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AN EXTENSION OF A THEOREM OF JORDAN AND VON NEUMANN

LEONARD M. BLUMENTHAL

1. Introduction. Let { E } denote the class of generalized euclidean spaces

E (that is, E (I { E \ provided all finite dimensional subspaces of E are euclidean

spaces). The problem of characterizing metrically the class { E \ with respect to

the class { B } of all Banach spaces has been solved in many different ways. x

Fre'chet's characteristic conditions [δ]

was immediately weakened by Jordan and von Neumann [6] to

( * * ) l l p t + p 2 I I 2 + I I P I - P 2 H 2 = 2 C I | P l ||2 + l l P a | | 2 ) ( P l , p 2 G B ) .

This relation has now become a kind of standard to which others repair by show-

ing that it is implied by newly postulated conditions [3,4, 10], and it has been,

apparently, the motivation of work in which it does not enter directly [ 7 , 9 ] ,

Perhaps the best possible result in this direction, however, is due to Aronszajn

[ 1 ] who assumed merely that

| | ( χ + y ) / 2 | | = - 0 ( | | * | | , | | y | | , | | * - y | | (*,y G B ) ,

with φ unrestricted except for being nonnegative and φ ( r , 0 , r ) = r , r >_ 0.

These conditions, and others like them, are all equivalent in a Banach

space, for each is necessary and sufficient to insure the euclidean character

of all subspaces. In a more general environment, however, this is not the case,

and so the desirability of making a comparative study of such conditions in

more general spaces is suggested. In this note the larger environment is fur-

nished by the class { M } of complete, metrically convex and externally convex,

This note deals exclusively with norrned linear spaces over the field of reals.
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162 LEONARD M. BLUMENTHAL

metric spaces, of which the class of Banach spaces is a very special sub-

class,^ After giving purely metric interpretations of those conditions that we

shall discuss (in order that they might be meaningful in spaces of class \M\)

we are chiefly concerned with showing that the Jordan-von Neumann relation

(**) characterizes class | E } among the class {M},3 This is true, a fortiori9

for Fre'chet's condition (*) also, but an easy example shows that the inequality

used in Schoenberg [10] is not so extensible,

2. Metrization of the Jordan-von Neumann relation and comparison with other

four-point conditions. Writing (**) in the form

we see that the length | | ( p χ + p 2)/2 | | of the median of the triangle with ver-

tices θ, pχ9 p2 ( θ denotes the null element of B) is the same function of the

lengths | | p ι | | , \\p2 | | , | | p ι - p 2 | | of the sides of the triangle that it is in

euclidean space. Since any three elements x9 y9 z of B are superposable with

θy pι=y -x, p2=z -x (the middle-element (y + z ) / 2 of y, z being carried

into ( p ι + p )/2, the middle-element of pι$p2) we have the following metric

interpretation of (**): ( f ) every four elements p9 q9 rf s of B with q a middle-

element of p9 r (that is9 pq = qr = pr/2) are congruentlγ imbeddable in the

euclidean plane E%*

In this formulation, the Jordan-von Neumann criterion is meaningful in every

metric space and may, therefore, be compared with other so-called four-point

conditions that antedated it,

A metric space has the euclidean kφoint property provided each ά-tuple of

its elements is congruently contained in a euclidean space (and hence in an

£&.i). Observing that every metric space has the euclidean three-point property,

W. A. Wilson [ l l ] investigated in 1932 the consequences of assuming that a

space has the euclidean four-point property. It follows from a result due to the

writer [2, p. 131] that if U is any metric space whatever, and M 2 denotes the

space obtained by taking the positive square root of the metric of M9 then M 2

has the euclidean four-point property. Thus the special class {M 2\ of spaces

with the euclidean four-point property has the same cardinality as the class of

For definitions of these and other metric concepts used in this paper see [2].

3The abstract of [8] given in Math. Fev. vol. 13 (1952) p. 850 indicates a con-
nection between that paper (which the writer has not seen) and the present note.
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all metric spaces (of which it is a proper subclass) and consequently the same

is true of the class of all spaces with the euclidean four-point property.

But none of the spaces \M M is metrically convex, and Wilson proved that

if a complete, metrically convex space has the euclidean four-point property,

it is congruent with a subset of a generalized euclidean space. If also external

convexity is assumed, then congruence with a generalized euclidean space

results.

The weak euclidean four-point property, introduced by the writer in 1933,

assumes the congruent imbedding in euclidean space (and hence in E2) of

only those quadruples that contain a linear triple (that is, a triple which is

imbeddable in Eγ), and it was shown that the weak euclidean four-point property

suffices to obtain all of the results that Wilson had proved by use of the stronger

assumption [2, pp. 123-128]. But the Jordan-von Neumann condition, as metriz-

ed in ( f ) , restricts the class of quadruples assumed to be imbeddable in

euclidean space even more than does the weak euclidean four-point property,

and consequently is a weaker assumption. We shall refer to it as the feeble

euclidean four-point property,

3. Equivalence in \M\ of the feeble and the weak euclidean four-point

properties. We prove in this section that in complete, metrically convex and

externally convex metric spaces, the feeble euclidean four-point property im-

plies (and hence is equivalent to) the weak euclidean four-point property.

Some elementary consequences of the feeble property in such a space are first

set down.

I. Middle-elements are unique; for if p, r GM(p ^ r ) and qΛ% q2 are middle-

elements of p, r then

where the "primed" points are in E2 and " « " denotes the congruence relation.

But then ςr' and q^ are middle-points of p\ r' and consequently

II. Each two distinct elements are joined by exactly one metric segment.

Since M is complete, metrically convex and metric, each two of its distinct

points are joined by at least one metric segment. If p, r G M ( p ^ r ) and Sp Γ*

S* r are two segments with end-elements p, r, suppose qr* belongs to the second
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segment and not to the first. Then p ψ q* £ r9 and traversing S* from 7* to p

a first point p* of S r is encountered. Similarly, traversing S* from 9* to r a

first point r* of S r is obtained. The sub-segments S * r5|CJ S** * have only

their end-elements in common, but each obviously contains a middle-element of

p*, r*, contrary to I.

III. Segments admit unique prolongations. Since M is externally convex,

each segment may be prolonged beyond its end-elements. But if S admits

two prolongations beyond q9 then clearly elements r, r* of different prolongations

exist (r^r*) such that q is a middle-element of p*, r as well as a middle-

element of p* f r* for some element p* of S . The congruent imbedding in E2 of

p*, 7, r, r* shows this to be impossible.

IV. Each two distinct elements of M are on exactly one metric line. Since

U is metric, complete, metrically convex and externally convex, each two of

its distinct points p9 q are on at least one metric line L{p9q) [2, p. 56], It

follows at once from II and III that L (p9q) is unique.

THEOREM 3.1. If p is a point and L a metric line of M9 then L + (p) is

congruentlγ imbeddable in E2,

Proof, lip eL then

L + (p) = L ~ E1 C E2 9

by the definition of a metric line. Suppose p $.Ly select points ro* 7Ί on L with

r o r i = l, and let p%r^rf

χ be points of E2 such that p9ro9rι ^ p\r^9r^ Let

L ' denote the straight line of E2 determined by rQ', r[> and consider the one-to-

one correspondence

Γ: p',

where the congruence of the two lines is the unique extension of the congruence
ro> rι ~ Γ

0 '*Γi ' ^ e s n a H show that Γ is a congruence.

If ry denotes the unique middle-point of r0, Γi, and r^ ^ Γ ί r ^ ) , then r^ is

the middle-point of r^9r^ By the feeble euclidean four-point property

with the "barred" points in E2> and since p', r<^ r ί ~ P» Γo> Γι» a m o t i o n °̂  ^2

exists that carries p9rQ9rι into p\τ'^r[> respectively. This motion evidently
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sends ry into ry9 and we have

that i s , pry2 = p'rί/2-

If r^ denotes the middle-point of r^, rγ, and r£ = Γ(r%), the feeble four-

point property, applied to the quadruple p, r^, r^, r t gives pr^ = p'τy. Con-

tinuing in this manner, we obtain pri/2n = v'τΊ/2n f°Γ e a c n dyadically rational

fraction i/2n. Since the points r^2n are dense in s e g [ r o , r i ] , continuity of

the metric (and continuity of the congruence L (rQ9 r{ ) « L'(r' r ' ) ) yields

p% = p'%', # ' = Γ ( Λ ) , for every x G seg[r ( ) ί r 1 ].

Let r2 be a point of L such that rL is the middle-point of rQ9 r 2 . The feeble

four-point property gives (in the manner employed above) p, rQ$ rχ9r2^p\ r j , τ'ι$ r^,

where r^ = Γ ( r 2 ), and consequently pr2 = p'r^. Then from p9τι$r2 « p\τ^9r2 we

obtain p # = p / % ' , Λ; G s e g t r ^ r2 ] in the same manner as described above for

seg ir Q $ r ί ]• It is clear that a continuation of the procedure establishes px = p ' % '

for every % of L and A; ' = Γ (x ).

THEOREM 3.2. In a complete^ metrically convex and externally convex

metric space M9 the feeble and the weak euclidean four-point properties are

equivalent.

Proof, The weak property obviously implies the feeble one in any metric

space . Suppose M has the feeble property, and p, qt r, s Gίί (pairwise d i s t inct )

with q9 r, s congruent with a triple of Ei Then the line L(q,r) contains s ,

and L{q9r) + ( p ) is congruently imbeddable in E2 Hence p, q9 r$ s are imbedda-

ble in E2

4. Extension of the Jordan-von Neumann theorem. The writer has shown

[2, p. 127] that a complete, metrically convex and externally convex semimetric

space with the weak euclidean four-point property has the euclidean λ-point

property for every positive integer k. It follows easily that such a space is

generalized euclidean. Use of Theorem 3.2 now yields the following result:

THEOREM 4.1. A complete, metrically convex and externally convex metric

space with the feeble euclidean four-point property is generalized euclidean.

This is the desired extension of the Jordan-von Neumann theorem for real

normed linear spaces. For if L is such a space, and L satisfies the Jordan-

von Neumann condition (**), then the Banach space that arises by completing
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L in the Hausdorff manner is a complete, metrically convex and externally con-

vex metric space with the feeble euclidean four-point property. According to

Theorem 4.1, it is generalized euclidean and so an inner product is definable

in it. Hence an inner product is definable in L, and the Jordan-von Neumann

theorem for real normed linear spaces is obtained. Thus the metric essence

of (**) determines the euclidean character of L by use of the purely metric

features of the space, without regard, for example, for its very special proper-

ties due to linearity.

5. Concluding remarks. Condition (*) of Fre'chet is equivalent to Wilson's

euclidean four-point condition [2,. p. 106] and consequently his theorem of 1935

had already been proved in more general form by Wilson in 1932.

A semimetric space is ptolemaic provided for any four of its elements p,

q9 r9 s9 the three products pq rs9 ps qr9 pr qs of "opposite" distances satis-

fy the triangle inequality. Schoenberg [10] showed that in a real linear semi-

normed ptolemaic space, the semi-norm satisfies the triangle inequality (and

so is actually a norm) and an inner product is definable which is related to

the norm in the usual way.

Schoenberg's ptoiemaic condition which (as a norm postulate in L has the

form

1 1 / 1 1 I I * - A l l + l l « l l I I W I I > 11*11 l l / - * l l ( / . * . * G L )

is not extensible to the class {M}. For if three pairwise distinct rays of E2f

with a common initial point, be metrized convexly (that is , if p9 q are points

of different rays, then pq = e (p, o) + e {o9 q)9 where e ( , ) denotes euclidean

distance and o is the common point of the rays, while pq = e{p9q) if p, q belong

to the same ray) the resulting space is easily shown to be metric, complete,

convex and externally convex, and ptolemaic. But it is not, of course, general-

ized euclidean. It would be interesting to know whether or not this "tripod"

is present in every such example.
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NOTE ON THE MULTIPLICATION FORMULAS FOR THE

JACOBI ELLIPTIC FUNCTIONS

L. C A R L I T Z

1. Introduction. For t an odd integer it is well known [4, vol. 2, p. 197] that

snx-dfHz)
(1.1) sntx= r-r (z=sn2x),

where

(1.2)

and the aη are polynomials in u - k2 with rational integral coefficients. If we

define

by means of

sntx °° x2m

it follows from (1.1) and (1.2) that Φ2m^t^ 1S a polynomial in w with integral

coefficients for all m and all odd t. We shall show that

(i.4) is^ω-^ω- Σ -A^p-'hu),
p - l I 2m P

p \ t

where Hm{t) = Hm(t9u) denotes a polynomial in u with integral coefficients,

Received August 8, 1953.
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170 L. CARLITZ

the summation in the right member is over all (odd) primes p such that (p- l ) | 2m

and p 11; finally Ap{u) is defined [4, vol. 1, p. 399] by means of

(1.5) snx 7ZTy\

so that A2m + ι(u) is a polynomial in u with integral coefficients. We show also

that

(1.6) * £ (-l ) M f Γ ) jB m + , ( , (*) i l«(»)-0 <«od(p-p')>f

o * s /
s=o

where p is an arbitrary odd prime and r >_ 1; by (1.6) we understand that the

left member is a polynomial in u every coefficient of which is divisible by the

indicated power of p.

The proof of these formulas depends upon the results of [2]; for a theorem

analogous to (1.4), see [ l ] .

2. Proof of (1.4). Put

(2.1)
x2m

Then β2 is a polynomial in u with rational coefficients; indeed [2, Theorem

2],

(2.2) (mod p )

0

In the next place, if we write

sn tx sn tx x

t sn x tx sn x

and make use of (1.3), (1.5), and (2.1), it follows that

t2s
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As already observed, tβ2m^t^ n a s integral coefficients; thus the denominator

of /3 2 m ( ί) is a divisor of ί. Now let p denote a prime divisor of ί, and assume

p e | ( 2 s + 1 ) , e > 1. Then

2s + 1 > p e > 3 e > e + 2 , 2s > e + 1 .

Thus not only is £ 2 s /(2s + 1) integral (mod p) but it is divisible by p. Since

by (2.2) the denominator of β2m contains p to at most the first power it there-

fore follows that the product

(2.4) j 8 a m . a β ί a V ( 2 . + l )

is integral (mod p) when p |(2s + 1 ) .

Suppose next that p \ (2s + 1 ) , where s >_ 1. It is again clear that (2%4) is

integral (mod p) since p occurs in the denominator of β2 2 at most once

while it occurs in t2s at least twice. Thus as a matter of fact (2.4) is divisible

by p in this case.

It remains to consider the term s = 0 in (2.3). Clearly we have proved that

(2.5) Pβ2m

{t^Pβ2m (modp).

Comparing (2.5) with (2.2) we may state:

THEOREM 1. If t is an arbitrary odd integer then (1.4) holds.

We remark that the residue of Ap(u) is determined [2, § 6 ] by

(2.6)

VΛp-i)£ />(p-i)\ j ( m o d p ) >

;=0 * / '

Here F denotes the hypergeometrie function.

3. Some corollaries. By means of Theorem 1 a number of further results

are readily obtained. By H2m will be understood an unspecified polynomial in

u with integral coefficients.

Since β2m9 a s defined by (2.1), is integral (mod 2) we have first:
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THEOREM 2. If t is divisible by the denominator of β2m* then

If t is prime to the denominator of β2m> then β2m(t) has integral coefficients.

THEOREM 3. If t\9 t2 are relatively prime and oddf then

(3.2) β2jhh) ΉΛm + β3nitι) + β3jt2).

If t is a power of a prime we get:

THEOREM 4. If p is an odd prime and r >_ 1 we have

(3.3) β2m(pr)=H2m+β2m(P).

Using (3.2) and (3.3) we get also:

THEOREM 5. The following identity holds:

(3.4) β2Jt)=H2m + Σ /8am(p),

p \ t

where the summation is over all prime divisors of t.

We have also:

THEOREM 6. If a is an arbitrary integer^ then the product

(3.5) a(am-l)β2m(t)

has integral coefficients.

4. A related result. It follows from (1.1) and (1.2) that, for t odd,

oo

(4.1) sn tx = Σ, C2r+ιsn2r*ιx ,
r=o

where the C2Γ+1 are polynomials in u with integral coefficients. Clearly we have

1 Γ=0
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where the ^m a r e defined by

2m

m=0

and like the C's are polynomials with integral coefficients.

We shall now prove the following property of the C's.

THEOREM 7. For t odd we have

(4.4) (2m + l ) C 2 m + ι =0 (modi) U = 0, 1, 2, . . . ) ,

where ( 4 . 4 ) indicates that every coefficient in (2m + I ) C2m+ι is divisible

by t.

Proof Differentiating (4.1) with respect to x, we get

en tx dn tx ™

Σ (2(4.5) t
cnxdnx m

Now we have, in addition to (1.1),

cntx Gϊ){z) dntX

 GΪU^
(4.6) = — , - = - _ (z=sn2x),

cnt GU)(z) dnx c ( t ) ( z )

where G2 and G3 are polynomials in z of the same form as Go. By means of

(1.1) and (4.6) it is evident that (4.5) implies

(4.7) t 2^ Hm zm = 2^ (2m + l)C2m+ιzm,
m=0 m=0

where the Hm are polynomials in u with integral coefficients. Clearly (4.4) is

an immediate consequence of (4.7).

Kronecker [5, p. 439] has proved a similar result in connection with the

transformation of prime order of sn x. For a result like Theorem 7 for the

Weierstrass ^-function, see [3],

Returning to (4.2) we recall [2, §2] that
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(4.8) A2m =° (mod(2r)!) (m = 0,1, 2 , . . . ) .

We rewrite (4.2) in the form

Λ (2r)! Λ<22m (2r + l ) C 2 r + 1
(4.9) fi ( ί )

2 m (2r)! t

By (4.4) and (4.8) the last two fractions in the right member of (4.9) have

integral coefficients; also (2r)!/(2r + l ) is integral unless 2r + 1 is prime.

Consequently (4.9) becomes

1 ( p . 0 P C

P

p-l I 2m P

p\t

Comparing (4.10) with (1.4) we get:

THEOREM 8. If the prime p divides t9 then

(4.11) —- = 1 (modp).
t

Hence if pe \t$ pe ι \ t it follows that

(4.12) Cp = - (modp e ) .
P

5. Proof of (1.6). Again using (5.1) we have

(5.1) — = 2: Cu+1sn2ix.
snx i=0

Now it is proved in [2, Theorem 4] that the coefficients A^2t' defined by (4.3)

satisfy

S = 0

(5.2) £ (~iy"S (r)Λϊr'S)b/{p'l) Amlb Ξ 0 ( π i o d ( p 2 ^ p e r ) ) ,

where pemί{p - 1) | b. Hence using ( 1 . 3 ) and (5 .1) we get:
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THEOREM 9. Ifpe'Hp - 1) |ό, then

(5.3) ί £ (-l)Γ

For b = p — 1, (5.3) evidently reduces to (1.6).

It is of some interest to compare Theorem 9 with the results of [2, § 7 ] ,

If we take r = 1, (5.3) becomes

2 m + b / β 2 m ( t ) } , 0 <»od(p a»

If we put

and recall that, by (2 6),

i l p ( 0 ) a ( - l ) * ( P - ι ) (modp)

we get exactly as in the proof of [2, Theorem 6]%

T H E O R E M 10. Let pe'ι{p -\)\b and p J m l <i < pL Then

6. An elementary analogue of β2 ( ί ) . It may be of interest to say a word

about the numbers φ (t) defined by

etx -e 1 x
(6.1) = T φ it)—*,

tie*-l) ~0

 m rn!

where t is now an arbitrary integer. Clearly (6.1) implies that

S = 0

By a theorem of Staudt (see for example [6, p. 143]),
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(6.2) φm{t)=G+ Σ

p \ t

where G is an integer. Moreover,

(6.3) pφi

It follows [6, p. 153] that

Γm

p |
(mod p )

0 ( p - l | m ) .

. ^ 1
(6.4) φ 2 m ( t ) = G - 2^ —

p-l j 2m P

Thus Staudt's theorems (6.2) and (6.4) may be viewed as elementary analogues

of (3.4) and (1.4).

Formulas like (6.2) and (6.4) hold also for the numbers Φ2m^i;^ occurring in

s'mtx ~ x2m

* s i n * m = Q

 2m ( 2 m ) ! '
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THE NUMBER OF SOLUTIONS OF CERTAIN TYPES OF EQUATIONS
IN A FINITE FIELD

L. C A R L I T Z

1. Using a very simple principle, Morgan Ward [3] indicated how one can

obtain all solutions of the equation

(1) ym = f(Xι,...,Xr) (y,Xi£F),

where F is an arbitrary field, / (%t , , xr) is a homogeneous polynomial of

degree n with coefficients in F, and (m, rc) = l. The same principle had been

applied earlier to a special equation by Hua and Vandiver [2], If this principle

is applied in the case of a finite field F we readily obtain the total number of

solutions of equations of the type (1). Somewhat more generally, let

denote r polynomials with coefficients in GF(q), and assume

(2) m

assume also

We consider the equation

( 4 ) y m = /' ι(Λ;ii.

in s i 4- + sr + 1 unknowns.

Suppose first we have a solution of ( 4 ) with y ^ 0. Select integers A, fe, /

such that

( 5 ) k m + k m ι m 2 m r + l(q — 1 ) = lf ( h 9 q — 1 ) = 1;

Received August 8, 1953.
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this can be done in view of (3 ). Next put

( 6 ) y = λ , %ij - λ l zi\ ( M = m t m 2 m Γ ) .

Subst i tut ing in ( 4 ) and us ing ( 2 ) , we get

Since λ^" = 1, it i s c lear from ( 5 ) that

(7) λ = fι(z1) + " +fr(zr).

