excluding a number of operations and removing
all constants; Experiment 8 evaluates how LokiAttack with the symbolic execution
plugin performs on our regular MBAs.

Semantic Attacks. Semantic attacks such as program synthesis exploit the low
semantic depth of individual core semantics. We evaluate the impact of our superop-
erators on these attacks. First, we analyze the average semantic complexity of core
semantics with and without superoperators. Then, we perform a high-level experiment
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Figure 4: The distribution of core semantics with and without superoperators.

to measure the general limits of synthesis-based approaches. Finally, we demonstrate
that our superoperators withstand synthesis-based attacks on the binary level. Note
that we only consider a dynamic attacker in the following, as knowing a value for k is
a prerequisite for any reasonable semantic attack. A static attacker would only learn
random behavior, as the key encodings are only valid for a predefined set of keys.

Experiment 11: Complexity of Core Semantics. To evaluate our superoperators’
distribution and their impact on the complexity of core semantics, i. e., their semantic
depth, we create 1, 000 obfuscated binaries without superoperators as a baseline for
each benchmarking target (cf. Section 6.1) and 1, 000 binaries with superoperators.
We compare the two sets on the average number of unique core semantics and their
semantic depths. To simplify evaluation, no MBAs are used.

Without superoperators, each binary on average contains 15.8 core semantics. With
superoperators, this number increases to 58.8. Additionally, Figure 4 shows that super-
operators have a significantly higher semantic depth, usually ranging from 5 to 13 with
a clearly visible peak at depth 9. Compared to obfuscation without superoperators,
where only a few core semantics with semantically low complexity are used, superoper-
ators increase the number of unique core semantics and their semantic depth notably.
This makes the task of synthesizing semantics more difficult.

Experiment 12: Limits of Program Synthesis. We evaluate how the success rates
of program synthesis relate to semantic complexity. We generate 10, 000 random expres-
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Figure 5: The probability to synthesize a valid candidate for formulas of depth N . The error
bars are calculated as the 99.9% confidence interval for the true probability.
sions for each semantic depth between 1 and 20 and measure how many of them can
be synthesized successfully. Modeling our function f , we use Syntia’s grammar [31]
to generate random expressions depending on three variables. Based on the authors’
guidance, we set Syntia’s configuration vector to (1.5, 50000, 20, 0) and use it to
synthesize each expression.

Figure 5 shows that simple expressions can be synthesized quite easily; at a semantic
depth of 7, only ~50% can be synthesized. For larger semantic depths, it becomes
increasingly unlikely to synthesize expressions. Given our results from Experiment 11,
we conclude that our superoperators produce core semantics of sufficient depth to
impede program synthesis.

Experiment 13: Superoperators on Binary Level. To evaluate the impact of pro-
gram synthesis, we assume a dynamic attacker has extracted a handler’s core semantics
(for Loki: associated with a known value of k). They then use Syntia—configured as
in Experiment 12—to learn an expression having the same input-output behavior. We
create 400 obfuscated binaries (without MBAs, with superoperators) for each bench-
marking target (cf. Section 6.1), randomly pick 10, 000 core semantics and measure
Syntia’s success rate.

Overall, using Syntia as a stage 2 plugin on top of LokiAttack, we managed
to synthesize 1, 888 (~19%) of Loki’s expressions and 6, 779 (~68%) of Tigress’ ex-
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pressions. On average, it took 157s to synthesize an expression for Loki and 144s
for Tigress. The results show that—while both designs employ superoperators—it
is crucial how these superoperators are crafted. As outlined in Section 2.1, Tigress

usually includes independent core semantics, allowing the attacker to split the superop-
erators into multiple smaller synthesis tasks, each of low semantic complexity. On the
other hand, Loki’s design ensures that its superoperators cannot be split into smaller
tasks but have high semantic depths. In summary, Loki is the first obfuscation design
showing sufficient protection against program synthesis, an attack vector all state-of-
the-art obfuscators fail to account for. Given Loki’s synergy effects and high resilience
against syntactic simplification approaches, semantic deobfuscation techniques remain
an attacker’s last resort. However, even when using program synthesis, arguably the
strongest semantic attack, an attacker can only recover less than a fifth of Loki’s core
semantics.

7 Discussion

Overhead. Table 2 indicates that the overhead of code obfuscation is generally ex-
cessive. However, this cost is accepted in practice because only small, critical parts of
the whole program need to be protected (e. g., proprietary algorithms, API accesses,
or licensing-related code). As a result, the overhead has to be seen in relation to the
whole program. As our case study shows for libdvdcss, using obfuscation only for crit-
ical, well-chosen code parts has no negative impact on the usability of the respective
program (here VLC).