T h u s any so lut ion (y9Xij) of ( 4 ) with y •£ 0 can be obta ined from ( 6 ) and ( 7 )

by a s s i g n i n g arbitrary v a l u e s to zq such that the right member of ( 7 ) d o e s not

v a n i s h . L e t Λ/ denote the tota l number of s o l u t i o n s of ( 4 ) and le t /Vo denote the

number of s o l u t i o n s with γ = 0. T h u s there are N - No s e t s zq for which λ ^ 0.

Since in al l there are q ι Γ s e t s zq i t follows that

( 8 ) N = q

Sι+'-+s\

This proves:

T H E O R E M . Let the polynomials f. satisfy ( 2 ) and ( 3 ) . Then the total

number of solutions o f ( 4 ) is furnished by ( 8 ) .

2. In Theorem II of [2] Hua and Vandiver proved that the number of solutions

of

(9) ClXΐl +C2X? + - + CsXsS =°

subject to the conditions

c γ c 2 ••• c s x ι x 2 - - - x s £ 0 , ( a i t q - 1 ) = k i , ( k ( 9 k j ) = l f o r i £ j 9

is equal to

do)

It i s e a s y to show that ( 1 0 ) implies that the tota l number of s o l u t i o n s of ( 9 ) i s

equal to qSmί

9 which agrees with ( 8 ) . Converse ly if Ns d e n o t e s the number of

nonzero s o l u t i o n s of ( 9 ) , and we a s s u m e that
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( 1 1 ) (ki9 kj) = 1 (i, j = 1, --,s; i ^ / ) ,

then using ( 8 ) we get

Hence (if we take /Vo = 1)

r=0 * Γ / ί=o

O

and ( 1 0 ) follows at once. Thus if we assume ( 1 1 ) then ( 8 ) and ( 1 0 ) are

equivalent.

If in place of (11) we assume only that

( 1 2 ) ( k i f k2k3 . . . k s ) = 1 ,

the situation is somewhat different. As above let Ns denote the number of non-

zero solutions of (9), and let MSmγ denote the total number of solutions

( 1 3 ) c 2 , 2

θ

Using ( 8 ) we now get

( 1 4 ) 7 s - 1 = M S . ! +

which implies (with Mo = 1 )
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(15) (?-D β " l = Σ (-1)S'U

r=o

Thus making only the assumption (12) we see how the number of solutions of

(13) can be expressed in terms of Ns and vice versa.

3. Returning to equation (4) , we see that a similar result can be obtained

if we allow f. to contain additional unknowns:

and assume that ( 2 ) holds only for the x's. Then the number of solutions (y,

s\ +••• + s r + « ι +••• + ί r

xij* uhk^ of ( 4 ) becomes

S i m i l a r l y we may r e p l a c e the left m e m b e r of ( 4 ) by

α l a2 as

Then assuming (3) we again find that the number of solutions of the modified

equation is equal to

This kind of generalization lends itself well to equation (9) , For example it is

easy to show (see [ l , Theorem 10]) that the total number of solutions of the

equation

t h

subject to (αj i, f aιιii% q - 1) = G?;, (c?t , dj) = 1 for i £ j9 is equal to

ky +••• +kt-l
q
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THE GENERALIZED SIMPLEX METHOD FOR MINIMIZING A LINEAR

FORM UNDER LINEAR INEQUALITY RESTRAINTS

GEORGE B. DANTZIG, ALEX ORDEN, PHILIP WOLFE

1. Background and summary. The determination of "optimum" solutions of

systems of linear inequalities is assuming increasing importance as a tool for

mathematical analysis of certain problems in economics, logistics, and the

theory of games [ l ; 5 ] The solution of large systems is becoming more feasible

with the advent of high-speed digital computers; however, as in the related

problem of inversion of large matrices, there are difficulties which remain to be

resolved connected with rank. This paper develops a theory for avoiding as-

sumptions regarding rank of underlying matrices which has import in applica-

tions where little or nothing is known about the rank of the linear inequality

system under consideration.

The simplex procedure is a finite iterative method which deals with problems

involving linear inequalities in a manner closely analogous to the solution of

linear equations or matrix inversion by Gaussian elimination. Like the latter it

is useful in proving fundamental theorems on linear algebraic systems. For

example, one form of the fundamental duality theorem associated with linear

inequalities is easily shown as a direct consequence of solving the main prob-

lem. Other forms can be obtained by trivial manipulations (for a fuller discus-

sion of these interrelations, see [13]) ; in particular, the duality theorem [8;

10; 11; 12] leads directly to the Minmax theorem for zero-sum two-person games

[ i d ] and to a computational method (pointed out informally by Herman Rubin

and demonstrated by Robert Dorfman [ l a ] ) which simultaneously yields optimal

strategies for both players and also the value of the game.

The term "simplex" evolved from an early geometrical version in which

(like in game theory) the variables were nonnegative and summed to unity. In

that formulation a class of "solutions" was considered which lay in a simplex.

The generalized method given here was outlined earlier by the first of the

authors (Dantzig) in a short footnote [ l b ] and then discussed somewhat more

fully at the Symposium of Linear Inequalities in 1951. Its purpose, as we have

Received August 29, 1953. Copyrighted 1953, by the RAND Corporation and re-
produced here by permission of the copyright holder.
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already indicated, is to remove the restrictive assumptions regarding the rank

of the matrix of coefficients and constant elements without which a condition

called "degeneracy" can occur.

Under degeneracy it is possible for the value of the solution to remain un-

changed from one iteration to the next under the original simplex method. This

causes the proof that no basis can be repeated to break down. In fact, for certain

examples Alan Hoffman [14] and one of the authors (Wolfe) have shown that it

was possible to repeat the basis and thus cycle forever with the value of the

solution remaining unchanged and greater than the desired minimum. On the

other hand, it is interesting to note that while most problems that arise from

practical sources (in the authors' experience) have been degenerate, none have

ever cycled [9],

The essential scheme for avoiding the assumptions on rank is to replace the

original problem by a "perturbation" that satisfies these conditions. That such

perturbations exist is, of course, intuitively evident; but the question remained

to show how to make the perturbation in a simple way. For the special case of

the transportation problem a simple method of producing a perturbation is found

in [ lc ] . The second of the authors (Orden) has considered several types of

perturbations for the general case. A. Charnes has extensively investigated

this approach and his writing represents probably the best available published

material in this regard [2; 3; 4].

It was noticed early in the development of these methods that the limit

concept in which a set of perturbations tends in the limit to one of the solutions

of the original problem was not essential to the proof. Accordingly, the third

author (Wolfe) considered a purely algebraic approach which imbeds the original

problem as a component of a generalized matrix problem and replaces the origin-

al nonnegative real variables by lexicographically ordered vectors. Because

this approach gives a simple presentation of the theory, we adopt it here.

2. The generalized simplex method. As is well known, a system of linear

inequalities by trivial substitution and augmentation of the variables can be

replaced by an equivalent system of linear equations in nonnegative variables*,

hence, with no loss of generality, we shall consider the basic problem in the

latter form throughout this paper. One may easily associate with such a system

another system in which the constant terms are replaced by /-component constant

row vectors and the real variables are replaced by real I-component variable

row vectors. In the original system the real variables are nonnegative; in the

generalized system we shall mean by a vector variable ~χ > 0 (in the lexicograph-

ic sense ) that it has some nonzero components, the first of which is positive,
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and by x > γ that x - y > 0. It is easy to see that the first components of the

vector variables of the generalized system satisfy a linear system in nonnega-

tive variables in which the constant terms are the first components of the con-

stant vectors.

Let P - VPQ9 P\9 * , Pn] be a given matrix whose /th column, Pj, is a

vector of (m + 1) components. Let M be a fixed matrix of rank m + 1 consisting

of m + 1 /-component row vectors. The generalized matrix problem is concerned

with finding a matrix X satisfying

where ϊy (the /th row of X) is a row vector of /-components satisfying the con-

ditions, in the lexicographic sense,

(2) XJ > 0 (/ = l , 2 , . . . , 7 z ) ,

( 3) ~x0 =
 m a x

where the relationship between max XQ and the minimization of a linear form

will be developed in § 3.

Any set X of "variables" (*o;*\»*2» # >*/ι) satisfying (1) and (2) in the

foregoing lexicographic sense will be referred to as a "feasible solution" (or

more simply as a " s o l u t i o n " ) — a term derived from practical applications in

which such a solution represents a situation which is physically realizable but

not necessarily optimal. The first variable, x~0, which will be called the "va lue"

of the solution, is to be maximized; it is not constrained like the others to be

nonnegative. In certain applications (as in >3) it may happen that some of the

other variables also are not restricted to be nonnegative. This leads to a slight

variation in the method (see the discussion following Theorem 5).

Among the class of feasible solutions, the simplex method is particularly

concerned with those called "bas ic . " These have the properties, which we

mention in passing, ( a ) that whenever any solution exists a basic solution also

exists (Theorem 8), and (b) that whenever a maximizing solution exists and is

unique it is basic solution, and whenever a maximizing solution is not unique

there is a basic solution that has the same maximizing value (Theorem 6), A

basic solution is one in which only m + 1 variables (including x0) are con-

sidered in (1), the remainder being set equal to zero; that is, it is of the form

m
( 4 ) BV = Povo + £ Phn=M ( ^ > 0 , /. jt 0 ) ,



186 GEORGE B. DANTZIG, ALEX ORDEN, PHILIP WOLFE

where JS = [Po9 Pjι9 , Pjm ] is an (m + l)-rowed square matrix and V is a

matrix of m + 1 rows and Z-columns whose ith row is denoted by V{ ( i = 0 , 1 , • ••, m).

It is clear from (4) that since M is of rank m + 1 so are B and V. From this

it readily follows that the m + 1 columns of B constitute a basis in the space

of vectors Pj, and the solution V is uniquely determined. Moreover, since the

rank of V is m + 1, none of the m + 1 rows of V can vanish; that is, it is not

possible that v~{ = 0 . Thus in a basic solution all variables associated with the

vectors in the basis {except possibly vo) are positive; all others are zero. The

condition in (4) can now be strengthened to strict inequality

(5) v~i > 0 (i = l , . . , m ) .

Let βι denote the ith row of B inverse:

(6) B-1 -iPo.PiιtPi2, ~,pJmYι -[βί,β;,—,β^Y

where primed letters stand for transpose.

THEOREM 1. A necessary and sufficient condition that a basic solution be

a maximizing solution is

(7) β0

Pi>° (/-l,. ,n).

THEOREM 2. If a basic solution is optimal, then any other solution (basic

or not) with the property that Xj = 0 whenever (βQP- ) > 0 is also optimal; any

solution with Xj > 0 for some (βQPj) > 0 is not optimal.

Proofs. Let X represent any solution of (1) , and V a basic solution with

basis B; then multiplying both (1) and (4) through by βQ and equating, one

obtains, after noting from (6) that βQPo = 1 and β0Pjt = 0,

(8)

whence, assuming βQPj >_ 0, one obtains x0 <^ v0 (which establishes the suf-

ficiency of Theorem l ) ; moreover the condition χ~j = 0 whenever βQPj > 0

(/ ^ 0) implies the summation term of (8) vanishes and xQ = vΌ; whereas denial

of this condition implies the summation term is positive if Theorem 1 is true

(establishing Theorem 2).
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In order to establish the necessity of (7) for Theorem 1, let Ys be a column

vector which expresses a vector Ps as a linear combination of the vectors in the

basis:

(9) ps=β(β-ιps) = βys = £p ; . . y . s ( ίΌ-V
i = 0

where it is evident from ( 6 ) that, by definition,

d o ) yis

=βips ( i - o f i , . . . , m ) .

Consider a class of solutions which may be formed from (4) and (9), of

the form

(11) B[V~Ysθ) + Psθ = M9

or more explicitly

__ m

(12) Po[v0 -γOsθ] + £ Pj.iϋi -yis θ] + Ps θ = M.

1 = 1

It is clear that, since tΓj > 0 for i >_ 1 has been established earlier (see (5)) ,

a class of solutions with θ > 0 (that is, with θ strictly positive) always exists

such that the variables associated with Ps and Pji in (12) are nonnegative,

hence admissible as a solution of (1). If γ0s < 0, then the values of these

solutions are

(13) ^o^.γos'β>^Q (yos < o , ~θ>o).

For a given increase in θ the greatest increase in the value of the solution

(that is, direction of steepest ascent) is obtained by choosing s = j such that

(14) j 8 0 P s = m i n ( j 8 0 P 7 ) < 0 .

/

This establishes Theorem 3 (below) which is clearly only a restatement of the

necessity of condition (7) of Theorem 1.

THEOREM 3. There exists a class of solutions with values XQ > v0$ if,

for some j = s,

(15) yQs=β0Ps<0.
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THEOREM 4. There exists a class of solutions with no upper bound for

values x0 if$ for some s, yQs < 0 and γis < 0 for all i.

THEOREM 5. There exists a new basic solution with value XQ > vOf (ob-

tained by introducing Ps into the basis and dropping a unique Pj ), if9 for some

s, yQs < 0 and$ for some it yis > 0.

Proofs. From (12), if y.s <_ 0 for all i, then θ can be arbitrarily large (that

is, its first component can tend to +oo) and the coefficients of Pj t will re-

main nonnegative. The value of these solutions (13) will also be arbitrarily

large provided that yQ < 0 (establishing Theorem 4). In the event that some

y s > 0, the maximum value of θ becomes

(16) max(9=(l/y Γ S )tΓ Γ = min (1/y ) ^ > 0 (y > 0, i j έO),
y. > o
J is

where the minimum of the vectors (taken in the lexicographic sense) occurs for

a unique i = r (since the rank of V is m + 1, no two rows of V can be propor-

tional, whereas the assumption of nonuniqueness in (16) would imply two rows

of F to be so — a contradiction). Setting θ = max θ in (12) yields a new basic

solution since the coefficient of Pj vanishes. Thus a new basis has been formed

consisting of \.PQ9 PJ χ, , Ps , , Pjm \ where Pjr is omitted and Ps is put

in instead (Theorem 5).

The next section considers an application of the generalized simplex pro-

cedure in which the restriction Xj >_ 0 is not imposed on all variables (/ = 1,

2, * ,7i) This leads to a slight modification of procedure: first, for all / for

which Xj >_ 0 is not required, both Pj and — Py should be considered as columns

of P; secondly, if P, . is in the basis and the restriction v( > 0 is not required,

then this term cannot impose a bound on θ; hence the corresponding i should be

omitted from (16) in forming the minimum.

Starting with any basis B =B , one can determine a new basis B^ by

first determining the vector Ps to introduce into the basis by (14). If there

exists no βQ Ps < 0, then, by Theorem 1, the solution is optimal and B^ ' is

the final basis. If a Ps exists, then one forms yis - (βjPs ) a n ( l determines the

vector Pj to drop from the basis by (16) provided that there are y.s > 0. If

there exist no y. > 0, then, by Theorem 4, a class of solutions is obtained

from (12) with no upper bound for v0 for arbitrary θ > 0. If Pyr can be deter-

mined, then a new basis β ^ + ι * is formed dropping Pjr and replacing it by Ps
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by (13), the value, t>0, of this solution is strictly greater for B^ than for

B since θ > 0 is chosen by (16). Thus one may proceed iteratively starting

with the assumed initial basis and forming k = 0,1, 2, until the process stops

because (a) an optimal solution has been obtained, or (b) a class of solutions

with no finite upper bound has been obtained.

The number of different bases is finite, not exceeding the number of combina-

tions of n things taken m at a time; associated with each basis B is a unique

basic solution V — B' M—hence the number of distinct basic solutions is

finite; finally, no basis can be repeated by the iterative procedure because

contrariwise this would imply a repetition of the value t>0, whereas by (13)

the values for successive basic solutions are strictly monotonically increas-

ing— hence the number of iterations is finite.

The {k + 1 )st iterate is closely related to the A th by simple transformations

that constitute the computational algorithm [6; 7] based on the method: thus

for i = 0,1, , m (i £ r),

(17.0) ϊ?l-τΐ + ηtfi »*+ι-v?;

(17.1) |8* + ι - j8* + ,./B*; βf-ητβ
k

τ,

where the superscripts k + 1 and k are introduced here to distinguish the suc-

cessive solutions and bases, and where ηi are constants,

(18) ^ - - ^ / y r s — ^

ηr=l/yrs=l/(βrPs).

Relation (17.0) is a consequence of (12) and (16); it is easy to verify that the

matrix whose rows are defined by (17.1) satisfies the proper orthogonality

properties for the inverse when multiplied on the right by the {k + 1 )st basis

[P o , Pjt, , Ps j *Pjm ]. As a consequence of the iterative procedure we

have established two theorems:

THEOREM 6. If solutions exist and their values have a finite upper bound9

then a maximizing solution exists which is a basic solution with the properties

m

(19) B V - Σ p j ι » i = M ( P ; o = P 0 , ^ i > 0, ί = l , . . , m ) ,

i=0



190 GEORGE B. DANTZIG, ALEX ORDEN, PHILIP WOLFE

βQP0 = l, βoPji-O, β0Pj > 0 ( / = l , 2 f . . . , ! » ) ,

v0 = βQ M = max x0 >

where βQ is the 1st row of B" .

THEOREM 7. If solutions exist and their values have no finite upper bound,

then a basis B and a vector Ps exist with the properties

m

(20) BV = ΣPJiϋi=M ( p / o = p o , ϋ i > 0 , » = 1 , . . . , I B ) ,
ϊ = 0

β0Ps <O,β.Ps < 0 ,

where the latter, with θ >_ 0 arbitrary, forms a class of solutions with unbounded

values ( β. is the (i + 1 )st row of B'ι).

Closely related to the methods of the next section, a constructive proof will

now be given to:

THEOREM 8. If any solution exists, then a basic solution exists.

For this purpose adjust M and P so that the first nonzero component of each

row of M

(«".' >_ 0; / = 1, . . ,ra + m),

where ΛΓ.' has one more component than XJ, and represents the null vector.

Noting that neither x£ nor λ/ + m + 1 is required to be positive, one sees that an

obvious basic solution is obtained using the variables [#0 ',x^+ι > *' i%ή+m+ί ^'

It will be noted that the hypothesis of the theorem permits construction of a

solution for which

ΛJ^+ι = 0 {i = 1, 2 , . . . , m) .

Indeed, for j <_n set # ' = (XJ,0) > 0. However, it will be noted also that
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Σ * ; + l - [ . i ]

so that

max xn+.( = [ 1 ] .

Accordingly, one may start with the basic solution for the augmented system,

keeping the vectors corresponding to x£ and * ^ + m + ι always in the basis 1, and

use the simplex algorithm to maximize Λ/ + + . Since, at the maximum,

the corresponding vectors are not in the basis any longer (see ( 5 ) ) . By dropping

the last component of this basic solution and by dropping x' + +.> one is left

with a basic solution to the original system.

3. Minimizing a linear form. The application of the generalized simplex

method to the problem of minimizing a linear form subject to linear inequality,

constraints consists in bordering the matrix of coefficients and constant terms

of the given system by appropriate vectors. This can be done in many ways —the

one selected is one which identifies the inverse of the basis as the additional

components in a generalized matrix problem so that computationally no addition-

al labor is required when the inverse is known.

The fundamental problem which we wish now to solve is to find a set Λ; =

(XQ,XI) 9xn} °f Γ e a l numbers satisfying the equations

n n

(21) XQ + Σ a>oj Xj = 0 , 2 1 akjxj - fyfc (bk >. 0 k = 2, 3, • •, m),
1 1

such that

(22) * ; > 0,

(23) = max,

where without loss of generality one may assume b^ >^ 0. It will be noted that

the subscript k = 1 has been omitted from (21). After some experimentation it

has been found convenient2 to augment the equations of (21) by a redundant

equation formed by taking the negative sum of equations k-2, ,m. Thus

To accomplish this omit ι = 0 and i = m+ 1 in (16).

Based on a recent suggestion of W. Orchard-Hays.
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71

(24) Σ,aιixi =bι

i Tϊl

( α ι /*" Σakj>

Consider the generalized problem of finding a se t of vector " v a r i a b l e s " ( in

the sense of § 2 ) (XQ9X\9 9xn), and auxiliary variables (xn + ι, xn + 2i ' ' ' >

xn+m) satisfying the matrix equations

n

( 2 5 ) XQ + Σ α o / * / = ( 0 , 1 , 0 , . . . , 0 ) ,
1

*/ = ( & * , < > , 0 , - f l , • • • , < > ) ( & ! < 0 ; & Λ > 0 , * « 2 f . . . f W ) , . .

where the constant vectors have Z = m + 2 components with unity in position

A; + 2, %o and %„ + ! are unrestricted as to sign and, for all other /,

(26) ~x~j > 0 ( = 1, ---,n, n + 2, . . . , Λ + m ) .

Adding equations & = 1, , m in (25) and noting the definitions of a^j and b^

given in (24), one obtains

(27)

There is a close relationship between the solutions of (25) and those of

(21) when xn + ι >_ 0, for then the first components of XJ9 for = 0, , n, satisfy

(21). Indeed, by (27), if all xn+k >_ 0, the first component of all xn+k must

vanish; but the first component of the vector equations (25) reduces to (21)

when the terms involving xn+k are dropped. This proves the sufficiency of

Theorem 9 (below).

THEOREM 9. A necessary and sufficient condition for a solution of (21)

to exist is for a solution of (25) to exist with xn + \ >. 0.

THEOREM 10. Maximizing solutions (or a class of solutions with unbounded

values) of (21) are obtained from the 1st components of (%o> ' * >xn) °f t n e

corresponding type solution of (25) with xn+ι >_ 0.

Proofs. To prove necessity in Theorem 9, assume (xθ9 ,xn) satisfies
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(21); then the set

(28) F

(where unity occurs in position k + 2) satisfies (25). Because of the possi-

bility of forming solutions of the type (28) from solutions of (21), it is easy

to show that 1st components of maximizing solutions of (25) must be maximiz-

ing solutions of (28) (Theorem 10).

It will be noted that (25) satisfies the requirements for the generalized

simplex process: first the right side considered as a matrix is of the form

where U^ is a unit column vector with unity in component k + 1, and is of rank

m + 1 (the number of equations); second, an initial basic solution is available.

Indeed, set xQf xn+ u xn+2> *jχn^m e c l u a l t 0 the corresponding constant vectors

in (25) where %π + /c >_ 0 for A = 2 , , m because b^ >^ 0.

In applying the generalized simplex procedure, however, both XQ and xn + \

are not restricted to be nonnegative. Since xn+k L̂ 0 f°Γ A: = 2, , w, it follows

that the values of the solutions, ~xn + u of (27) have the right side of (27) as an

upper bound.

To obtain a maximizing solution of (25), the first phase is to apply the

generalized simplex procedure to maximize the variable xn + ι (with no restriction

on %o ). Since xn + ι has a finite upper bound, a basic solution will be produced

after a finite number of changes of basis in which xn + \ >_ 0, provided that

max xn+ι >_ 0. If during the first phase xn + \ reaches a maximum less than zero,

then, of course, by Theorem 9 there is no solution of (21) and the process

terminates. If, in the iterative process, %n+i becomes positive (even though

not maximum), the first phase, which is the search for a solution of (21), is

completed and the second phase> which is the search for an optimal solution,

begins. Using the final basis of the first phase in the second phase, one sees

that x~o is maximized under the additional constraint xn + ι >. 0.

Since the basic set of variables is taken in the initial order (%o* XΓJ + I> " # * >

x~n+m), and in the first phase the variable xn+ι is maximized, the second row
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of the inverse of the basis, βv is used to " s e l e c t " the candidate Ps to in-

troduce into the basis in order to increase #*π + i (see (14)); hence 5 is de-

termined such that

(29) β^s^mmiβ.Pj) < 0.

However, in the second phase, since the variable to be maximized is XQ and

the order of the basic set of variables is CxQ,~xn + u ' •), then the first row of

the inverse of the basis, βQ, is used; that is, one reverts back to (14). Appli-

cation of the generalized simplex procedure in the second phase yields, after

a finite number of changes in basis, either a solution with max x 0 or a class of

solutions of form (12) with no upper bound for oc0. By Theorem 10 the first

components of XQ9X\9 ** 9xn form the corresponding solutions of the real vari-

able problem.

The computational convenience of this setup is apparent. In the first place

(as noted earlier), the right side of (21) considered as a matrix is of the form

where ί/z is a unit column vector with unity in component k + 1. In this case,

by (4), the basic solution satisfies

This means (in this case) that of the I «= m + 2 components of the vector t^ the

last m + 1 components of the vector variables V{ in the basic solution are

identical with β^ the corresponding row of the inverse. In applications this

fact is important because the last m + 1 components of t>; are artificial in the

sense that they belong to the perturbation and not to the original problem and

it is desirable to obtain them with as little effort as possible. In the event that

U has the foregoing special form, no additional computational effort is required

when the inverse of the basis is known. Moreover, the columns of (25) cor-

responding to the m + 1 variables (%o>*m + i»# *' >χn+m) f ° r m t n e initial identity

basis ( ί/ 0 , Ui9 , Um ), so that the inverse of the initial basis is readily avail-

able as the identity matrix to initiate the first iteration.
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CONSTRUCTIONS FOR POLES AND POLARS IN -̂DIMENSIONS

A. P. DEMPSTER AND S. SCHUSTER

1. Introduction. As far back as 1847, von Staudt [2, p. 131-136] introduced

the notion of handling a symmetric polarity (that is, a nonnull polarity) by means

of a self-polar simplex and an additional pair of corresponding elements. In

projective space of two dimensions (S 2 ) such a polarity is completely deter-

mined by a self-polar triangle AιA2A39 a point P, and its polar line p. We write

this polarity as {AιA2A3 ) (Pp). In S 3, the polarity is determined by a self-

polar tetrahedron AγA2A3AΛ, a point P, and its polar plane 77. We write it

(AXA2A3A^)(P π). In general, we have a polarity in Sn determined by the self-

polar simplex AιA2 An + l9 a point P, and its corresponding polar prime or

hyperplane π. We write it (AιA2 An+ι)(P 77).

Left unanswered by von Staudt and his followers is the following question:

Given an arbitrary point X, how can we construct the polar prime y of X? And,

conversely, given the prime y, how do we actually find its pole, the point X?

2. Construction. The construction of the polar line x of an arbitrary point

X for the polarity (AiA2A3 ) (Pp) in S2 was given by Coxeter [ l , 64]. We give

a direct generalization of this to n dimensions: to find the polar prime χ of an

arbitrary point X relative to (AγA2 An + ι) (P 77).

Consider first the point X not in any face of AXA2 •••Aπ+1 Let Oίj denote

face AXA2 4;.i/4 ι + 1 -An + i, and let

A'.=PX.U.i> Pi-XAi-π, a n d X1 = P A{ . P ^ ' .

In the plane PXAi we have pairs P, P; and /4;, A{ conjugate under the induced

plane polarity. By Hesse's theorem in the plane [1 , pp. 60-61], X and X1 are

conjugate for the induced polarity, and hence for the given polarity. In this

manner we determine τι + 1 points Xi

iX
2, ,Xn ι lying in χ The points

Xι, X2, yX
n determine \ since otherwise they must lie in an (rc-2)-flat

which implies that the flat determined by P, Xι

9 , Xn is of at most (n - 1 )

dimensions, which is impossible since the space contains P, Aχ9 A2i , An, It

Received August 1, 1953.
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follows that x is determined by any {n - 1) of the points X1. This completes the

construction in Sn for general X. This is illustrated for n = 3, and is easily

seen to yield Coxeter's construction for n = 2.

A second approach is to reduce the question of finding x in Sn to two ana-

logous constructions in in - 1 ) dimensions, namely in any two faces α t . Under

the polarity induced in Cί; the point X( = XAt Cί; maps into an (rc-2)-flat

%l consisting of points conjugate to X. For the general X considered, no two

%i coincide; hence, any two of them determine an (rc-l)-f lat of points con-

jugate to X. This can only be χ> Using this idea we can reduce the construction

in Sn to 2Γ analogous constructions in n — r dimensions, and at any stage of

this induction on r, we may use the first method to solve the question com-

pletely.

In particular, if n = 2 we can construct directly by the first method or use

the construction for corresponding points in two involutions on the sides of

A ιA2A^. If n — 3 we can use the first method, or carry out constructions in two

faces of AιA2A3A49 or carry out constructions in four edges of AiA2A3A4.

Going back to n dimensions, suppose X is not of general position; that is,

X lies in a face Cίj. If X lies in r such faces we may name these Cίι, ,Cίr.

Then x contains Ai9 , 4 Γ . Considering the {n -r)-flat determined by simplex

Aj +i An+ί9 we see that the polarity induced in this space has Ar + χ An+ι

as a self-polar simplex and X belongs to the space but is not on a face of

/l r+i An+ι Thus, we can use the first method to determine the polar prime

χ ' of X in this space. Then Aϊ9 9An and χ ' generate an (rc-l)-f lat of

points conjugate to X. This (n - l)-flat is χ

The problem of finding X when given x is solved by dualizing the foregoing

procedures.



CONSTRUCTIONS FOR POLES AND POLARS IN N-DIMENSIONS 1 9 9

REFERENCES

1. H. S.M. Coxeter, The real projective plane, New York, 1949.

2. C. G. C. von Staudt, Geometrie der Lage, Nuremberg, 1847.

UNIVERSITY OF TORONTO

POLYTECHNIC INSTITUTE OF BROOKLYN





POWER.TYPE ENDOMORPHISMS OF SOME CLASS 2 GROUPS

FRANKLIN HAIMO

1. Introduction. Abelian groups possess endomorphisms of the form x » xn

for each integer n. In general, however, non-abelian groups do not possess such

power endomorphisms. In an earlier note, it was possible to show [ l ] for a

nilpotent group G with a uniform bound on the size of the classes of conjugates

that there exists an integer n >_ 2 for which the mapping x —> xn is an endo-

morphism of G into its center. We shall consider endomorphisms of some groups

of class 2 which induce power endomorphisms on the factor-commutator groups.

In particular, we shall show, under suitable uniform torsion conditions for the

group of inner automorphisms, that such power-type endomorphisms form a ring-

like structure. Let G be a group of class 2 for which Q9 the commutator sub-

group, has an exponent [2] . Then the relation [ 2 ] (xy9 u) - (x$u)(y9u) shows

that x —> (x9 u) is an endomorphism of G into Q for fixed u G G. Let n be any

integer such that n{n - 1 )/2 is a multiple of the exponent of Q. Then the map-

ping x—* xn(x9 u) is a trivial example of a power-type endomorphism. If G/Q

has an exponent m, we shall show that the number of distinct endomorphisms of

the form x —» χ1, where xJ is in the center Z of G, divides m. In particular,

a non-abelian group G of class 2 has 1 or p distinct central power endomorphisms

if G/Q is an elementary p-group (an abelian group with a prime p as its ex-

ponent [2] ) .

2. Power-type endomorphisms. Let G be a group with center Z and com-

mutator subgroup Q. We assume that Q C Z so that [2] G is a group of class 2.

Further, suppose that there exists a least positive integer N for which x € G

implies xN 6 Z. This means that G/Zy a group isomorphic to the group of inner

automorphisms of G, is a torsion abelian group with exponent /V. An endomor-

phism α of G will be called a power-type endomorphism if there exists an

integer n = n(a) for which <χ(χ)=χn mod Q for every x G G. Ot induces the

power endomorphism
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on G/Q; and conversely, any extension of a power endomorphism of G/Q to an

endomorphism of G must be a power-type endomorphism of G. For CC, above,

there exist elements

such that a(x) = xnq(x). It is easy to show that if m and n are two possible

values for τι(Cί) then m = n mod N. We note that if N is taken to be the exponent

for G/Q rather than for G/Z, then rc(cί) can be chosen least nonnegative, in

fact, so that 0 <C n(ci) < N. We let P denote the class of all power-type endo-

morphisms of a fixed group G of class 2. Let t(x) — x for every x G G be the

identity map on G. We have t G P with τt( 0 = 1. H e is the identity element of

G, let v{x) = e for every Λ; G G be the trivial map of G. We have v G P; in fact,

any endomorphism of G which carries G into () lies in P. Let the set of all

such endomorphisms into the commutator subgroup be denoted by lίl We have

vE U. If α G ft then nia) = 0, and conversely (for Cί G P ) .

Suppose that Cί and β are in P. Then

aβix) = alx"^ qix; β)] = [a{χ)]n^)a[q{χ; β)]

Since Q C Z, we have

This shows that CC/3GP SO that P is closed under endomorphism composition.

In fact,

n(aβ) = 7i(Cί)7i(β)mod N.

This multiplication is associative. Suppose that OC G P and that γ G U. Then it

is easy to see that Ciγ and yOC G U, since Q is admissible under every endo-

morphism of G.

Let R be the set of all elements of P with the property that α G R if and

only if N \ τι(θO. For endomorphisms OC and β of G, we define a mapping OC + β,

(not necessarily an endomorphism), by

(α
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for every x E G. Then we have the following.

THEOREM 1. If a E P, then α + β e P for every β E P if and only i / α E f i .

/f α + β E P,

n(a) +n(β) =n(a + β) mod/V,

and

q{x; a + β) =q(x; a)q(x β).

Proof. Suppose that α + β E P for every β E P. Choosing /3 = ί, we have

On the other hand,

(<X+ O U y ) = α(%y)%y •« α ( x ) α ( y ) * y ,

so that α ( y ) % =«= Λ CC(y) for every #,y E G. This places α ( y ) E Z; but

where ^(y; α) E (? C Z. Thus, y n ( α ) E Z, for every y E G, and /V | τι(α), placing

α E R. Remaining details are immediate.

For elements of I , addition is commutative whenever one of the sums in-

volved is in P, and if all the sums involved are in P, then addition is associa-

tive. A like statement can be made for the distributive law of multiplication

over addition. R is a ring with the two-sided ideal property in P in that if

α E P, β E R, then dβ and ySOC E R. ϊl likewise can be shown to be a ring which

has the two-sided ideal property in P, therefore in R.

THEOREM 2. Let G be a non-abelian group of class 2 for which the group

of inner automorphisms J has the exponent N. If G/Q is aperiodic^ then ίl is a

prime ideal in K.

Proof. Suppose that Ci, β E R and that Cί/3 E U. If G = Q, then Q C Z implies

that G is abelian. Hence we can find x E G, x fc Q so that

ap(χ)=χ

where both q and (λβ(x) E (λ Since G/Q is aperiodic, n{&)n( β) = 0. We have

really proved the prime ideal property of H in P. The exponent on /, (isomorphic
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to G/Z) is required only to guarantee the existence of R. A related result is the
following.

THEOREM 3, Let G be a non-abelian group of class 2 for which G/Q is a

p-group with exponent pK Then ϊί is a primary ideal in R. In particular, if G/Q

is an elementary p~grouρ[2\ then U is a prime ideal in R.

Proof. The proof begins as for Theorem 2. Since G/Q has exponent p', the

latter is a divisor of n(d)n(β). If Ot jέ H, at least the first power of p would

have to divide n(β). For, G/Z has an exponent p where 1 <^ k ;< /. Since

n{βJ) - [n( β)V we have pJ \ n( βΠ whence βi E R. The ring R exists since

G/Z has an exponent. If G/Q is elementary, then / = k - 1 so that U is a prime

ideal.

3. Additive inverses. An element Cί of P is said to have an additive inverse

Ot'E P if α + Cί'=κ If such an additive inverse exists, it is unique, and

0L'(x)=x'nia)q(x;0L)ml.

A mapping with the structure of OC' always exists, but it need not be, in general,

an endomorphism, ergo not an additive inverse. If of is an additive inverse of

OC, then (X is the additive inverse of Cί'. We first prove the following.

LEMMA 1. α has an additive inverse if and only if the n{θ.)-powers of G

form a commutative set.

Proof. Whether the mapping of is an endomorphism or not, we have

so that

for every x9y E G. Since Q C Z, the conclusion follows at once.

Let K be the set of all α E P with the property that kernCC 2> Q.

LEMMA 2.

( a ) K has the ideal property in r .

(b) J C D R O H ) .

( c ) α E P has an additive inverse if and only if (X E K.
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( d ) α G R am/ β G K implies that (X + β G Jί.

Proof, ( a ) and (d) are trivial. For CX G P, we have

where τ ι=rc(c i ) . If, further, α G R, then % n € Z so that α ( z , y ) = e , and ( b )

is establ ished, since (x9 γ) = x~ι y"1 xy is typical of the generators of Q. We

have α G K if and only if α ( # , y ) = e, that i s , if and only if xnγn =ynxn. Lemma

1 now enables us to prove (c ).

For fixed y G K, we have γ(X G K for every α G P. Write ~γ(X for the additive

inverse of γ(X; then -yCί G K. Let /,- be 0 or 1, and suppose that CCj G P ,

i — 1, 2, , m. A mapping

is defined on G into G by

Call such a map a y - i map. It is clear that the sum of two γ - Σ maps is a

y - Σ map in the obvious way. The set of y - Σ maps is denoted by (y) and

will be called the right principal ideal generated by y in P.

T H E O R E M 4 . If γ e K t h e n ( y ) i s a ring9 a n d ( y ) C K ,

Proof. As we saw above, (y) is closed under addition, yv - v so that (y)

has the zero element K If σ is defined as above, then

i = l

By its effect on x G G we see that σ G P. Since - σ exists, (y) C K by Lemma

2 ( c ) . Now (yα) (y/3) = y(αy/8), so that (y) is closed under multiplication,

once we recall that the distributive law is valid whenever the sums involved

are in P. A similar statement can be made for the associative laws, and,we have

proved that (y) is a ring included in K.
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THEOREM 5. Let G be a non-abelian group of class 2, and let γ be in K.

// the ring ( y) has a right multiplicative identity or a left multiplicative identity•,

then it has a (unique) two-sided multiplicative identity.

Proof, ( y ) has a left ( r ight ) identity < j £ ( y ) if and only if σ E (γ) is a

left ( r ight) identity for the set of elements of ( y ) of the form y/3. More, specifi-

cally, σ is a left identity if and only if σγ~γ. A routine investigation shows

that

12 m m

] Σ(-l) ;Mα;)?* ( r )Σ
1 = 1 i = l

where q = q (x; y). Let

Then σγ = y if and only if

for every % £ G. Hence ( 1 ) y ( x u ) = e for every x£G, ( 2 ) G / k e r n y has an

exponent dividing u and ( 3 ) γ{G) has an exponent dividing u are conditions

each equivalent to ( 4 ) σ is a left identity of ( y ) . If ( 5 ) σ is a r i g h t identity

of ( y ) , ( 6 ) yσ = y. But one can readily verify that ( 6 ) and ( 1 ) are equivalent,

so that if σ i s a right identity, it is also a left identity, whence ( y ) would then

have a unique two-sided identity.

If σ is a left identity, then σγ = y and

for every x £ G. Thus σ is also a right identity, and we have proved that every

left identity is a right identity.

COROLLARY. Let G be a non-abelian group of class 2 for which G/Q is

an elementary p-group for an odd prime p. Let γ 6 K have the properties ( a )

that p \n{γ) = n and ( b ) that there exists an integer m such that ibi) mn = 1

mod p and {ί>2 ) m ~* 1 a^d n — 1 are relatively prime. Then ( y ) has an identity.

Proof, ( m - 1 , n - l ) = l i m p l i e s t h a t ( ( m - l ) n , τ ι - l ) = l a n d t h a t

(mτι - 1 , ft — 1 ) = 1 s i n c e m 7 2 - l = ( m - l ) τ ι + ( 7 i - l ) . H e n c e w e c a n f i n d a n
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integer r such that

(7) n ( n — l ) r = m { m — 1 ) m o d ( m n — 1 ) .

Form the mapping

τ(x)=xm[q(x;γ)]r.

Since G is a group of c lass 2, we have [ 2 ] the identity

where

z = (y, # ) = y"* %"1 yx and t> ( ί ) = ί ( ί - 1 )/2.

Since y is an endomorphism, we have

q(xy;γ)zv^n* = q(x;γ)q(y;γ).

Hence

τ U y ) = * m

y

m

2

v U ) [ < ? U ; y ) ] r [ < 7 ( y ; y ) ] V r t ; U ) .

Let us write the exponent of z as A/2 where A = m(m - 1) - rn(n - 1). By the

choice of r we have h = 0 mod (mn - 1). But mrc - 1 Ξ 0 mod p, so that h = 0

mod p. Since p is odd we obtain A/2 = 0 mod p.

Since G/Q has the exponent p, Q C Z implies that G/Z has an exponent t

where t \ p. Since G is non-abelian we have t = p. In [1] , we proved that if

G/Z has the exponent p then the mutual commutator group (G9Z2) has an ex-

ponent t' which divides p. Here Z 2 is the second member of the ascending

central series of G. Since G is of class 2 we have Z 2 = G, and (G, Z 2 ) = Q.

If ί ' = l , then G is abelian, a contradiction with hypothesis. Hence ί ' = p and

z^/2 _ ̂ ^ s i n c e z £Q and p | (A/2) As a result, τ(%y) reduces to τ(x) τ(y),

so that r is a power-type endomorphism with n(τ) ~ m and

q{x;τ) = [q(x; γ)Y.

Then
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Since p is the exponent of G/Q we have xu G Q for every x & G. But γ G K so

that y ( # " ) = e. Using the theorem and (1) and (4) above, we see that γr is

the required identity of (y) .

4. Some mappings into Q. Let 8 be the set of all α G P which are exten-

sions both of the identity map on () and of the identity map on G/Q. That is,

α G S if and only if <x(x) ~ xq (χ-xa) for every x G G and a(q)-q for every

q £Q. It can readily be verified that the elements of 8 are automorphisms of

G and that, under automorphism composition, they form an abelian group with

unity 6. For Cί, β G 8 and #, y E G, it follows at once that

q(xγ; Cί) =^(%; α ) ? ( y ; a )

and that

q(χ; aβ) = ς r U ; Cί)q(x β).

Let (9X be a mapping defined on 8 into Q such that 0%(cO = q (x; α) for

every (X G 8. It is immediate that the θx are homomorphisms. We can define an

addition in the set 3 of mappings θx by

for every α G 8. Likewise define mappings φa on G into (̂  by Φa(x) = q(x; Cί).

Here, too, in the set ^)of mappings ψα, mappings which are also homomorphisms,

an addition is given by

for every x EG. Let F be the set of elements of G which are the fixed points

held in common by the elements of C. Then we obtain the following.

T H E O R E M 6.

( a ) 3 ^ G / F .

(b) J* = ft αnrf H £ 8.

(c) ϊi and 3 are dual additive abelian groups in the sense that each can be

represented faithfully as a set of homomorphisms on the other into Q.

Proof. It is easy to verify that θx + θy - θxy, and it follows that 3 is an

additive abelian group with unity θe. Let Fa be the subgroup of all x E G with

OL(X) -x. For α E 8, each F α , and hence F = ΠF α , is a normal subgroup of G.
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α G kern θx if and only if x G Fa. θx = θγ if and only if x = y mod F. The map-

ping θ on G into 3 given by θ(x) = 0^ is a homomorphism onto 3 with kernel

F. We have established ( a ) .

φa is an endomorphism of G into (? with kern φa = F α . For y E ϊl, let Γ be a

mapping of G into G gLven by Γ(x) = xγ(x). Since H C R C K, we have

Γ(q) = qγ{q) = q for every ςr G (), so that Γ G 8. Also, φp = y. Hence ίl C &.

Trivially, & C H. The unity of U as a group is v which can be represented as

φL. The mapping φ given by φ (d) ~ φa on S onto & - ϊl turns out to be an

isomorphism, whence (b) .