MBA Database. Assuming an attacker intends to symbolically simplify MBAs,
they may benefit from using a lookup table mapping complex MBAs to simpler expres-
sions. This approach is effective for state-of-the-art obfuscators such as Tigress that
only use a limited number of hardcoded rewriting rules (cf. Experiment 9). Loki, in
contrast, is the first obfuscator that employs a generic approach to synthesize highly di-
verse MBAs, resulting in a large number of MBAs (stored in a database for performance
reasons). Users of Loki can keep their MBA database (including the synthesis limit up
to which MBAs were synthesized) private. In fact, users could choose arbitrary lower
and upper limits as well as completely different grammars to create an MBA database.
Without knowing the parameters, a re-creation of the database is not feasible. That
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said, even in cases where an attacker is in possession of the MBA database, there is no
straightforward process to reverse the recursively generated expression (cf. Section 4.4).

Attacker Model. Our evaluation assumes a strong attacker model with significant
domain knowledge and access to all kinds of static and dynamic analyses. In practice,
an attacker is often weaker. Especially without prior knowledge about the given obfus-
cation techniques, the usage of additional techniques (e. g., VM bytecode blinding [31]
or range dividers [12]) and other countermeasures (e. g., self-modifying code [11] or
anti-debugging techniques [81]) complicates analysis.

Human Attacker. Ultimately, code obfuscation schemes are usually broken by hu-
man analysts [21]. This is partly because humans excel at recognizing patterns and
adapt to the given obfuscation [82]. Collberg et al. [1] define potency to denote how
confusing an obfuscation is for a human analyst. Due to the difficulty of measuring a hu-
man’s capability with regard to deobfuscation, we restrict our evaluation to automated
attacks. We argue that without automated techniques, analysis becomes subjectively
harder. Nevertheless, we believe that pattern matching might be the most potent at-
tack on our approach. While we use a fixed structure, we argue that our MBAs remove
identifiable patterns. Still, we are not aware of an adequate way of measuring this.
However, even if we assume that a human attacker breaks one obfuscated instance,
other instances remain hard. This is as our design samples from large search spaces for
its critical components, providing significant diversity for MBAs and superoperators.
In summary, we expect Loki to perform reasonably well against human attackers even
if this cannot be easily quantified.

8 Related Work

Over the years, a large number of obfuscation techniques were proposed [1, 4, 6, 7,
8, 9, 10, 11, 12, 13, 14, 16, 17]. Many of these techniques are orthogonal to our work
and focus on one specific transformation. For an overview over the field of obfuscation,
we refer the interested reader to the overview by Banescu and Pretschner [83]. In the
following, we discuss techniques closest to our work.

MBA. Zhou et al. introduced the concept of Mixed Boolean-Arithmetic (MBA) to
hide constants and calculations within complex expressions. While conceptually sim-
ple, this approach proved effective against many analysis techniques, such as symbolic
execution. As a consequence, a number of approaches towards deobfuscating MBAs
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were proposed, including pattern matching (SSPAM [36]), symbolic simplification us-
ing a Boolean expression solver (arybo [37]), program synthesis (Syntia [31], Xyn-

tia [45], QSynth [32]), machine learning (NeuReduce [46]), and algebraic simplifica-
tion (MBA-Blast [47]). While those techniques are effective against common MBAs,
Loki’s generic approach to synthesize diverse MBAs produces expressions resilient
against such attacks (cf. Section 6).

VM Obfuscation. Our prototype implementation Loki uses a VM-based architec-
ture to showcase our techniques. However, we make no attempt at obfuscating the VM
structure itself, which we consider orthogonal to our work. Examples for such work in-
clude virtual code folding, where the mapping between opcodes and individual handlers
is obfuscated to impede static analyses [18, 19, 20, 84]. While they use dynamic keys
to determine the next handler, we use keys within our handlers to select a specific core
semantics. With regard to deobfuscation, approaches such as VMHunt [85], VMAt-

tack [86], and others [26, 34] may succeed in reconstructing Loki’s VM structure
(similar to LokiAttack). However, they cannot recover individual handler semantics,
since they rely on techniques such as symbolic execution and backward slicing, for
which Loki is resilient against by design.

Thwarting Symbolic Execution. With regard to thwarting symbolic execution-
based deobfuscation approaches, early work by Sharif et al. [87] already proposed key-
based encodings to make path exploration infeasible. Later approaches extend on this
work by introducing multi-level opaque predicates (so-called range dividers) [12] or
artificial loops [16]. Loki extends these ideas: it does not only make path exploration
infeasible, but also prevents symbolic simplification attacks due to its MBAs.

Thwarting Program Synthesis. Program synthesis is one of the most powerful
attack vectors [31, 45]. Concurrent work [45] proposes a search-based program synthesis
approach outperforming Syntia. However, the authors note that merging handlers and
increasing a handler’s semantic complexity proved effective in thwarting such attacks.
This is in line with our evaluation.

9 Conclusion

In this paper, we present and extensively evaluate a set of novel and generic obfuscation
techniques that, in combination, succeed to thwart automated deobfuscation attacks.
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