The mappings cx on H into Q given by

for every γ G H are homomorphisms. y G kern cx if and only if x G kern y. We

can introduce an addition into the set C of mappings cx by

(cx + cγ)(γ) = cx{γ)cγ(γ)

for every y G U. There is a homomorphism φ of G onto C with kernel equal to

[/ = Π kern y,

where the cross-cut is taken over all y E H; and ̂ (%) = c%. A trivial argument

shows that U -F\ One can verify that the correspondence θx <-* cx is one-to-one

and is an isomorphism of 3 with C. Hence 3 is represented faithfully as a set

of homomorphisms on ίl into (λ

Just as there are homomorphisms cx on ίl into Q, so there are homomor-

phisms ba on 3 into Q for each α G S, given by ba( θx) = φa(x) Here, kern 6α

consists of all θx with x E Fa. The mapping 6α is single-valued; for θ^ = θy if

and only if there exists r£F with y = xr, and φa(xr) = φa(x). We can intro-

duce an addition into the set B of such ba by

Now 6α + hβ = iαyg, and, under this addition, B becomes an abelian group with

unity bt The correspondence ba <~* φa is one-to-one and is an isomorphism

of B with U, so that U is represented faithfully as a set of homomorphisms on

3 into Q, and (c) is established.

Further, there is an isomorphism ω on S onto B given by ω(cθ = ba The

mapping
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is a homomorphism on B into Q with kernel consisting of all ba with x G Fa.

For every Oί G S, let £ α be a mapping defined on C into Q by

It is clear that ζ is a homomorphism with kernel consisting of all cx where

x G kern φ . We summarize these results as follows.

C O R O L L A R Y .

on C into Q, and dually,

on G into Q.

5. Some enumerations of mappings.

THEOREM 7. The elements of I ore in one-to-one correspondence with

the ordered pairs ( n s λ ) , where n is an integer, λ is a mapping of G into Q and

n and λ satisfy

( A ) λ{

for every x$γ G G$ where z = (y 9 x) and v(n) = n{n — 1 )/2.

Proof. If α G P, then <? (A;; α) = λ(x) and zι(α)=τι. Conversely, if λ and

n are given, and if (A) holds, define α on G into G by a(x) = xn λ(x) for

every x G G. Condition (A) and the fact that

(xy)n=χnγnzv(n)

show that CC is an endomorphism and is therefore in r .

COROLLARY. // Q has the exponent m$ and if n is an integer for which

m I v(n), then x —> xn is a power endomorphism of G.

Proof. If we let λ(x)=e for every Λ G G then the pair (n,λ) satisfies

(A) since, here, zv{n) = e.
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THEOREM 8. For OC, β£r9 a necessary and sufficient condition that

&) = n ( β ) is that there exists a γ = yα « E H sαc/fc ίAαί 01 = β + y.

Proof. Suppose that n(&) = niβ). Define a mapping y by

We have

so that β + y = ot. Now

qr(xy; θO [9 Uy;

hence if we apply (A) to each of the 9's and simplify, it turns out that γ(xγ) =

γ(x) γ(y)9 so that y is an endomorphism lying in H.

COROLLARY. Let M be the cardinal of Yl. Then r decomposes into par-

tition classes$ each of cardinal M9 in such a way that OC and β are in the same

partition class if and only if n(cί) ~n{β).

Examples of such partition classes are Ifl (where n = 0) and S (where n = 1).

Nontrivial 8 and S = H along with an exponent on Q imply, by the Corollary of

Theorem 7, the existence of an infinite number of partition classes.

Let Ift denote the group of integers, modulo N.

THEOREM 9. Let G be a group of class 2 with exponent N on G/Z. Then

there exists a nontrivial mapping T on I into l^ which preserves addition and

multiplication {whenever they are defined onr). \[ C kern τ

Proof. Let j N denote the residue class, modulo /V, to which the integer /

belongs. Let τ ( α ) = {n {(x))^. Then τ ( ι ) = l / v , so that r is nontrivial. The

remaining statements are apparent. Note, however, that if N is the exponent of

G/Q, then kern r = H.

It should be noted that a well known lemma of Grΐίn leads to nontrivial ίl and

hence to nontrivial elements of P. For, by this lemma, the mappings of the type

x —» {x9 u) for each fixed M G C , U £ Z are in H for groups of class 2.

Let G/Q have exponent n, so that G/Z has exponent t \ n. By [ l , Lemma,
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p. 370 ], the mutual commutator group (G9 G) - Q has an exponent k \ t. If t is

odd, then k \v(t), and (xy)t = xtyt, whence x —> xι is a central endomorphism

of G. If t is even, then x—> x2t is a central endomorphism. Since xn £Q, and

since k is the exponent of Q, we have xkn = e for every x EG. Now ί is the

exponent of G/Z, so that t must generate the ideal of exponents of central

power endomorphisms of G in case t is odd. The central power endomorphisms

are then all

x.—txl* ( / = 0 , l , 2 , . . . ( W ί ) - D .

If A /i is not the exponent of G but only an integral multiple thereof, then the

number of distinct central power endomorphisms will be reduced (in proportion)

to a submultiple of kn/t.

If t is even, then the generator t' of the ideal of exponents of central power

endomorphisms of G must have the property £ | ί ' | 2 ί . Hence £' = £ or t' - 2t.

If £' = £ then the kn/t mappings x—> xjt include all the central power endo-

morphisms (with possible repetitions). In fact, if k is odd, then k \ ί/2, and

ί' = £. If t - t \ then k\v(t). It follows readily that t = 0 mod 2Γ implies

t = 0 mod 2 Γ + 1 . Thus k = 0 mod 2Γ and t £ 0 mod 2 Γ + 1 imply ί ' = 2ί. Whenever

ί ' = 2 ί , there are, at most, kn/2t central power endomorphisms of G. Since, in

any event, a submultiple of kn/t or of kn/2t is a submultiple of n, we have

proved the following.

THEOREM 10. Let G be a group of class 2 for which G/Q has exponent

n. Then the number of central power endomorphisms of G divides n.

The above is a generalization of the following: Let G be an abelian group

with exponent n Then there are precisely n power endomorphisms of G; for,

COROLLARY. Let G be a non-abelian group of class 2 for which G/Q is

an elementary p-group [2] for an odd prime p. Let G have at least one nontrivial

element of order ^ p. Then G has precisely p central power endomorphisms. If

p = 2, then G has only the trivial central power endomorphism.

Proof. Since G is non-abelian we have k ^ 1, and k\n-p implies k-p^

so that k\t\n leads to t = p. Likewise, kn = p 2 . The exponent of G is not p,

since there exists y E G with yp £ e. Hence the exponent of G must be p . If

p is odd, then there are precisely kn/t - p central power endomorphisms. The

set of these endomorphisms is generated by the endomorphism x — * xp under
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endomorphism composition. If p = 2 then x —> x is not an endomorphism; for,

if it were, (xy)2 = x2γ2 would imply γx = xy9 whence G would be abelian.

Since x4 - e9 G has only the one trivial central power endomorphism, x—>x4=e.

In a non-abelian group of class 2, as in the Corollary above, we can find an

element of K for which the corresponding right principal ideal does not have a

unity. Let η{x) = x? so that n{rj) = p. Since k = p we have η G Km If (77) had

an identity, then there would exist mappings Cίj E r , i - 1, 2, , m, with

p^7z(cij) = 1 mod p 2 ,

by the proof of Theorem 5, item (3) , and the fact that p 2 is the exponent of

GD η{G). But the congruence p ζ= 1 mod p 2 has no solution ζ.
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ON GENERALIZED SUBHARMONIC FUNCTIONS

L. K. JACKSON

1. Introduction. In a previous paper [ l ] , the notion of subharmonic func-

tions was generalized in a manner corresponding to Beckenbach's [2] general-

ization of convex functions^ This generalization was accomplished by replacing

the dominating family of harmonic functions by a more general family of func-

tions. In [ l ] the discussion was restricted to continuous subfunctions.

In the present paper we shall give some further properties of the dominating

functions and extend the definition of subfunctions to permit upper semi contin-

uous subfunctions. We shall then show that results of J. W. Green [3] on approx-

imately subharmonic functions extend to our subfunctions.

2. {F [-functions and sub-{ F} functions. Let D be a given plane domain

and let { γ \ be a given family of contours bounding subdomains Γ of D such that

Γ = y + Γ C D where Γ indicates the closure of Γ. We assume that { γ \ contains

all circles of radii less than a fixed number which lie, together with their in-

teriors, in D. We shall use the Greek letter K to represent a circle of ί γ \ and

K its interior. We shall use single small Roman letters to represent points in

the plane. Let there be given a family of functions \Fix)} which we shall call

{ F }-functions satisfying the following postulates.

POSTULATE 1. For any γ£ {γ} and any continuous boundary value function

hix) on γ, t h e r e i s a u n i q u e F(x h γ ) e\Fix)\ s u c h t h a t

( a ) Fix h γ) = hix) on y ,

( b ) Fix h γ) i s c o n t i n u o u s in Γ .

P O S T U L A T E 2. If hι(x) and h2ix) are c o n t i n u o u s on y and if hι(x)—

h2(x) < M on y, M > 0, then

F{x;hι;γ)-F(x;h2;γ) <M
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in Γ; further, if the strict inequality holds at a point of y, then the str ict in-

equality holds throughout Γ.

POSTULATE 3. For any K € {γ\ and for any collection \hv(x)\oί functions

hv{%) which are continuous and uniformly bounded on K, the functions F{x;hv;

K) are equicontinuous in K.

DEFINITION 1. The function six) i s defined to be sub-{ F } in D provided

( a ) 5 (x) i s bounded on every closed subset of D,

( b ) s ( # ) is upper semicontinuous in D,

( c ) s(x) £ F(x) on y implies s (x) < F(x) in Γ.

DEFINITION 2. The function S(x) is defined to be super-{ F j in D provided

( a ) S(%) is bounded on every closed subset of D,

( b ) Six) is lower semicontinuous in D,

( c ) S ( x ) > F ( λ ; ) o n y implies S(x) >^ F(χ) in Γ.

Let Ω be a bounded connected open set comprised together with i ts boundary

ω in D and let g(x) be a bounded function defined on ω.

DEFINITION 3. The function φ{x) is an under-function (relat ive to g(x))

if φ(x) is continuous in Ω, sub-ί F \ in Ώ, and φ(x) < g(x) on ω.

DEFINITION 4. The function ψ(x) is an over-function (relative to g(x))

if φ(x) is continuous in Ω, super-ί F \ in Ω, and ψ(x) >_ g(x) on ω.

POSTULATE 4. If Ω is any bounded connected open set comprised together

with its boundary ω in D and g(x) any bounded function defined on ω, then the

associated families of over-functions and under-functions are both non-null.

POSTULATE 5. For any circle K 6 { y j and any real number M, there exist

continuous functions h\ix) and h2(x), defined on K, such that

F{x\hx;κ) > M, F U ; / L 2 ; K ) < M in K.

POSTULATE 6. For any circle K G ! y}, if the functions hn(x) (n = 0 , l , 2 , ),

defined on K, are continuous and uniformly bounded on K, and

lim hn(x) = ho(x)
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for all but at most a finite number of points of κ9 then

lim F (x; hn; K) = F (x; ho; K)

at all points of K.

POSTULATE 7. For any circle K e { γ!, if the functions hn(x) (n = 1,2, •••),

defined on κ9 are continuous and uniformly bounded on K and equicontinuous at

a point x0 E K , then the functions F {x; hn; K) (n = 1, 2, •), defined in K9 are

equicontinuous at x0.

Our definition of sub-ί F } functions differs from the definition of subhar-

monic functions in that we have restricted our subfunctions to be bounded on

closed subsets of Zλ This seems to be necessary since we do not have a Harnack

theorem of the type that is available in the theory of harmonic functions.

3. Some theorems concerning the { F i-functions.

T H E O R E M 1. If κE{γ\f N is any real number, and x0 G i ( , then there

exists a continuous function h{x) defined on K such that F(xo; h; K) = N.

Proof. By P o s t u l a t e 5 there e x i s t c o n t i n u o u s f u n c t i o n s h\{x) and / ^ ( x )

def ined on K s u c h t h a t

Fix fn n) > N, F(x;h2;κ) < N on K.

We define on K

Then for 0 < λ < 1 we have

F(xo;h2; K) X F(xo;h\; K) < F(xo;hι; K) .

Now set

λ i = g . l . b . [ λ | F U o ; λ λ ; κ ) > ΛΊ

and

λ 2 =l.u .b . [λ\F(xo;hχ;κ) < Λ'].
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Using Postu la te 2 we see that λ t = λ 2 and

This result shows that Postulate 6 of [ l ] is actually a consequence of

Postulates 1, 2, and 5 and may be omitted.

THEOREM 2. If fix) is continuous in D and x0 GD, then given any e > 0,

there exists K E { y \ with center at x0 and radius arbitrarily small such that

\F(x;f;κ) -f(x)\ < e in K.

Proof. If Ky i s any circle of { γ \ with center at x0, then by Theorem 1 there

exists a continuous function hix) defined on Kj such that

F(xo;h;κι ) = fixo)

By continuity there exists a smaller concentric circle K such that

\Fix;h;κi)~fix)\ < 6/2 i n K .

Let

hγix) = max [Fix; h; κί ), / ( % ) ] on K,

h2ix) =πάn[Fiχ;h; κ t ), / ( % ) ] o n κ .

Then in K

F i x ; h 2 ; κ ) S . F i x h ; ^ ) < F i x ; A t ; K ) ,

F ( * ; Λ 2 ; κ ) < F ( % ; / ; κ ) < F ( x Λi κ ) ,

F ί x A ^ K Ϊ - F ί Λ Λa K) < e/2 .

Therefore in K we have

I F i x ; f κ ) - f ( x ) I < | F ( % ; / ; κ ) - F ( % ; Λ ; κ 1 ) | + | F i x ; h; κx) - f (x) \ < 6 .

THEOREM 3. If f ix) is bounded and upper semi continuous on y, then there

exists a function Fix; f; γ) such that

( 1 ) Fix f γ) is upper semicontinuous in V and continuous in Γ,

( 2) F ix f γ) is an { F \-function in Γ,
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(3) F(x f γ) = {{%) on γ.

Proof. Let F{x;f;γ) be the infimum in Γ of all over-functions in Γ with

respect to the boundary function f (x) on y. Clearly F(χ f γ) is upper semi-

coniinuous in Γ. Theorems 11 and 12 of [ l ] show that F(x f γ) is continuous

and an { F }-function in Γ. Let fRix) in = l, 2, •••) be a monotone decreasing

sequence of continuous functions converging to fix) on y. Then Fix; fn;γ) i s

an over-function for each n and therefore F ix; f γ) =/"(%) on y

Heretofore we have used the notation Fix h; y) only for functions continuous

in Γ but henceforth we shall use the same notation when hix) is bounded and

upper semi continuous on y and Fix h; γ) is defined as in Theorem 3. No con-

fusion should arise s ince, for hix) continuous on y, the Fix h γ) as defined

by Theorem 3 is the unique Fix; h; γ) of Pos tu la te 1. Hence, if s ix) is sub-! F \

in D and γ £ \γ\, there exis ts an { F }-function Fix; s; γ) such that

s ix) - Fix; s; γ) on y

and

six) < F ( x ; s ; y ) in Γ.

THEOREM 4. If hiix) and h2ix) are bounded and upper semi continuous on

γ and hiix) - h2ix) <_M on γ, M >_ 0, then

Fix hi γ) - Fix;h2;y) <M on Γ .

Proof. Let x0 £ Γ and suppose that

F(xo',hι;γ)-F(xo;h2',γ)=M + δ, 8 > 0 .

By Postu la te 4 and Theorem 3 there exis ts an over-function ψix) with respect

to h2ioc) such that

0 <φ{χo)-F{x0;h2;γ) < 8.

T h e n Fix; φ; γ) i s a l s o a n o v e r - f u n c t i o n w i t h r e s p e c t t o h2i%) a n d

0 < F(xo;φ;γ)~F(xo;h2;γ) < 8.

Furthermore Fix; φ + M9 γ) is an over-function with respect to hγix); hence, by

the preceding inequality and Postulate 2 we have
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F(χo hι γ) -F(xo;h2;γ) < F(x0; ψ + M; γ) - F(x0; h2; γ)

<F(xo;ifj + M;γ)-F(xo',ιfj;γ)+F(xo;ψ;γ)-F(xo;h2;γ) < M + δ.

This is a contradiction and the theorem is proved,

THEOREM 5. If the functions \hv{x)\ are upper semicontinuous and uni-

formly bounded on κ9 then the functions F(χ;hv;κ) are equicontinuous in K;

further the function

uix) = sup F(x;hv; K)
V

is continuous and sub-{ F j in K9 and

v(x) = inf F(x hv κ)
v

is continuous and super-{ F } in K.

The proof follows immediately from Postulate 3 and Theorem 4, and Lemma

1 and Theorem 11 of [ l ] .

4. Some properties of sub-S F \ functions.

THEOREM 6. A necessary and sufficient condition for the function s (x),

which is upper semicontinuous in D and bounded on every closed subset of D9

to be sub-i F \ in D is that corresponding to each Xo € D there exists a sequence

of circles κn with centers at Xo and radii rn(xo) —> 0 such that

s(x0) < F{xo;s; κn)

for each n.

THEOREM 7. If sχ(x), * ,sn(x) are sub-\F i in D9 then

six) =max [sι(x)9 ,sn(x)]

is sub-{ F \ in D.

THEOREM 8. If s(x) is sub-\F } in D and γ £ { γ], then

[ six) for xeD-T
six;γ)=\

[F(x s γ) for x GΓ
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is sub-\ F \ in D.

The proofs of these theorems parallel those given for continuous sub-ί F }

functions in [ 1 ] and will be omitted.

T H E O R E M 9. If six) is sub-\F] in D, then six)-M, M > 0, is sub-\F\

inD.

Proof. Since six) is upper semi continuous in D and bounded on every

closed subset of D, six)-M has the same properties. Now let %0 E D and

κ G | y | have its center at x0. Then by Theorem 4

six0) <_ F(x0; s; K) < H + F ( % 0 ; S - M; K) ,

hence,

s ix0) -M <Fixo-,s -M;κ)

and by T h e o r e m 6 s ix) — M is sub-{ F \ in D.

5. Λ Harnack theorem for the { F i-functions.

THEOREM 10. If the decreasing sequence of sub-{ F } functions \snix)\ is

uniformly bounded on each closed subset of D, then

lim snix) = s ix)

is sub-{ F ! in D.

Proof. Clearly S ( Λ ) is upper semi continuous and bounded on every closed

subset of D; hence, to show that six) is sub-ί F } in D it will be sufficient to

show that it sat is f ies the Ijittlewood criterion of Theorem 6.

Let XQ G D and let κ G | y ) have its center at x$. By Theorem 4 we have

F(x;sn+ι;κ) < Fix;sn; K) ,

and

Fix;s;κ) <^ Fix; sn; K) , in K

for each n. Since sni x) is sub-{ F \ in D for each n and the sequence \snix) \ is

decreasing, it follows that
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s \XQ ) _^ SJI^^O ' ^i * *• ̂ o5 ^π5 ^ ^

Therefore,

sixQ) < lim Fixo;sn; K) ,

and we conclude the proof by showing that

lim Fixo;sn; K) = Fixo;s; K) .

Since

lim Fixo;sn; K) >_ Fixo;s; K)

assume

l i m F i x o ; s n ; K) = F i x o ; s ; K) + δ , δ > 0 .

T h e r e e x i s t s a n o v e r - f u n c t i o n ψ i x ) w i t h r e s p e c t t o t h e b o u n d a r y f u n c t i o n s i x )

o n K s u c h t h a t

Fixo;s; K) < 0(% O ) < Fixo;s; K) + δ/2.

Since φix) is super-} F \ in K we have

FUo s Ό < F(Λ; 0; 0 ; κ ) < F(%0;5;κ) + δ/2.

An application of Postulate 2 then gives

Fiχo;s;κ) < Fixo;ιfj+ δ/4; K) < F(%0; s; K) + 3δ/4.

Since ψi%) + δ/4 is continuous on K and

s(%) < φ(χ) + δ/4

on K, it follows that for N sufficiently large we have

snix) < <A(%)+δ/4

on K for n >_ N Then for n >_ N

Fixo;sn;κ) <Fixo;ιfj + δ/4;κ) < F(Λ; 0 ;5 ;K) + 3δ/4.
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This is a contradiction, hence

lim F{xo;sn; K) = F{xo;s; K) ,

and

s (x0) <, ^ ( x o ; s ; * ) •

Consequently by Theorem 6 s (x) is sub-ί F } in D.

As an immediate consequence of Theorem 5 and Theorem 10 we have the

following Harnack type theorem for the ί F j-functions:

THEOREM 11. The limit of a uniformly bounded monotone decreasing se-

quence of { F \-functions is an { F \-function.

F u r t h e r m o r e it i s c l e a r t h a t if fix) i s b o u n d e d a n d u p p e r semi c o n t i n u o u s on

K , if Fix;f;κ) i s the { F i-function d e f i n e d in T h e o r e m 3, and if \fnix)\

(τι = l , 2, •••) i s any m o n o t o n e d e c r e a s i n g s e q u e n c e of c o n t i n u o u s f u n c t i o n s

c o n v e r g i n g to fix) on K , t h e n

l i m Fix;fn;κ)=Fix;f;κ) ΊnK.

6. Approximately sub-{ F } functions. D. II. Hyers and S. M. Ulam [ 4 ] have

i n t r o d u c e d t h e n o t i o n of a p p r o x i m a t e l y c o n v e x f u n c t i o n s . A f u n c t i o n fix) i s

s a i d t o b e a p p r o x i m a t e l y c o n v e x p r o v i d e d

for 0 < λ <_ 1 and for a fixed e > 0. For 6 = 0 the definition is that of a convex

function.

The notion of a subharmonic function may be thought of as an extension to

two dimensions of the notion of a convex function in one dimension. Using this

idea, Green [ 3 ] has defined an approximately subharmonic function as follows:

a function fix) defined in a domain D is 6-subharmonic provided ( a ) it is

upper semi continuous, and ( b ) if hix) is a harmonic function in a domain D'

interior to 0, which is continuous on the boundary of D' and dominates fix)

there on, then in D '

fix) < 6 + hix).

In an analogous way we define an approximately sub-ί F \ function as follows:
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DEFINITION 5 A function gix) is said to be e-sub-{FΪ in D provided

(a) gix) is bounded on every closed subset of D,

(b) g(x) is upper semicontinuous in D9

(c) g(x) <. F(x) on the boundary of a subdomain D ' of D implies

gix) < e + Fix)inD'.

With this definition the theorem of Green for approximately subharmonic

functions extends to approximately sub-{ F } functions.

THEOREM 12. If gix) is £-sub-{F} in D9 there exists a function uix),

sub-{ F \ in D9 such that uix) <. gix) <^ e + uix) in D.

The proof of the theorem depends on the existence of a maximal sub-{ F \

minorant for a continuous function. We shall give the proof of Theorem 12 after

we have considered this question.

7. Maximal sub-{ F } minor ants. The theorem given in this section has the

same statement as the corresponding theorem for subharmonic functions and the

proof is similar to the one given in [ 3 ] .

THEOREM 13. If f ix) is continuous in a domain R C D and has a sub-\ F \

minorant in R9 then it has a maximal sub-\ F} minorant uix). The function

uix) is continuous in R and is an { F }- function where it is less than fix).

Proof. Let S be the family of all functions sub-! F } in R and dominated by

f ix). By hypothesis S is non-null. For x E R we define

uix) = s u p s i x ) .

s£S

We w i s h to s h o w f i r s t t h a t uix) i s l o w e r s e m i c o n t i n u o u s in R. L e t XQ E R a n d

η > 0, t h e n t h e r e e x i s t s s ix) GS s u c h t h a t

u i XQ ) - η <. s ( x 0 ) <^uix0) <_fix0).

T h e n s i x o ) - η < f ix0) - η/2 a n d , by t h e c o n t i n u i t y of fix) and t h e u p p e r

s e m i c o n t i n u i t y of six), t h e r e e x i s t s a c i r c l e Kι w i t h c e n t e r a t x0 s u c h t h a t

s i x ) - η < f i x 0 ) ~ η/2 < f i x ) inK^

By Theorem 2 we may choose a circle K with center at x0, with radius less than

that of κl9 and such that
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F(x;f(xo)-η/2;κ) <f(x) inK.

Then by Theorem 4 we have also

F ( x ; s - η ; κ ) < f ( χ ) i n K.

Now define

s ( x ) — η for x in R — K

s * ( % ; κ ) = < _
F(x; s — η; K) in K.

It follows from Theorem 8 and 9 that s*{x;K) G S. Therefore,
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hence,

l i m i n f u ( x ) >_ l i m i n ί s * ( x ; K ) = F { x o ; s - η ; K ) >_ s ( x 0 ) - η ;
x-> XQ X-^XQ

lim inf u (x) >_ u(x0) - 2η.

Since η is arbitrary this implies that

lim inf u(x) >_u{x0)
X-+XQ

and u(x) i s lower semi c o n t i n u o u s in R.

Now we d e s i g n a t e by A the s e t of a l l x G ̂  such t h a t u(x) ± f (x) and l e t

B =/? n comp /ί. δ i s an open s e t and for the moment we a s s u m e that it i s not

void. L e t x G B, then s i n c e B i s open, there e x i s t s a c i r c l e K with c e n t e r a t x

such t h a t K C δ . Suppose t h a t there e x i s t s an s (x) G S such t h a t

F(x s κ) > / ( * )

at some points of X. Then by Postulate 5 and Theorem 4 there would exist an

η >^ 0 such that

Fix s ~η;κ) < f ix)

i n K w i t h t h e e q u a l i t y h o l d i n g a t s o m e p o i n t s of K. If for t h i s s(x), K, a n d η w e

a g a i n d e f i n e

s * (%; K) = <

s (% ) - 77 for x in Λ -

Fix s - η; K) in K.
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then s* ix; K) E S and s * is; K) = f (x) a t some p o i n t s of K. T h u s we would

h a v e uix) - f ix) a t some p o i n t s of K and t h i s would c o n t r a d i c t K C B. H e n c e

F(x s κ) < f ( x ) i n K

for e v e r y s i x ) £ S. H e n c e for e v e r y s i x ) G S l e t

I s U ) inR-K

__
Fix s; K) in K.

Then s ix; K) E S and S ( Λ ) <_ S (X; K) in R9 therefore,

ii (% ) = sup s (% ) = sup 5 (x; K ) .
s G S s G S

We conclude by Theorem 5 that uix) is continuous and sub-{ F \ in K and hence

in B.

Now we define

fix) f o r * e l

uix) for x G B .

Then clearly u* ix) is upper semicontinuous in R and u(rc) <̂  u* ix) <^ fix) in R.

Next we show that ιx*(%) is sub-{ F \ in R. We have already observed that

uix) is sub-{ F } in B, hence u* ix) is sub-{ F } in β. Let %0 G /4 and let K G { y i

have its center at %o a n < l K C R9 then

S ( Λ ) < F U S K) < F ( % ; M * ; K ) in Z

for every s ix) E S. For Λ; G /I n K

s u p s i x ) = f i x ) <^ F i x u*; K ) ;

sES

i t f o l l o w s b y t h e c o n t i n u i t y of f i x ) a n d Fix u*; K) i n K t h a t

B y T h e o r e m 6 , u * ( % ) i s s u b - { F \ i n /? , t h e r e f o r e u * ( % ) G S a n d I X * ( Λ ; ) < u i x ) .

T h i s t a k e n w i t h t h e p r e v i o u s i n e q u a l i t y s h o w s t h a t u* i x ) = u i x ) a n d , b e i n g

b o t h u p p e r s e m i c o n t i n u o u s a n d l o w e r s e m i c o n t i n u o u s , u i x ) i s c o n t i n u o u s i n R .
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By using Theorem 2 one can easily see that uix) is an {F J-function in B.

In Theorem 16 of [ 1 ] it is shown that, if Ω is a bounded open set contained

with its boundary ω in D and if for each x E ω there is a circle K such that

Ω.n K -x9 then Ω is a Dirichlet region for the { F i-functions. For such a region

Ω we may construct barrier sub-{ F } functions as was done in Theorem 16 of

[ 1 ] and thus obtain equality of uix) and fix) on the boundary ω of Ω. This

would imply the continuity of uix) in Ω.

8. Proof of Theorem 12. Let Ω C D be a bounded Dirichlet region for the

{ F }-functions of the type mentioned in the previous paragraph. By Definition

5 the e-sub-{F} function gix) is bounded on Ώ and hence by Postulate 4 and

Theorem 9 has a sub-* F } minorant in Ω Since gix) is upper semicontinuous

in Ω, there is a decreasing sequence of continuous functions \fn(x)\ converg-

ing to gix) in Ω. By Theorem 13 fnix) has a maximal sub-{ F \ minorant unix)

in Ω. The sequence \unix) } is uniformly bounded and decreasing in Ω and there-

fore by Theorem 10 converges to uix) which is sub-| F } in Ω. Clearly uix) i s

the maximal sub-ί F \ minorant of gix) in Ώ.

For each x G Ω, either unix) = / „ ( * ) or unix) < f ^ U M f unix) < fnix)9

let Ω' be the component containing x of the open subset of Ω in which unix) <

f iχ)m Then unix) is an { F j-function in Ω' and agrees with fnix) on the bound-

ary of Ω'. Hence gix) <unix) on the boundary of Ω ' a n d therefore gix) < £ +

unix) in Ω'. Thus we have

gix) <unix) + e

in Ω and letting n become infinite

uix) <gix) <uix) + e

in Ώ.

This proves Theorem 12 for the above class of Dirichlet domains in D. Now

consider a nested sequence of such bounded Dirichlet domains { Ωκ} exhausting

D. Let {uκix)\ be the associated sequence of maximal sub-{ F } minorants of

gix) This sequence is obviously decreasing and, since for K >_ N

gix) - 6 <UKix) <, gix)

on Ω#, is uniformly bounded on each closed subset of D. Another application

of Theorem 10 shows that the sequence \uκix)\ converges to a function which

is sub-ί F ! in D, is clearly the maximal sub-ί F ! minorant of gix) in D, and
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satisfies the inequality of Theorem 12 in D. Theorem 12 is proved.

In a subsequent publication it will be shown that the solutions of certain
elliptic partial differential equations satisfy the postulates of the { F }-functions.
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ON THE RENEWAL EQUATION

SAMUEL KARLΪN

Introduction. Recently Chung and Pollard [3] considered the following

problem: Let A (̂£ = l, 2, •) denote independent identically distributed random

variables having the distribution function F(χ) with mean

m = JxdF{χ) (0 < m)

and let

Define

if X is not a lattice random variable then they show that limζ_oc u(ζ) -h/m.

The above authors imposed the restriction that the distribution F possess an

absolutely continuous part. T. E. Harris by written communication and inde-

pendently D, Blackwell [2] show that this restriction was unnecessary. Of

course, as can be verified directly, u (ζ) satisfies a renewal type equation

/

oo rr+h

u(ζ-t)dF(t)= / dF(t)=g(ζ).

The existence of solutions and the limiting behavior for bounded solutions of

such renewal type equations which involve positive and negative values of t

has not been treated.

Feller [ 1 0 ] and later Tacklind [ 1 2 ] have developed many Tauberian resul t s

for the cases where all the functions u(ζ), F{ζ) and g(ζ) considered are

Received July 22, 1953.
Pacific J. Math. 5 (1955), 229-257
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zero for ζ negative. This reduces (*) to the classical renewal equation where

Laplace transform methods can be exploited. Doob [6] and Blackwell [ l ]

discussed the same type of renewal equation from the point of view of prob-

ability theory and appealed to the ergodic theory of Markoff chains.

In this work we shall show that most problems of the general renewal equa-

tion can be reduced to an application of the general Wiener theorem and the

properties of slowly oscillating functions. Our methods are thoroughly analytic

and apply to situations which do not necessarily correspond to probability

models. Moreover, a complete analysis of (*) shall be given concerning ex-

istence and asymptotic behavior of solutions with results describing rates of

convergence under suitable assumptions. Erdδs, Pollard and Feller [7 ] and

later Feller [9] in the study of recurrent events did apply the Wiener theorem

to some discrete analogues of (*) and these examples have served to suggest

to this writer this general unified approach. Most of the results of Tacklind

who dealt with the classical renewal equation use deep methods of Fourier

analysis. These results are illuminated and in many instances subsumed by

our methods. Finally, in the course of revising this paper it has come to our

attention that W. L. Smith very recently [11] independently has discussed the

classical one-sided renewal equation from the point of view of Wiener's general

Tauberian theorem. His treatment and this investigation supplement each other

in many respects. We employ the basic properties of slowly oscillating functions

while Smith uses Pitt 's extension of the Wiener theorem.

Some fundamental differences appear between the general renewal equation

(*) and the type of renewal equation studied in [8], [13] and [11]. For ex-

ample, solutions to (*) need not exist and when they do exist there are, in

general, infinitely many bounded and unbounded solutions. This complicates

the analysis of the asymptotic behavior of solutions of ( * ) . In fact, solutions

u(ζ) can be found for certain examples which oscillate infinitely as | ζ | —»oo.

Even when we restrict ourselves to bounded solutions to (*), the abundance of

such solutions necessitates a careful analysis which does not occur in the

handling of the one-sided renewal equation. (See the beginning of V 3.)

In § 2 we present a complete treatment of the discrete renewal equation

(**) un~ Σ an-kuk =

In this case necessary and sufficient conditions are given to insure the ex-

istence of bounded solutions to (**) . Asymptotic limit theorems for bounded
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solutions to (**) are obtained and appropriate conditions are indicated which

yield results about the rates of convergence of such solutions as n—>oo.

The general equation (*) is treated in § 3 where the existence and limit

theorems for bounded solutions of (*) are given. The Plancherel and Hausdorff-

Young theorems are used to establish the existence of bounded solutions to

(*) . Limit theorems are analyzed and rates of convergence are obtained. Some

applications are made to the classical renewal equation.

The relationship of Wiener's Tauberian theorem to ideal theory motivated

the content of §4. This last section indicates a new avenue of approach to the

meaning of the renewal equation.

Finally, I wish to express my gratitude to James L. McGregor for his helpful

discussions in the preparation of this manuscript.

2. Discrete renewal equation. This section is devoted to a complete analy-

sis of the renewal equation

oo

(1) un- Σ «

The convolution of two sequences \xn \ and \γn } is denoted by

* I f I
y ^ v ~ / y Ύ i Λf X.

[A;=-oc j

This product operation is well defined whenever, for example, at least one of

the sequences is an absolutely convergent series while the other sequence is

uniformly bounded. Equation (1) can thus be written as
(2) u - α * u = b,

We suppose hereafter, that the sequences {an\ and {bn\ have the property that

Un >L ®9 Σ α n = l and Σ | bn | < oc and that un represents a solution of (2) .

In general, there exist many solutions of (2) which complicates the study of

the asymptotic behavior of solutions {un\ of the renewal equations. We first

investigate the general problem of the existence of solutions of (1) . To this

end, we introduce the linear operation T which can be applied to any sequence

{ cn \ which forms an absolutely convergent series. Precisely, let



232 SAMUEL KARLIN

vhere

c;
i=π + l

n > 0

n < 0.

Let

1 7i > 0

0 n < 0

and define the linear functional

lation for future use

cn. We note the following re-

(3) φ (c)σ - σ * c = Tc .

The operation Γ can be repeated provided that the resulting sequence { Tc \ is

an absolutely convergent series. If, for example, Σ n = - o o \n cn \ < oo, then

Γ c is well defined. Moreover, we observe for later reference that if

Σ\n> < 00,

then

lim \nk(Tc)n\=0.

We now impose two very fundamental assumptions.

ASSUMPTION A. The greatest common divisor of the indices n where

an > 0 is 1.

ASSUMPTION B. The series Σ,\nan\ < oo and Σrc=-oo nan = / n / 0 , (For

definite ness we take m > 0.)

Many of the following results can be extended to the case where the g.c.d. of

the indices n where an > 0 is d > 1. We leave this task to the interested reader.

However, Assumption B is indispensible for the validity of many of the sub-

sequent results. Some results can be extended by suitable modifications to

m = oo.
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An important tool to be used frequently is the following lemma.

LEMMA 1. // Assumptions A and B are satisfied, then there exists a se-

quence ί rn i with

Σ I rn I < oc and r * Ta = δ

where 8 - { δ° }. (The sequence δ is the identity element with respect to the

* multiplication.)

Proof. For the sequence \an\ let α ( # ) = Σ β O O an e ι n . The relation ( 3 )

implies for 0 < θ < 2 π

= Y(Ta)ne
inθ=Ta(θ).

\-eιu tZ

Assumption A implies that Ta{θ) ^ Oίoτ Θ^O and \Θ\ < 2π. Assumption B

yields that Ta{0) £ 0 and the fact that Σ . o o | ( Ta) \ < oo. By virtue of Wiener's

Tauberian theorem

r einθ

n(Ta)(θ)

defines an absolutely convergent Fourier ser ies . The conclusion of Lemma 1 is

now evident from this last relation.

We now proceed to discuss the existence of solutions to ( 1 ) or ( 2 ) .

THEOREM 1. // Assumptions A and B are satisfied, then there exists a

bounded solution of ( 1 ) . Any two bounded solutions of (1) differ by a fixed

constant.

Proof. We seek a bounded solution of

( 2 ) u -a * u = b.

Mult ip ly ing formally ( 2 ) by σ and u s i n g ( 3 ) we o b t a i n u * (Ta) = σ * b and

h e n c e by L e m m a 1

u - r * σ * b.

The sequence r * σ * b is a bounded sequence and it is easily verified
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provides a solution for relation (2). To establish the second half of the theorem

it is sufficient to show that

(4) u - a * u = 0

possess only constant bounded solutions. Let (Δu) = (un - un + ι). It follows

readily that (4) implies ( Ta) *. Δu = 0. Multiplication by r yields that (/Su) = 0

and hence the result sought for.

We now show that in general, nonbounded solutions of (4) and therefore of

(1), can be found. This is illustrated by the following example. Although the

example is special, the technique is general and the reader can easily construct

many other such examples.

Let ai = 1/2, α2 = 1/2 and α; = 0 for i £ 1, 2. Equation (4) becomes

1 1
«τι = - «rc-i + " «n-2 all n.

We can prescribe UQ and u\ arbitrarily and therefore we obtain a two-dimensional

set of solutions. However, by virtue of Theorem 1 only a one-dimensional set of

bounded solutions exists. Hence, unbounded solutions also exist. The unbound-

ed solution oscillates infinitely as n — » - oc.

It is worth showing that a converse to Theorem 1 can be obtained.

T H E O R E M 2. //

]Γ bk > 0, Σ I nan I < oo but £ nan = 0,
k = - oo - oo

then there exists no oounded solutions to ( 2 ) provided that

oo

2 2 bn > 0, ax > 0 and <M > 0.

Proof. Suppose to the contrary that { un } is a bounded solution to (2) . Let

λ = lim^^oo un then there exists a subsequence uni —> λ. By virtue of a stand-

ard probability argument (see [10, p. 260]), it follows that lim^^^oo i^./c = λ

for each integer k. A similar subsequence m; can be found such that l i m ^ ^ ^ «,

u>m'-k =*w> where u =limm_>_ oo um. As in Theorem 1 we obtain that ( Γα)*Δw = i .

Summing from mi to nι gives
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Allowing π j —» oo and m/ —> — oo, it follows readily since Σ | ( Ta)jc\ < oc that

0 <J2 bk = (λ-u) ^
- OO A rt=-OO

a contradiction.

REMARK. Theorem 2 can be established using the weaker Assumption A

in place of the hypotheses that a\ > 0 and a.γ > 0. We omit the details

Having discussed the question of existence we now turn to investigate the

asymptotic properties of bounded solutions to (2) . Throughout the remainder of

this section we assume that Assumptions A and B are satisfied. A useful result

which we state here for later purposes is the following well known Abelian

theorem.

LEMMA 2. // {rn\ is such that L n , _ o o \rn I < oo, { cύn \ is bounded and

lim^^oo a.n - 0, then

lim Σ ωn-krk = °

The following theorem is a simple Tauberian result for solutions of ( 2 ) .

THEOREM 3. If un is a bounded solution to (1), then lim^^oo un and

l i m ^ - ^ ^ un exist.

Proof. By Theorem 1, it is sufficient to prove the result for the special

solution

u = r * b * σ.

For this special solution, we have

k--

Hence the limit exists, in fact,
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φΛb)
lim un~0, lim un = ^ (r * 6)/,

Q.E.D. To obtain more precise results let

Φ0(b)

where α = r * 6 * σ i s the unique bounded solution for which un

From the proof of Theorem 3 it is clear that vn —> 0 as \n\ •

to show that

• 0 as n —> oc.

> oo. It is easy

(5)

or

Ta*v=-Tb
φΛb)

T2a
m

<^0(6)
Γ6 - -^ T2a

m

Hence if we assume in addition to A and B that

Σ\(T2a)n\ <oc and Σ |

then it follows that Σ . | v Λ | < oo. These new assumptions -enable us to obtain

further results about the rate of convergence of vn and hence of un. To this end,

we define the operation S on any sequence {tn j , St = \ntn !. The hypothesis

Σ | ( Γ 2 o ) n | <oc and Σ\(Tb)n\ .< oo

or the equivalent assumptions

Σ n2 an < oo and Σ | nbn \ < oc,

respectively imply easily that STa defines an absolutely convergent series and

ST a constitutes a bounded sequence which tends to zero as \n\ —> oc. A

direct calculation using (5) gives that

(6) S(Ta *v)-ST(a) * v--STb
Φ0(b)

ST2a -STa * v.
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T h e left s i d e of ( 6 ) i s i d e n t i c a l c o m p o n e n t w i s e wi th Ta * Sv. Mul t ip ly ( 6 ) by

Ta, t h e n w i t h t h e a i d of ( 5 ) , we o b t a i n

(7) Ta * Ta * Sv = - Ta * STb + ί Ta * ST a !
m

•STa * -Tb
φΛb)

T2a\.

On account of the hypothesis and Lemma 2, we find that the right side is a

bounded sequence which tends to zero at ±oc. Employing Lemma 1, we conclude

that Sv is bounded and lim^^oo \nvn \ = 0.

Although it might appear as if the relation (7) is rather fortuitous, a simple

method to deduce the formula begins with the Fourier series relation

(8) Ta(θ)v(θ)=- Tb{θ) T2a(θ)

which is well defined and is an alternative way to express (5) . Differentia-

tion of (8) with multiplication by Ta(θ) and use of (8) gives a formal repre-

sentation of (7) . The preceding argument was in essence a justification of

this differentiation process.

The preceding analysis extends with the aid of an induction argument. The

details are omitted and we sum up the results in the following theorem.

THEOREM 4. Let an > 0, Σ - o o an = 1> satisfying Assumptions A and B.

Let un represent the unique bounded solution of ( 2 ) for which l im^^oo un = 0

(see Theorem 3). If

\nk bn\ < co and T \nk+l an
<<χ,

then

Σ
n> 0

Φ0(b)\
' l

n<0

and
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lim nh

7Ϊ—> oo

Φ0(b)
= lim

A first classical application of Theorem 1 can be obtained from the theory

of Markov chains. Let E represent a recurrent state from an irreducible non-

periodic chain. Let un represent the probability of starting from E and returning

to E in n steps. Let an denote the probability that the first return occurs at the

nth. step (n > 0). Put u0 = 1, u.n = 0 and a.n = 0 (for n > 0), then

an-k
k=0

where bn = 0 for n £ 0 and bo = 1. Since E describes a recurrent state, Σ α ; = 1

and trivially m = Σ ί = 0 iai > 0. As an immediate consequence of Theorem 4,

we infer that if

Σ nk+ί an < oc, then
1

< oc and lim n*L--]=o.
L m J

A second application deals with the following problem treated by K. L.

Chung and J. Wolfowitz [4] ^e generalize their result in obtaining stronger

rates of convergence by assuming further conditions on the moments. Let X

denote a random variable which assumes only integral values and define for all

an =Pr{Λ: =τι n = 0, ± 1, ± 2,

Let X({i = 1, 2, . •) denote an infinite sequence of independent events with the

same distribution as X, Define

ι and un = ^ P Pr \ Sj = n \ = Expected number of sums where Sy - n.

Let m -E(x) be the expectation of X. Suppose the greatest common divisor of

the indices n such that an > 0 is 1 and 0 < m < oo. Chung and Wolfowitz in

[4] allow m =oc, but the present method does not apply. The restriction on the

greatest common divisor is not essential but the requirement that m j/= 0 is very

crucial and in fact in the contrary case un = oc as is shown by Chung and Fuchs

[5] . We obtain that if Σ ~=_ ^ \nk+ί an\ < oo, then
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. I X I j

lim n \un | = lim n un=0.
n<0 n-*°o

Indeed, it follows from the definition of un that

oo

"Λ - Σ an-kuk=an-
k=- oo

It can be seen that the sequence z% is uniformly bounded and lim^^.oo un = 0

(see [ 5 ] ) . The conditions of Theorem 4 are met and the conclusion follows from

the results of that theorem. Summing up, we have

COROLLARY. Let X( be identically distributed independent lattice random

variables with distribution given by Pτ\x =n\ — an and un = ̂ / = i Pr {sy = n \

where SJ= Σ ί = 1 #;. // the expected value of x = m > 0 and g.c.d. n = 1, then

£ \ n k + l an\ < c o
n = — 00

implies

Σ
τz> o

while

1

< oo

n < 0

k.lim Λ Λ | M Λ 1= lim nκ un = 0.

3. Continuous renewal equation. This section is devoted to an analysis of

the existence and asymptotic properties of solutions for each ζ of the relation

(9) u{ξ)-Γ u(ξ-t)df(t)=g(ξ).
J-00

T h e c o n v o l u t i o n o f t w o f u n c t i o n s x ( t ) a n d y(t) i s d e f i n e d a s

x{t-ξ)y{ξ)dξ
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which exists if, say, x is integrable and y is bounded. We shall be concerned

only with bounded solutions of (9) . It is assumed that

df(t) > 0, Λ° rf/=l and j\g\ < oo.

The following hypotheses are now imposed:

ASSUMPTION A'. The distribution / is a non-lattice distribution, that is,

the points of increase of / do not concentrate at the multiples of a fixed value.

/

' oo Γ oo

\t\df (t) < co a n d / t df it) =m ^ 0 ( s a y m > 0 )
- oo J - oo

These two assumptions constitute the continuous analogues of Assumptions

A and B and hereafter we suppose these assumptions satisfied.

We introduce the operation T defined for any function of bounded total varia-

tion hit). Let

1 t > 0

and φΛh)= dhit)

and

or

0 t < 0

Th = φΛh) σ-σ* h

(Th)(t)=<

dhit) t > 0

- Γ dhit) t < 0
J - oo

T i s a l s o d e f i n e d for i n t e g r a b l e f u n c t i o n s kit) a s f o l l o w s :

Tk = Tk*it) w h e r e & * ( * ) = / k i ξ ) d ξ .
J - oo

Let

un(£) = n J uit)dt
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with g d e f i n e d s i m i l a r l y . E q u a t i o n ( 9 ) c a n be c o n v e r t e d to

Since the derivative of un is essentially uniformly bounded, we obtain on inte-

gration by parts that

do) τf*<

T h e f i n i t e n e s s of £ ^ \t\ df (t) i s e q u i v a l e n t t o t h e i n t e g r a b i l i t y o f Tf (t) a n d

t h u s ( 1 0 ) i s w e l l d e f i n e d . I n t e g r a t i n g ( 1 0 ) f r o m a t o ζ g i v e s

/

ex, rξ

[ u n i ξ - t ) ~un{a - t ) ] Tf i t ) d t = / £ ( t ) dt.
oo J a

Letting n go to oc, we have almost everywhere

(11) f ° ° [ u ( ξ - t ) - u ( a - t ) ] T f ( t ) d t = ϊ ξ g ( t ) d t .

Since both the right and left hand sides of (11) are continuous this identity

holds everywhere in ξ and α. Allowing a —>oc, we find from (11) that

lira
a —• -

foe
i r a / u ( a - t ) Tf ( t ) d t = c .

Adding to any solution of ( 9 ) a constant produces a new solution u of ( 9 ) .

Therefore, we may suppose that c — 0. Thus,

(12) [°° u(ξ-t) Tf(t)dt=[ξ g(t)dt.

We define for this u satisfying (12),

It follows directly that

(13)
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We now present a series of lemmas needed in the sequel.

LEMMA 3. Under the assumptions stated above, the Fourier transform

eitθTf(t)dt
- oo

vanishes nowhere.

Ίhe proof is similar to that of Theorem 1, and is based on the identity

i θ ( T f ) * ( 6 > ) = - l + [°° e i t θ d f ( t ) .

L E M M A 4 . Any two bounded solutions of (9) differ by a constant.

Proof. It is enough to show that the only bounded solution of

u(ξ-t)df(t)=O

are constants. Using a reasoning similar to that of deducing (12), we get

(13a) f°° u ( ξ - t ) T f ( t ) d t = c .
J - OO

By subtracting an appropriate constant from (13a), we have for v = u — c ' that

v * Tf = 0. Lemma 3 and the general Wiener's Tauberian theorem yields that

v * r = 0 for every integrable r(t). It follows readily from this last fact that

v = 0 almost everywhere or u = c ' a.e.

L E M M A 5 , If r it) is integrable and wit) — > 0 a s | £ | — > o o , then

l i m f°° wiξ-t)rit)dt = 0 .

This last Abelian theorem is well known and straightforward.

LEMMA 6. If v is bounded and satisfies (13), then

lim ί°° riξ-t) vit) = 0
\ξ | - ~ ° °

for any integrable function r.
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Proof. The hypothesis and the character of the operation T imply that

l i m Tg{ξ)= l i m T2f(ξ)=0.

Consequently,

lim f°° v ( ξ - t ) T f ( t ) d t = O .

An a p p l i c a t i o n of the g e n e r a l Wiener T a u b e r i a n theorern l e a d s to t h e c o n c l u s i o n

of the lemma.

COROLLARY. Under the assumptions of Lemma 6 we have

lim / v(t)dt=0.

l*μ~ Jx

Indeed, choose

- for 0 < ξ < Δ
Δ

0 elsewhere

We now establish the fundamental asymptotic limit theorem for bounded

solutions of (9). The basic Tauberian theorem used is the Wiener theorem

coupled with the properties of slowly oscillating sequences.

THEOREM 5. If u is a bounded solution of ( 9 ) , and f has a decomposition

f = fχ + f2 where fχ is absolutely continuous and the total variation of f2 = λ < 1,

a n d l i m | ̂  | _ o c g ( £ ) = 0 , t h e n l i m ^ o c u { t ) a n d l i m ^ . o o u ( t ) b o t h e x i s t .

If l i m ^ ^ . oo u ( t ) = 0 , t h e n l i m ^ _̂  cχ> u ( t ) =

Proof. It is enough to assume that v defined by (12-a) from u satisfies

(13). This can be achieved if necessary by altering u by a fixed constant (see

the discussion preceding Lemma 3). As before, we find that

(14) lim f°° v(ξ-t)Tf(t)dt=O
I ξ h°°

It will now be shown t h a t v(t) i s s l o w l y o s c i l l a t i n g a s | ί | — > oc (v(t) i s
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said to be slowly oscillating (s .o.) if

l i m \v{ξ+η)-v(ξ)\ = 0 .

£->oo

7 7 - 0

Λ similar definition applies at ί = - o o . The general Wiener theorem and the

s.o. character of v ( t ) implies the stronger conclusion over Lemma 6 that

lim v(t)=0

which is our assert ion. It thus remains to establ ish that v{ζ) is s .o. and we

confine our argument to the situation where ζ—»oo A similar analys is applies

at - o c . Ilemembering that the convolution of an absolutely continuous distribu-

tion and any other distribution remains absolutely continuous, we obtain upon

n fold iteration of ( 9 ) that

u(ξ)=ί°° u(ξ-t)dkι(t)+Γ u{ξ-t)dk2{t) + P ° g(ξ-t)dk3U)
J - 00 J-00 J-00

= Iι(ξ)+I2(ξ)+I3(ξ)

where kγ i s a b s o l u t e l y c o n t i n u o u s , k^ i s the n fold c o n v o l u t i o n of f2 wi th i t se l f

and A 3 ( ί ) i s of bounded to ta l v a r i a t i o n . S ince g(ζ)—>0 a s \ξ\—> oc by

L e m m a 5

lim / 3 ( £ ) = 0 .

Next , we observe t h a t 1 ^ ( ^ ) 1 < λn c where c i s the upper bound of u. F i n a l l y ,

\ h ( ξ + η ) ~ h ( O \ < f \ u i ξ - t ) \ \ k [ { t + ξ ) - k [ { t ) \ d t

by virtue of a well-known theorem of Lebesgue. Combining these estimates, we

get that

Tϊm" \v{ξ+η)-v(ξ)\ < 2cλn

7 7 - » 0
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which by proper choice of n can be made as small as one pleases. This com-

pletes the proof.

REMARK. Theorem 5 is valid if we merely assume that some iterate of

/ has an absolutely continuous part.

C O R O L L A R Y . Under the conditions of Lemma 6, ifv(t) is uniformly con-

tinuous for t > 0 and £ < 0 , then

lim v ( t) = 0.
\t\-*oo

Proof. The function v(t) is s.o. from which the conclusion follows as in

Theorem 5.

In many examples, we deal with a solution u of (9) which is by physical

considerations bounded while in other cases boundedness for certain solutions

has to be verified. Our next object is to give sufficient conditions so that we

can establish the existence of bounded solutions of (9) . From now on we as-

sume that / is absolutely continuous and let

a(t)dt.

LEMMA 7. / / u is a solution of ( 9 ) which belongs to Lp ( p > 1 ) , a G L l

also belongs to Lp where p ' is the conjugate exponent to p and g is bounded^

then u is bounded.

Proof. Applying Holder 's inequality to ( 9 ) and an obvious change of vari-

able, we obtain

( f J r ) *'•
THEOREM 6. Ifait) belongs to L 1 and L2, git) is bounded,

I \x | 2 a(x)dx < oo

and

I \x I g(x) dx < oo,

then a bounded solution u(t) of (9) exists.
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Proof. T h e F o u r i e r t r a n s f o r m of a n y i n t e g r a b l e hit) i s d e n o t e d b y h * ( θ ) .

C o n s i d e r t h e e x p r e s s i o n

, _ , , „ . . , g*(θ)-(Ta)*{θ)[φ(g)/m]
(14) w*{θ)~

1 - α* ( θ)

It will now be shown that (14) is the Fourier transform of a function in L2. To

this end, by the Riemann Lebesgue lemma α* ( θ) —> 0 as \θ\ —> oo and

| α * ( 0 ) | < 1 for θ £ 0 with a*(θ) continuous. Since the first moment of a

exists, Ta is bounded and in Lι. Hence, Ta belongs to L2 and Ta* ( θ) EL2.

A similar argument shows that g*(θ) EL2. Thus for | θ | > α > 0, w* ( θ) is in

L 2 for any fixed positive constant α . But,

w { θ ) m

-(Tg)HΘ) +[φ(g)/m](T2a)*(θ)

= (Ta)*(θ)

The existence of the second moment of a implies that ( Γ 2 α ) * ( θ) is continuous.

Analogously, ( Γ g ) * (θ) is continuous by virtue of f\x \ g (x) < oo. Since

Ta* (0) - m > 0, we find that w*(θ) is continuous in the neighborhood of zero

and hence w* (θ) i s in L 2 . Consequently, w{t) in L 2 ex i s t s which is the Fourier

transform of w* ( θ) and conversely. Moreover, ( 1 4 ) yields

J -
(t)a(ξ-t)dt=g(ξ)-Ta(ξ)

J -oo m

for almost all ξ.

As a convolution of two elements of L2 the integral on the right is bounded

and continuous. Hence the right side is bounded and remains unaltered, if w is

changed on a set of measure zero.

As in Lemma 7, it follows that w(ζ) is bounded. Putting

u{ξ)-w{ξ)+ —-σ(ξ),
m

we find that u is bounded and sat is f ies ( 9 ) .
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REMARK. Theorem 6 can be established under the weaker conditions that

J \ x \ l + a a(x) < o o

and

for some Cί > 0. These assumptions are sufficient to imply the boundedness of

w* ( θ) in the neighborhood of zero.

Other sufficient criteria can be obtained for the existence of bounded solu-

tions to (9) involving use of the Hausdorff-Young inequalities in place of the

Plancherel theorem.

THEOREM 7. If ait) belongs to Lι and L p ( 1 < p < 2 ) ,

J\t\l+aa(t)dt < oo

with α > 0,

f\g*(θ)\Pdθ <oo

and g is bounded, then a bounded solution of ( 9 ) exists.

It is worth noting that the solutions u guaranteed by Theorems 6 and 7 have

the property on account of Theorem 5 that l imj^^oo u(t) exist .

Our next objective is to find conditions which imply conclusions about the

rate of convergence of w{ζ) of Theorem 6 as \ζ\ —> oo and thus of u{ζ)

To this end, we differentiate ( 1 4 ) and 15), we get

a*'(θ)w*(θ)+g*'(θ)-Ta*'(θ)[φ(g)/m]
(16) u/*'(60 =

(17) w*'(θ) =

l - α * ( 0 )

Ta*'(θ)w*(θ)~ Tg*'(θ) + [φ(g)/m](T2a)*'(θ)

Ta*(θ)

Relation (17) can be derived from (16) by dividing numerator and denomina-

tor by iθ similar to the method of obtaining (15) from (14).

Under the assumptions that
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t I3 a(t)dt <

and

Jt2g(t)dt < oo

with g b o u n d e d and m o n o t o n e d e c r e a s i n g a s 11 | — > oo we now s h o w t h a t w*'{θ)

b e l o n g s to L 2 . I n d e e d , for | θ \ >^ (X > 0 we u s e ( 1 6 ) to e s t i m a t e w*'(θ) and

we u s e ( 1 7 ) to a n a l y z e u ; * ' ( θ) in the n e i g h b o r h o o d of the o r i g i n .

F o r ξ > 0

ξTaiξ) < f00 tait)dt < c

and similarly \ ζ Ta( ζ) \ ;< c for ζ negative. Also,

f ° ° t2 T a 2 i t ) < c Γ \ t T a { t ) \ < c ' f t 2 a ( t ) d t <
J - OO J - OO J

00

and

f™ t2

 g

2 ( t ) < c f t 2 g ( t )
J - OO J

Since git) is monotone decreasing as \t\ —> oo, we obtain easi ly that

\t&(t} I S. c ^ s a*'(θ) is the Fourier transform of t ait) in L (except for a

fixed constant factor) we know that α * ' ( 0 ) is uniformly bounded. By Theorem

6, w*(θ) is in L2 and therefore a*'iθ) w* i θ) is in L 2 . g*'(θ) is in L 2 by

virtue of t git) £ L2 and Tα* ' ( 0 ) is in L 2 as a consequence of t Ta i t) in L2

which were established above. Since | α * ( 0 ) | < 1 for θ £ 0 and tends to zero

as \0\—>oo, we find, collecting all these cited facts, that w*'( θ) is in L2

for \θ\ >L Ot > 0. The assumptions of the existence of the third and second

moments of a and g respectively yield as in the proof of Theorem 6 using ( 1 7 )

that t ϋ * / ( θ ) is continuous at zero. Thus w*'(θ) is square integrable through-

out and as a result of standard Fourier analysis i s the Fourier transform of

twit) in L2. Relation ( 1 6 ) gives

(18) twit)-l°° ait-ξ)ξwiξ)dξ

= / ;
w(t-ξ)ξa(ξ)+tg(t)-——tTa(t)

m
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The fact that tgit) and t{Ta) (t) are bounded imply by an argument completely

analogous to the proof of Lemma 7 that tw it) is bounded. It follows as before

that twit) is s.o. ( s e e Theorem 5 ) . The relation ( 1 7 ) leads to

(19) / Taiξ-t) twit)dt

(ξ-t)Ta{ξ-t)w(t)dt-ξTg(ξ)+— ξT2a(ξ).ξT2

Since wit) —» 0, ξTgiξ) —> 0 and ξiT2a) iξ) —> 0 a s \t\ —> oo, we obtain

by Lemma 5 that the right side of ( 1 9 ) tends to zero as | ξ | —> oo. Combining

the s.o. character of twit), i ts boundedness and the Wiener Tauberian theorem

leads to the conclusion that

lim twit) =0.

\t\-*OQ

Proceeding inductively we can obtain higher rates of convergence by imposing

the requirement of the existence of higher moments using this same method. We

sum up the discussion in the following theorem.

T H E O R E M 8. Let

\t\n+2ait)dt <oo

with a in Ll and L2. Let git) be bounded monotone decreasing for t > to > 0

and nondecreasing for t <̂  — to < 0 with

then

f \ t \ n + ί g i t ) d t < o o ,

lim tnwit)=0

I ί I ->oo

where

u = w + σ
m
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is a solution of ( 9 ) , and wit) is the Fourier transform of w*(θ) ( s e e ( 1 4 ) ) .

(We recall that Lemma 4 shows that uit) as given above is the only bounded

solution for which uit) —» 0 a s ί —> ~ oo.)

We now append some remarks about the c lass ica l renewal equation

( 2 0 ) u(x)=g(x)+ u{χ-ξ)df(ξ) * > 0 .
Jo

The assumptions made are that

a > 0 , g > 0 , / g{ξ)dξ=b<ω
0

and / is the distribution of a non-lattice random variable. The function Tf{ξ)

is introduced as before. If the first moment of / exists, then Tf G L and

m = f°° χdf(x) > 0.
Jo

Thus, we deduce as before that Tf possesses a Fourier transform which is

never zero. Throughout the discussion of this case it is no longer necessary to

assume any boundedness condition on u(ζ), the nonnegativeness of u suffices

to enable us to obtain all the results of Theorems 5-8.

To indicate the simplicity of our methods we now show how Wiener's

Tauberian theorem can be used directly to establish a slight generalization of

one of the fundamental results of Tacklind on the classical renewal equation.

His procedure involves complicated estimates.

THEOREM 9. Let Φ(x) denote a monotonic solution to the integral equation

(21) Φ{χ)=Q{x)+ [* Φ(x-y)dfiy) % > 0
Jo

where Φ{x) is continuous and Φ(0) =0, Q(x) is a distribution on (0, oo) with

finite first moment and f is a non-lattice distribution continuous at zero with

finite second moments, then

1 1 μ a Λ
φ ( * ) - - * + l = o

m m 2m

where



m =
to
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xdf(x), α= f°° x2df(x) and μ = [°° xdQ(x).
Jo Jo

Proof. Define

x,
m

then it follows from (21) that

(22) Ψ U ) - f* y ( x - t ) d f = Q ( x ) - - [X Tf{ξ)dξ.
Jo m Jo

Integrating (22) over the interval (0, γ) and then performing an integration by

parts we obtain

(23) fy Γ / ( y - ί ) Φ ( ί ) Λ = - [y [l-Q(ξ)U + - fY T2f(ξ)dξ.
Jo Jo m Jo

By an elementary calculation as γ —> oc the limit of the right side tends to

(t)dt.
/ μ σ2 \ Γoc

- - + / Tf
\ rn 2m2 J Jo

We now collect the facts needed to employ the Wiener theorem. That the Fourier

transform of Tf never vanishes has been shown previously. It is easy to show

that Ψ ( ί ) = O ( l ) see [12], Finally, we verify that Ψ ( ί ) is slowly decreasing

(s.d.) that is,

In fact,

T h u s ,

l im [Ψ(ξ+η) - Ψ ( f ) ] > 0 .

Ύ] —• 0
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As Tf is nonnegative and ψ ( £ ) >_ •*• C a sharp form of the Wiener theorem be-

cause of the (s .d . ) character of Ψ implies that

lim ¥ ( * ) = - £ + —
t-*°o m 2m2

We continue with a brief examination of the example discussed in the in-

troduction. Let X( denote independent identically distributed non-lattice random

variables with cumulative distribution f which has an absolutely continuous

component. We assume the first moment exists and

lf = m > 0.

Put

/

S / = ^ X i a n d * < £ ) = £ ?τ\ξ<sj < ξ + h \
ί = l /=l

where A is a fixed positive number. The intuitive fact that uiζ) i s bounded can

be proved directly from probability considerations. We do not present the deta i l s .

The function u is readily seen to satisfy the renewal equation ( 1 ) .

u(x)-l u(x-ξ)df(ξ)=g(x) = dfiξ).
J - oo J x

The hypothesis of the corollary to Theorem 5 can be shown to be satisfied by

probability analysis and we obtain l i m ^ o o uit) = h/m and l i m ^ . ©o u ( ί ) = 0 ,

the result obtained by Chung and Pollard by other methods [ 3 ] , We close this

section by presenting some extensions of these results by imposing further

conditions of the existence of higher moments of / to secure some resul ts about

the rate at which uit) converges.

THEOREM 10. // Xι are independent identically distributed non-lattice

random variables with density function a(t)dt such that a € L2 and

| ί | n + 2 a(t)dt <co

and

ta(t)dt =m > 0, u ( ^ ) = 2 2 P r i ^ < s ; < ^ +h
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where

i-l

then

lim tn\u(t) - - | = lim tn u(t) = 0.

Proof. This is an immediate consequence of Theorem 8.

4. Abstract renewal equation. The purpose of the subsequent analysis is

to present an abstract approach to some of the fundamental ideas involved in the

analysis of the renewal equation. Although some of the results are formal and

simple, it is felt that this study sheds some light on the real nature of the re-

newal equation.

Let Ί denote a linear operator which can be viewed as a bounded operator

from (m) into (m) or from (I) into (/). The spaces (m) and (Z) designate the

Banach spaces of bounded sequences and absolutely convergent series re-

spectively. Suppose furthermore that the operator T is of norm one viewed in

either space. Let aΓ >^ 0, Σ α r = 1 (r = 0, ± 1, ) and we assume that the

g.c.d. of the indices r for which ar > 0 is 1. Suppose also that Σ,\n | an exists

with Δ*nan - m =/ 0. If ar — 0 for r < 0, then automatically <L,nan is not zero

provided aγ £ 1. In this case we consider the operator Σ Γ = 0 aτ Tr where T° = /.

This operator is linear and has norm bounded by 1 as 11 Tr 11 < 1 and 2^ar = 1.

If T" exists and is of norm 1, then we can deal with the general case where

ar is given not necessarily zero for both r positive and negative. We consider

then the operator Ίl n=-oo anT
n. As a generalization of the renewal equation,

we set

= \l - ^ anTn\u =v.

It is given that the operator S applied to u produces the element v. In many

examples, w is a bounded sequence, that is, an element of (m) while v is an

element in (/). Put,

^ ai f°Γ n 5l 0 a n c ^ rn = ~~
i=n+l



254 SAMUEL KARLIN

then Σ | rn\ < oo as Σ | nan | < oo It is important to note on account of Σ | rn \ < oo,

the series

defines a bounded linear operator which can be viewed acting either on (m) or

{I) into itself. By a summation by parts, we obtain that

Since Σ Λ = - O O rns
n with \s | = 1 has an absolute convergent reciprocal (Wiener's

theorem is used here analogously to the analysis of section 1), we secure that

(Σ rnT
n)"1 exists as a bounded operator over (m) and (I) and that

(I-T)u=(ΣrnT
nYιv.

S i n c e v G (I) w e c o n c l u d e t h a t ( / - T ) u £ ( / ) a l t h o u g h u i t s e l f m i g h t o n l y b e a n

element of (m). This represents the basic abstract conclusion obtained from

( + ). Further results are obtained by specializing T, A particular example is

obtained by (m) = the set of all bounded sequences u = ί un \ n = 0, ± 1 , ± 2, ,

where T is the shift operator which moves each component one unit to the right.

Whence, (+) reduces to

[
= \un - 21 an-kuk

I
If a l l the h y p o t h e s i s on an a re met a n d vn G ( Z ) , t h e n the a b s t r a c t theorem t e l l s

us t h a t ( / - T)u e(l) or

Σ, \un " M l I < °°

This implies that both lim^^oo un and limn_>_oo un exist. Similar results are

valid for the circumstance where T" does not exist. Then we deal only with

the case where an ~ 0 for n < 0. Considering the same shift operator leads to

u - Σ,α"T" )u = Un" Σ α
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and we deduce as above that l im^^oo un ex i s t s .

We turn now to examine some continuous analogues of ( + ) . Let Tit) denote

for oo >. t >_ 0 a strongly continuous semi-group of operators acting either on

the space of bounded functions (M) or integrable functions ( L ) with | | Γ ( ί ) . | | < 1.

Let A denote the infinitesimal generator of Tit) and let df it) define a non-

latt ice distribution with finite first moment on [0, col. If u belongs to iU) we

consider

u ( t ) - \ (°° T ( t ) d f ( t ) ] u = v
L J o J

where v belongs to ( L ). The linear operator

ί°° Tit)dfit)
Jo

is well defined either over iM) or ( L ) into itself. Put rit) = 1 - f it), then

r G L and the Fourier transform of r never vanishes . Since r is monotonic de-

creasing and in L it can be easi ly shown that

\j°° rit)Tit)dt\u

belongs to the domain of the infinitesimal generator A and

ί°°
A I rit)T it)dt u = t > .

Jo

Formally, we also obtain upon commutating A and the integral operator

We note that if

ί°° rit)Tit)dt
Jo

is multiplied by any other operator of the form

sit)Tit)dt9j
Jo
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we obtain the operator

ί°° p(t)T(t)dt
Jo

where

Since the Fourier transform of r does not vanish, then Wiener's theorem in a

formal sense, furnishes an inverse to

Jo
r(t)T(t)dt

which takes v £ L into L. Thus, Au belongs to L. Specializing T (t) to the

translation semi-group T(t) u(x) = u(x — t)9 then Au = du(x)/dx whenever the

derivative exists and belongs to the proper space . The fact that Au G L yields

f\du/dx I exis ts from which we infer that l i m ^ o o u(t) ex i s t s . Thus we obtain

the limit behavior of Theorem 5 for the one-sided case . The justification of

these last formal considerations is very difficult and can only be carried through

in certain cases as is shown in ^ 2. The full renewal equation is generalized

by taking Tit) a group and proceeding as above.
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SOME DETERMINANTS INVOLVING BERNOULLI AND EULER NUMBERS

OF HIGHER ORDER

FRANK R. OLSON

1. Introduction. In this paper we evaluate certain determinants whose ele-

ments are the Bernoulli, Euler, and related numbers of higher order. In the nota-

tion of Norlund [ l , Chapter 6] these numbers may be defined as follows: the

Bernoulli numbers of order n by

(1.1)

the related " β " numbers by

( 1 2 ) l — Y T (~DV —

the Euler numbers of order n by

(1.3) (sec tr = Z (~1)V TTTT W ^ L =0),

and the "C" numbers by

(1.4) I —
Ve' + i

(By n we denote an arbitrary complex number. When n = 1, we omit the upper

index in writing the numbers; for example, B ' = B .)

We evaluate determinants such as

\B%j \ (*',/ = °» 1> ' , π ι )

for the Bernoulli numbers, and similar determinants for the other numbers. The
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proofs of these results follow from the evaluation of a determinant of a more

general nature; see (3.4), below. Finally, a number of applications are given.

2. Preliminaries and notation. The numbers B^n\ D(

2

n

y\ EΪfJ, and c[n) may

be expressed as polynomials in n of degree v [ 1, Chapter 6]; in particular,

Ώ(Π) Γ)(rι) _ f?(n) r(n) _ -i
β o ~ u o ~ Λ 0 ~ U 0 ~ i φ

o

Although little is known about these polynomials, it will suffice for our purposes

to give explicitly the values of the coefficients of nv in each of the four cases

Considering first the Bernoulli numbers, we use the recursion formula [ 1 ,

p. 146]

(2.D

Let

and compare coefficients of nv on both sides of (2.1). We find that

But Bγ = - 1/2 and therefore bv = - δ J ^ / 2 . Since β^"^ = 1, the preceding leads

us recursively to

In a similar fashion the formula [ l , p . 146]

(2.3)

coupled with C^n = 1, permits us to write
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(2.4) CJ;n) = ( ~ I ) v n v + cv_ιn
v ι + - . + c 0 .

As for the Euler numbers, we consider the symbolic formula [1, p. 124]

(2.5) ( E ( n ) + l ) 2 v + ( E { n ) - l ) 2 v = 2E[n'ι)
2v

in which, after expansion, exponents on the left side are degraded to subscripts.

Hence we have

(2.6 ) 4 - > +

 ( 2 ' ; ) ( 2 t ; - 1 )

 EM + ... = £ ( n - O .

Writing

and

we see first that

^"J ~ £(2vl) = vevnV~l + t e r m s o f l o w e r d e 8 r e e '

Hence comparing coefficients of nv~ι in (2.6) we have

p ~ _ i ^

2v

Since E n = 1, we obtain recursively

2V ( - 2 ) % ! U + β v ' i n

Next, from [ l , p. 129]

(2.8) ( Z ) U ) + l ) 2 t > + 1 - ( Z ) ( π ) - l ) 2 t ; + ι = 2 ( 2 ί ;

we find that
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6 / t>!

We shall employ the difference operator Δj = Δ for which

Δf(x)=f(x+d)-f{x) and Δ ' - Δ . Δ " - 1 .

We recall that if

f (x) =z avx
v + av_ιxv~ + + α 0 ,

then

(2.10) Δvf(x)=aυd
vvl

3. Main results. Let

(3.1) f ( x ) — an n x n + an n-ιxn~ + + α n o ( β i

and consider the determinant

(3.2) \f.{χ.)\

This may be written as the product of the two determinants

( h 7 = ̂ > 1, , m)«

(3.3)

0 . . . 0

i i ••• 0

am,0 am, I ' * ' am,m

1 1 . . . 1

XQ Xι •• Xπ

X0 X l

The first determinant in (3.3) reduces simply to the product of fhe elements on

the main diagonal, and the second is the familiar Vandermond determinant.

Hence

(3.4) |Λ ( * / ) | = Π aKk Π
A;=0 τ> s

(r, S = 0, 1, . . , m ) .

If we let
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then it follows from (3.4) and (2.2) that

/ \ m I 1 \k

( 3 . 5 ) I*,- ' Ί = Π - o ) Π < * r - * s > ( ί f / , r f s = 0 , l , . . . , m ) .
/c = 0 V ^ ' r > s

Application of (3.4) to (2.4), (2.7), and (2.9) yields results of a similar

nature for the C9 Ό9 and E numbers. Consequently we have:

T H E ORE M 1. For i, j = 0, 1, . . . , m ,

r > s

; ι == ΓT ( - l r TΊ (x -x )
1 1 ' 1 1 Γ s ' '

^ r>s

If we take %y = a + c? then we obtain:

COROLLARY 1. For i, ]^~ 0, 1, , τn$ a and d constants,

/c = 0

( i i)

( ϋ i ) ' J 7 λ — ' xI d\k

^ 6 /

( i v )

/c=0
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If we let

f^x) defined as in (3.1), then we can readily show by the above method that

m

/c=0

Hence (3.6) implies

with like results for the other numbers.

We remark that the determinants of Corollary 1 may also be evaluated by a

succession of column subtractions.

4. Applications. We consider first the determinant

(4.1) ]B(.a^d)(x)\ U 7 = 0 , 1, . . . , m ; α, d constants),

where B.'(x) is the Bernoulli polynomial of order n defined by [ 1 , p. 145]

(For x = 0 , B ^ n ) ( 0 ) = i 5 ^ ) , the Bernoulli number of order n.) Also, by [ l ,

p. 143],

B[n\x)^ £ Γ\xv'sB(

s

n).
s=o \ s '

Consequently

(4.2)
5=0

If we define
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I J = 1 and | ) = 0 for / > £,

then the right member of (4.2) may be written as the product of the two deter-

minants;

I y

1 x"

T h e f i rs t d e t e r m i n a n t h a s v a l u e 1 a n d h e n c e , by C o r o l l a r y l ( i ) ,

(4.3) \ B { a + J d ) ( x ) \ = Π ( - - ) kl-

The Bernoulli polynomials may also be expressed in terms of the D numbers

by [1, p. 130]

S=0

If in (4.3) we let % = hn9 h £ 1/2, then

[ v / a ] / v w i r
(4.5) β ( n )(/ί r a)= T 11A — 1 n^^DrΛ

Since D^J may be written as a polynomial in n of degree s, and DQ = 1, it

follows readily from (4.4) that, expressed as a polynomial in n,

(4.6) B(

v

n){hn) = Ih - - ) nv + terms of lower degree .

Consequently, using the same procedure that gave (3.4), we can show for α, d

fixed constants, i$ j ~ 0,1, , m, that

m I \\k
(4.7) | B j α + ' ' d ) U ( α + / £ / ) ) I = Π ( A " - l dkkl-

For h = 0, (4.7) reduces to the case of Corollary l ( i ) . If h - 1/2 and v is odd,

then it follows from (4.4) that
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B(
v
n)(n/2) = 0.

v

Therefore for m >_ 1, the value of the determinant in (4.6) is zero. However,

if v is even, then

and

(4.7) '
/f=0 \ 24

where in evaluating the second determinant we have applied Corollary l ( i i i ) .

Finally, it is of interest to point out that [1 , p. 4]

;=0

together with (2.2), (2.4), (2.7), (2.9), and (2.10) yield the recursion formulas

(4.8) £
;=0

(4.9) £
/=o

(4.10) £

and

(4.11) £
; = O

5. Some additional results. The above methods may also be applied to the
evaluation of determinants involving the classic orthogonal polynomials. We
consider first the Laguerre polynomials defined by [2, p. 97]
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(5.1) L

Setting Cί = a + jd and writing (5.1) as a polynomial in / we have

in

L{a+Jd){x) = j n — + terms of lower degree .
n n\

Consequently, as in § 3, we obtain

m-l

( 5 . 2 ) \L(a+id)(x)\ = Γ Ί dk =dY2m(m"ι) ( i , / = 0 , 1 , . . . , m - l ) ,
I X A.

k = 0

For the Jacobi polynomials defined by [2, p. 67]

n
(^ S) P * $ ( Ύ} — V*

n * -
v = 0

we set Cί = a + jd and hold /3 fixed. Then, as a polynomial in /

Hence, we find

(5.4)

Similarly

j n — — + terms of lower degree .
2n n\

/ , x ί (x - D e l Vimim-l)

(5.5) |φ 6 +/ e)() | j

We consider next, as a polynomial in /,

- j } — I I I I •+• terms of lower deeree
' £ί (n-v)\ v\ \ 2 / \ 2 I g
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j n \(d+e)x+d-eV

n\ I 2

which yields

\(d + e)x

+ terms of lower degree,

(5.6)
+ e)x + d — e ]%

2 J

( h 7 = >̂ 1, , m — 1 ) .

Finally, for (X = β, the Jacobi polynomials reduce to the ultraspherical poly-

nomials P^Hx). It follows from (5.6) that

(5.7)
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THE ADJOINT SEMI-GROUP

R. S. PHILLIPS

Introduction. The purpose of this paper is to develop a general theory for

the adjoint semi-group of operators which fits into the framework of the present

theory of semi-groups. To each semi-group of linear bounded operators [ Γ ( s ) ]

defined on a Banach space X to itself and possessing suitable continuity

properties, we shall assign an adjoint semi-group with like continuity proper-

ties, defined on an "adjoint" Banach space X which is in general a proper

subspace of the adjoint space X . The usefulness of the adjoint semi-group

has already been demonstrated by W. Feller [3] in his treatise on the parabolic

differential equation. *

In our theory of the adjoint semi-group, the choice of the subspace X C X

is decisive. We have been led to X by two independent considerations. In the

first place X is the largest domain over which the ordinary adjoint T ( s ) has

suitable continuity properties. It should be noted, however, that a rather ex-

tensive theory of semi-groups has been developed by W. Feller [4] which has

no such continuity requirements. The more compelling reason for our choice of

X has to do with the infinitesimal generator. In most applications of the theory

of semi-groups one starts with an infinitesimal generator A and it is desired to

establish the existence of a semi-group of operators generated by A. It is natural

to expect the behavior oί the semi-group operators T(s) to be uniquely deter-

mined on the domain of A (in symbols 5)(/4)); and since T(s) is required to

be bounded, there will exist a unique extension to the smallest closed subspace

containing 5){A), namely 2)(A). Further extensions are not uniquely determined

by A and should not be associated with the operator A. A reasonable approach

to the adjoint semi-group would be to require that its infinitesimal generator be

the adjoint A* of the infinitesimal generator A of the original semi-group. In ac-

cordance with the above remarks, the proper domain for the adjoint semi-group

It is remarkable that Feller actually obtained the entire adjoint semi-group without
employing a precise notion for the adjoint to an unbounded operator such as the in-
finitesimal generator. For without this, the general formulation loses much of its signi-
ficance.
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would then be S)(/4 ). Now X+ is precisely 2)(4*); however the infinitesimal

generator A of the adjoint semi-group turns out to be the maximal restriction

of A with domain and range in ^)(A ) = X+.

As in the ordinary theory of adjoint spaces, it is possible to develop an

entire hierarchy of "adjoint" spaces for a given semi-group of operators,2 How-

ever it can happen that the second "adjoint" is equal to the original space

(under the natural mapping); in this case nothing new is achieved by going

beyond the first "adjoint," This situation occurs not only when X is reflexive

in the usual sense but, more generally, when the resolvent of A is weakly com-

pact (as in the case of most nonsingular problems of mathematical physics),

1. The adjoint transformation. We take X and f) to be Banach spaces over

the real (or complex) sealer field. The transformation y = T(x) is taken to be

linear with domain 2) C X and range 3ΐ C ̂ ), and it is assumed that S) is a linear

subspace of X.

DEFINITION 1. Let γ = T{x) be defined on a domain 2) dense in X to £),

and let X and $) be the adjoint spaces to X and $) respectively. The adjoint

transformation T of T is defined as follows: Its domain 5) ( T ) consists of the

set of all y* G D* for which there exists an x* G X* such that y*[T(x)] = x*(x)

for all x G 2); for such a y* we define Γ*(y*) = # * .

It is clear that the density of 2) in X is required in order that T be single-

valued. Further it is easy to show that T is a closed linear transformation on

5)(Γ*) to X*. On the other hand the second adjoint is not always well defined

since 2) ( Γ* ) is in general not dense in %) . In this connection we have:

THEOREM 1.1. // T is a closed linear transformation with domain 2> dense

in X, then 2)( T*) is weakly* dense in |Π* In particular, if $) is reflexive then

2> ( T ) is strongly dense in $) .

Proof. If 2)(Γ*) were not weakly* dense in £)*> then the weak* closure of

S)( T*) would be regularly closed [ 1 ] so that there would exist a yQ G £), yQ £ 0,

such that y * ( y 0 ) = 0 for all y* G2){Γ*). NOW (0,y Q ) does not belong to the

graph ® of Γ, and ® is a closed linear subspace of X © S Hence by a theorem

2 F o r e x a m p l e if X = C Q ( — < χ * , ° o ) , t h e s p a c e of c o n t i n u o u s f u n c t i o n s f(ξ ) o n ( — 0 0 , 0 0 )

s u c h t h a t l i m l £ | _ o f U ) = 0 a n d | | / | | = s u p \f(ξ ) | , a n d if A ( / ) = /', D ( A ) = [ / ; /
i l i f f i b l / d /' £ C ] h X* L ^ ) ( X + ) + f l l

£ | _ o fU | | / | | p \fξ |, / / / /
c o n t i n u o u s l y d i f f e r e n t i a b l e , / a n d / ' £ C o ] , t h e n X* = L ^ - o O j O o ) , ( X + ) + = s p a c e o f a l l

f u n c t i o n s f(ξ ) u n i f o r m l y c o n t i n u o u s a n d b o u n d e d o n ( — 0 0 , 0 0 ) w i t h | | / | | = s u p | ( ) |

a n d s o o n .
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due to H. Hahn [5, Theorem 2.9.4], there exists an

such that

* * ( * ) + y * [ Π * ) ] = 0 for all x G 2) and x* (0) + y*(y o ) £ 0 .

It follows that

y o *e5)(Γ*), Γ * ( y * ) = - * * , and yet y * ( y o ) ^ O ,

which is impossible. In case %) is reflexive we conclude that 2)(Γ*) is weakly

dense and hence strongly dense in %) (the latter conclusion follows from the

above-mentioned Hahn theorem).

We turn now to the relation between a transformation, its adjoint, and their

inverses.

THEOREM 1.2. Let T be a linear transformation with 2) = X. Then ( Γ * ) " 1

exists if and only if K = $). More generally, 3t consists of the set of all points

y such that T (y*) = 0 implies y*(y) = 0 .

Proof. If Γ*(y*)=0, then

for all x G 5), and hence y*(5R) = 0 . In particular, SI = D implies that y0 = 0 ,

and hence that Γ* has an inverse. On the other hand if yQ fc ϊt, then by the Hahn

theorem there exists a functional y* £. %) such that yQ (y 0 ) = 1 and γQ ($t) = 0.

Thus y * [ Γ ( * ) ] = 0 for all * G $; it follows that_y * G ® ( Γ*) and Γ*(y*) = 0 ;

whereas y*(y 0 ) ^ 0. In particular we see that if ϊl ^ f), then Γ* cannot have an

inverse.

THEOREM 1.3. Let T be a linear transformation with 2) = X. If 3U Γ*) is

weakly* dense in X , ίAen Γ Aαs ατι inverse.

Proof. Suppose that T has no inverse; then there is an x0 ^ 0 such that

T(xQ) = 0 . Consequently

for all y* G S( Γ*(), and this shows that the weak* closure of K( Γ*) is a proper
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subspace of X , contrary to assumption.

THEOREM 1.4. Let T be a linear transformation with an inverse and such

that I) = X and ft = g. Then ( Γ*)" 1 = ( T'ι )*; further Γι is bounded if and

only if (T )m is bounded on X .

Proof. In the first place ( Γ " 1 ) ex i s t s because ft = ® ( Γ " 1 ) is dense in |0,

and ( Γ * ) " 1 exis ts by Theorem 1.2. If γ £ ft and y* E S) ( Γ * ) , then

This implies that ft ( Γ* ) C S) [ ( Γι )* ] and

for all y* E S ( Γ * ) . Thus ( Γ " 1 ) * is an extension of ( Γ * ) " 1 . On the other hand

if x E §), then

for all x* E 2) [ ( Γι )* ]. It follows that ft ( Γ*) 3 5) [ ( T"ι )* ]. Therefore

and hence ( Γ " 1 ) * = ( Γ * ) " 1 . If, in addition, Γ"1 is bounded, then it is clear that

( T" ) is also bounded. Conversely if ( T )" is bounded on X , then for all

x £ ft and %* G X we have

\ χ * [ r i ( χ ) ] \ = \ l ( τ - 1 ) * ( x * m x ) \ < \ \ ( τ * γ ι \ \ | |**| | | | * | | .

It follows that Γ ' 1 is bounded.

If T i s a linear operator with both domain and range in X, 5) = X, then the

adjoint transformation Γ* has i ts domain and range in X . I t is easy to show for

an arbitrary bounded operator B on X to itself, that

(δ + r)* = β* + r* and $[(a + n * ] - s ( r * ) .

We are especially interested in the combination XI - Γ, where / is the identity

operator and λ is a real (or complex) number. If XI — T has a bounded inverse

with domain dense in X, then λ is said to belong to p(T), the resolvent set of

T9 and
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(λl-TY1 =R(λ;T)

is called the resolvent of T.

THEOREM 1.5. // T is a linear operator with S = X and K C Ϊ , then

p(T) = p(T*) and [R(λ;T)T =R(λ;T*).

Proof. If λe ρ(T), then, according to Theorem 1.4, λ E p(T*) and

lR(λ;T)]*=R(λ;T*).

On the other hand Ίί λE p(T ), then Theorem 1.3 shows that T has an inverse,

Theorem 1.2 shows that K = X, and Theorem 1.4 then implies that λ G p ( Γ ) ,

2. The adjoint semi-group. We now apply the previous resul ts to semi-groups

of linear bounded operators (cf. [ 5 ] ) . Let S ( X ) be the Banach algebra of

endomorphism of X, and let [ Γ ( s ) ] be a one-parameter family of operators in

® ( X ) defined for s E [0, oo) and satisfying:

( i ) T(Sί + s 2 ) = T(Si)T(s2) for a l l S l , s 2 > 0, T(0) = / ;

( i i ) for each x 6 X, T ( s ) x is continuous for s > 0

( i i i ) / o

ι \\T(σ)x\\dσ < oo for each % 6 X .

If T sat is f ies the additional condition

( i v ) l i m ^ ^ λ /0°° exp ( ~ λ α ) T ( σ)xdσ - x for each x G X ,

then T(s) is said to be of class ( 0 , A). If, instead of ( i v ) , T(s) sat is f ies

the stronger condition

(v ) l i m , ^ 0 r " ι / o

τ T ( σ ) x d σ = Λ; for each A; € X ,

then Γ ( s ) is said to be of class (0 , C ) . Final ly if T{s) sat isf ies ( i ) , ( i i ) ,

( i i i ) , and the st i l l stronger continuity condition

( v i ) l im s __, 0 T(s)x = x ίor each χ E ϊ ,

then T(s ) is said to be of class C.

The domain 5)(/4) of the infinitesimal generator A is the set of elements x

for which
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lim τ-ι[T(τ)-I]χ
o

exists, and this limit is defined to be Ax. It follows from ( i v ) (and hence ( v )

or ( v i ) ) that 3 ) ( 4 ) is dense in X (cf. [5 , Theorem 9.3.1]) . We have previously

shown [ 6 ] that 4 is closed if and only if T(s) is of c lass (0 , C ) . However,

even when T(s) is of c lass ( 0 , 4 ) , the infinitesimal generator has a smallest

closed extension, called the complete infinitesimal generator (c . i . g . ) and de-

noted by A. For each x0 G5)(/4) there is a sequence \xn] C^)(A) such that

xn —» x0 and Axn —> Ax0. It follows that R ( λ; A ) is an extension of R ( λ; A ),

that p(A) = p ( Z ) , that A* = ( 4 ) * , and that

It can be shown that

(2.1) ω o = inf log | | 7 1 ( s ) | | / s = lim log | | T(s ) | | /s .
S > 0 S -»oo

EacK λ > ω 0 belongs to the resolvent set for A, and the resolvent is given by

(2.2) R(λ;A)x= ί°° exp(-λσ)T(σ)xdσ;
Jo

see [ 6 ] ,

DEFINITION 2.1. The semi-group T(s) is said to be of class ( 0 , 4 ) ,

(0, C)*, or C* if it is of class ( 0 , 4 ) , (0, C), or C, respectively, and if in

addition 11 Γ* (s )x* | | , 0 £ s <̂  1, is majorized by integrable function for each

DEFINITION 2.2. Let T(s) be a semi-group of class ( 0 , 4 ) with infini-

tesimal generator 4. We define the adjoint semi-group to be the restriction of

T*(s) to X+ = 5)(4*) and denote it by Γ + ( s ) . We denote the infinitesimal

generator of T (s ) by 4 .

For λ E p ( / 4 ) , the resolvent R(λ A) has a unique bounded linear extension R(λ;
A \ on X . If U J C S ( 4 ) , * Λ _ > % 0 € S _ ( T ) , and Axn—>AxOt t h e n R i λ A ) ( λ / -

λ λ { } K ( λ )
\ U J , Λ 0 _ , n
)%7l=Λ;re implies that /? ( λ ; 4 ) t ( λ / - A )xQ = %0. Likewise for { y n } CK (λ/ - 4 )

and y n — > y 0 > the relation (λl — A)R (λ;A)yn = y n implies that (λ/ -A)R ( λ ; 4 > i y 0

 a y o
It follows that / ? ( λ ; ϊ ) ex is ts and is identical with R(λ;A)ι. This shows that p(A ) C
p ( 4 ). A similar argument can be used to prove A* = 4 * , and the last relation is obvious.

4 T h i s condition is automatically satisfied if J^1 | | Γ ( σ ) | | dσ < <χ> or if T(s) if
of c lass C.
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THEOREM 2.1. If T(s) is a semi-group of class (0, ,4)*, (0, C)*, or C*9

then the adjoint semi-group is of class (0, A), (0, C) or C9 respectively. The

c.i.g. A is the largest restriction of A with domain and range in X .

Proof. According to Theorem 1.5,

R{λ;A*)=R{λ;X*)=R*(λ;A)

a n d h e n c e 2 ) ( ^ 4 * ) i s s i m p l y t h e r a n g e of R*(λ;A). F o r λ > ω 0 , R {λ A) c a n

b e e x p r e s s e d b y m e a n s of a D u n f o r d i n t e g r a l [ 2 ] a s

(2.3) ;4)** = ί°° exp(-λσ)T*(σ)x*dσ.
Jo

It is clear from this that

T*(s)R*(λ;A)=R*{λ;A)T*(s)9

so that T*(s) takes 5)(/I*) into 2 ) U * ) . Since T*(s) is bounded, it follows

that Γ * ( s ) ( X + ) c X + ; that is, T + (s ) G ® (X + ). It is obvious that T*(s) and

hence T (s) satisfies ( i ) .

In order to establish continuity we first note that

(2.4) [ Γ * ( τ ) - / * ] S * ( λ ; 4 ) * * = [ e x p ( λ τ ) - l ] ί°° exp (-λσ) Γ* ( σ ) * * dσ
Jo

-exp(λτ) I exp (~λσ) Γ* (σ)x* dσ.
Jo

The first term in the right member is simply [ e x p ( λ τ ) - l ] R (λ;A)x*9 and

it clearly converges to zero with τ ; further the assumption that \\T (σ)x*\\

is majorized by a function in Lχ(O, 1) implies that the second term also goes

to zero with r . Thus

lim T (s )y* = y*
o

for all y* G ® ( / 4 * ) . It follows from this (cf. [ 5 , Theorem 9.4.1]) that Γ * ( s ) y *

is strongly continuous for s >^ 0, y* G S)(/4 ). Further s ince | | Γ ( s ) | | =

| | T (s ) II is uniformly bounded in each interval of the form ( δ, 1/δ), we see that

T (s )x* is strongly continuous for s > 0 and all x* G X . Thus T (s) sat i s f ies

( i ) , ( i i ) , and ( i i i ) . Again, for each x* G ® ( A * ),
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T (s)x*—> x* as s — > 0

and a fortiori

r " ι I Γ* (σ ) x* dσ —» x* as r —> 0
Jo

and

λ / ? * ( λ ; i ) x * — > * * as λ — > c o .

Now if Γ ( s ) is of class C, then | | Γ * ( s ) | | = 0 ( 1 ) ; if T(s) is of class (0, C)

then

and if T(s) i s of c lass ( 0 , 4 ) then | | λ R * ( λ ; A) \\ = O ( 1 ) . It now follows from

the Banach-Steinhaus theorem that T (s) will satisfy ( v i ) , ( v ) , or ( i v ) with !Γ(s).

Final ly, the c.i.g. A+ of Γ + ( s ) i s determined by i ts resolvent (cf. [ 6 ] ) ,

which for λ > ω 0 can be expressed by the Bochner integral

exr>{-λσ)T+(σ)x*dσ {x* GX + ) .

According to formula (2 .3) this is simply the restriction of R(λ;A*) to X+;

thus A* is a restriction of A*. Now if x* G S ( 4 * ) and 4 * ( % * ) G X + , then

(λ/ —A ) % * G Z and hence

Conversely if %* € 3 ( 1 * ) , then x* G S ( / 1 * ) and 4 * ^ * = 4 + % * G X+. In other

words, /I + is the maximal restriction of 4 * which maps X into X . This con-

cludes the proof.

COROLLARY. / / λ G p ( I ) , then λ G p ( 4 + ) and R{λ;A+) equals the res-

triction ofR(λ;A ) to X .

Proof. If λ ep(A ), then /?(λ;/4*) ex is t s . Let R(λ;A*)0 be the restriction

of R ( λ ; 4 * ) to X+. F o r * * G S X i P 7 ) , we have
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and hence R(λ; /4*)0 is a left inverse for λ/+ - A+. On the other hand if

x* G X , then

Since β ( λ ; 4 * ) 0 * * G 3 ) U * ) C X + we also jiave 4*/? ( λ; 4 * ) 0 ** G X + and

hence by the above theorem R( λ ^ 4 * ) 0 x* G S U ^ I t follows that R ( λ; A* ) 0 is

also the right inverse for λ/ - A* so that λ G p(/4+).

A converse to the_above corollary is obtained in Theorem 3.2 where it is

shown that p(A) = p ( / 4 + ) .

COROLLARY. //X is reflexive, then X = X .

Proof. If X is reflexive, then, according to Theorem 1.1, ®(^4*) is dense

in X . Hence X = S(/4 ) = X .

We conclude this section with two other characterizations of X .

T H E O R E M 2 . 2 . For a semi-group T ( s ) of class ( 0 , 4 ) * , let

Γ = [ * * ; Γ*(s)%*—•> * * as s — > 0 ] .

X = Γ.

Proof. It is clear that S)(/4 ) C Γ; and since 5) ( 4 ) is dense in X , we

have X C Γ. On the other hand if x* € Γ, then a direct calculation shows that

λR(λ;A )#* = λ I e x p ( - λ σ ) Γ (σ)%*ί/σ—> x* as λ—»oo.
Jo

Consequently x* G ®(/4*) = X+.

T H E O R E M 2 . 3 . For a semi-group T (s) of class ( 0 , / I ) let

β].

Then X = Γ o .

Proof. An easy calculation shows that Γ o C Γ. On the other hand if x* G Γ

then

Jo
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and belongs to Γo thus Γo D Γ and therefore Γ o = Γ = X .

3. The adjoint space. We shall call X* the adjoint space to X relative to

the semi-group [T(s)\ or simply, the adjoint space; and we shall denote the

generic element of X by x*. To avoid confusion we shall hereafter refer to

X as the full adjoint space. This section is devoted to a study of the hierarchy

of adjoint spaces which arise from a given semi-group of operators of class

(0,A)*.

It will be observed that whereas

| | * * | | = s u p [ | * + ( * ) I ; 11*11 < l , * e X ] ,

it is not in general true that \\x\\ can be obtained in like manner as

( 3 . 1 ) | | * | | ' = s u p [ | * + ( * ) | ; \\x + \\ < l , * + e X + ] .

All that can be asserted here is that \\x | | ' <_ | | * | | . If X + is equal to the full

adjoint space, then it is clear that | | x \\ '= \ \x | | . This occurs when X is re-

flexive or when A is bounded. In any case we see that the function \\x 11 sat i s-

fies the postulates of a pseudo-norm. However, more is true:

THEOREM 3.1. The norm | 1 * H ' defines an equivalent topology for X; in

fact, there exists an m > 0 such that

11*11 > , l l * I Γ > m l l * l l

for all x 6 X. In particular if

liminf | | λ R ( λ ; l ) | | = l ,

then | | * | | ε | | * | | '

Proof. For a fixed x el there exists an x* el*, | | * * | | = 1 , such that

x*(x) = | | * | | . It follows from (iv) that

[XR*{λ;J)x*]{x)=x*[λR(λ;A)x]—•»**(*) as λ—χχ>,

and from ( i v ) together with the uniform boundedness theorem that

lim | | λ Λ ( λ ; 7 ) | | = A f < oo.
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Consequently, given 6 > 0, there is a λe with

| | λ € / ? * ( λ 6 ; Z ) | | <M + e and | [ λ 6 R * ( λ 6 ; 7 ) * * ] (*) - | | * II I < e.

Now

y* E λ ^ * ( λ e ; ^ ) ^ G X + and ||y* | | < if + €.

Hence

X * c) I | | s | | - e

l l r*H ~ M + t

and since e is arbitrary this gives the desired result with m = l/M. In particular

THEOREM 3.2. If[T(s)] is a semi-group of operators of class (0, A) , then

Proof, We have already shown in the first corollary to Theorem 2.1 that

pU)Cp(A + ) . If λGp(/} + ) , then

Since, by Theorem 1,1, 5){A ) C X is weakly* dense in X , the same is true of

ϊ M λ / * - / 4 * ) . It now follows from Theorem 1.3 that λ / - 4 has an inverse.

Further, if

then x*Q e 3 ) ( I * ) and ΐ * * * G ® U * ) C X+, so that a* € © ( ! + ) . Since J ^ i s a

restriction of A*9 this implies that (λ/ - A ) % * = 0 and hence that %* = 0.

Theorem 1.2 now asserts that 3Ϊ( λl-A ) is dense in X, Finally for % E 3ΐ ( λl -A )

we have

λi-AYιx ιx\y

= m-1sup [|*

and this shows that (λ/ — A )"1 is bounded. It follows that λ € p(/4 ).
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We see from the above theorem that A has the same resolvent set as A*

(and A ) in spite of the fact that it is a restriction of A .

Renorming X by | | # | | ' has no effect on our determination of X in fact,

even the norm of the elements of X remains the same. For

imply that

II*ΊI

Nevertheless, when we deal with the second adjoint space relative to a given

semi-group [Γ(s)], a slight advantage is obtained by renorming X in this way

THEOREM 3.3. Suppose that both [T(s)] and [T ( s ) ] are of class ( 0 , 4 ) ,

and let the norm of X be given by \\x\\'. Then X can be embedded in X by

means of the natural mapping.

Proof. E a c h χ Q G X d e f i n e s a u n i q u e b o u n d e d l i n e a r f u n c t i o n a l FQ E ( X ) ,

n a m e l y Fo (% + ) =X + (XQ ) . F u r t h e r ,

| | F o l l = s u P [ | F o ( ^ + ) | = | ^ + ( ^ o ) | ; | | * + | | < l , * + e X + ] = | |* 0 I I ' .

Hence XQ —» Fo is a linear isometric mapping of X onto a subspace of (X ) .

It remains to show that X C(X ) in the above sense. This in turn requires

that X C S [ ( ! + ) * ]. However, if χ0 —4 F o then

Hence

R(λ;A)x0—»/? (λ /4

Now

lim λR (λ ; A)xQ = :

implies that

lim λR*(λ;A4)F0 =F 0
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and since

it follows t h a t * 0

The space X depends only on T + (s) and X+. Further, the norm in X+ is

not effected by renorming X with the norm \\x\\ ' in fact

\χ

Since X with the norm \\x \\ ' is a subset of X , it follows that

II* + I Γ - SUnΓ l x + + ( r + ) l I l r++| | < 1 r+ + £ X + + l - llr+ll

Thus it is only in the case of X and X that a nonsymmetric condition between

norms may arise; for all other pairs of successive adjoint spaces the norms are

symmetric. Even if X is not renormed, X will be isomorphic with its image in

X under the natural mapping.

DEFINITION 3.1. We define the (Γ)-weak topology in X in the usual way

be means of the generic neighborhood

N(xo;x*, • * * * ; e) = [χ; \χ%(χ -χ0) \ < e , k = 1 , , / ι ] ,

where the (x*9 tX*) can be any finite subset of Γ and e is an arbitrary

positive number.

It is of interest to determine when, under the natural mapping, X = X that

is, under what conditions X is reflexive relative to a given semi-group of opera-

tors [7Xs)]. Here we assume that X has been renormed with norm | | % | | ' If X is

a reflexive in the usual sense, then the second corollary to Theorem 2.1 asserts

that X = X , and likewise that

More generally, we have:

T H E O R E M 3.4. Suppose that both [T{s)] and [T ( s ) ] are of class ( 0 , ^ 4 ) ,

and let the norm of X be given by \\x | | ' A necessary and sufficient condition

for X = X is that R(λ; A) be (X )~weakly compact.

Proof. Suppose f irst t h a t R(λ A) i s ( X + )-weakly compact ; t h a t i s , the
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image of each bounded set is contained in an (X + )-weakly compact subset of

X. Let F o be an arbitrary element of (X )*. Then by Helly's theorem, given a

finite subset π C X , there exists an

Xπe%, \\Xπ\\ < 2 | | F 0 | | ,

such that F0(x+) = χ + (x7r) for all x+£ π. Ordering.the πs by inclusion, we

easily see that they form a directed set. Consequently,

[R*( λ; A*)F0] (*+) = Fo [R( A ; ! 7 ) * * ] = lim [R ( λ; A+)x*](xπ)

; A)xΉ].

Since the R{λ;A) image of any bounded set is contained in an (X+)-weakly

compact subset of X, it is easily shown that there exists an χ0 G X such that

l im x + [ R ( λ ; A)xπ] =x + ix0)
π

for all x+ G X+. Thus /?*(_λ^4+)F 0 is the image of x0 under the natural mapping;

in other words, X 3 5) [(/4 + )* ]. This together with Theorem 3.3 shows that

x = x + + .
Conversely, suppose that X = X Then R*(λ;A ) [(X ) ] is contained

in the images of X. Now /?*(λ;/l + ) is continuous in the usual weak* topology

of ( X )*; hence the unit sphere, which is weakly* compact, maps onto a weakly*

compact subset. Now this image lies in X and the weak* topology in X C ( X )

is the same as the (X + )-weak topology for X. Hence R(λ A), which is es-

sentially a restriction of /?*(λ;/l+), takes bounded sets into (X + )-weakly

compact subsets of X. This concludes the proof.

COROLLARY // R(λ A) is weakly compact relative to the usual weak

topology of X, then X = X .

Proof. It is clear that a weakly compact subset of X is also weakly compact

relative to any weaker topology such as the (X )-weak topology of X.
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A LATTICE-THEORETICAL FIXPOINT THEOREM

AND ITS APPLICATIONS

ALFRED TARSKI

1. A lattice-theoretical fixpoint theorem. In this section we formulate and

prove an elementary fixpoint theorem which holds in arbitrary complete lattices.

In the following sections we give various applications (and extensions) of this

result in the theories of simply ordered sets, real functions, Boolean algebras,

as well as in general set theory and topology. *

By a lattice we understand as usual a system 21 = (A 9 < ) formed by a non-

empty set A and a binary relation <; it is assumed that < establishes a partial

order in A and that for any two elements afb E A there is a least upper bound

(join) a u b and a greatest lower bound (meet) an b. The relations >L, <, and

> are defined in the usual way in terms of < .

The lattice 21 = (A, < ) is called complete if every subset B of A has a

least upper bound ΌB and a greatest lower bound Πβ. Such a lattice has in

particular two elements 0 and 1 defined by the formulas

0 = ΓU and 1 = 11,4.

Given any two elements a9b E A with a < b, we denote by [a9b] the interval

with the endpoints a and b, that is, the set of all elements x E A for which

a < x < b; in symbols,

[ a,b] = Ex[x E A and a .< x .< b ] .

The system \ [ α , 6 ] , < ) is clearly a lattice; it is a complete if 21 is complete.

We shall consider functions on A to A and, more generally, on a subset B of

A to another subset C of A. Such a function / is called increasing if, for any

1 For notions and facts concerning lattices, simply ordered systems, and Boolean
algebras consult [ l ] .

Received June 29, 1953. Most of the results contained in this paper were obtained
in 1939. A summary of the results was given in [ 6 ] . The paper was prepared for pub-
lication when the author was working on a research project in the foundations of mathe-
matics sponsored by the Office of Ordnance Research, U.S. Army.

Pacific J. Math. 5 (1955), 285-309
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elements x9y G J 8 ? X < y implies f (x) < f (y). By a fixpoint of a function / we

understand, of course, an element x of the domain of / such that / {x) = x.

Throughout the discussion the variables a,b9 ••• » #,y, are assumed to

represent arbitrary elements of a lattice (or another algebraic system involved).

T H E O R E M 1 ( L A T T I C E - T H E O R E T I C A L F I X P O I N T T H E O R E M ) . Let_

( i ) ?I = (^4, < ) 6e α complete lattice,

( i i ) f be an, increasing function on A to A9

(i i i) P be the set of all fixpoints of f.

Then the set P is not empty and the system ( P , < ) is a complete lattice; in

particular we have

UP = UEx[f(χ) > * ] £P

and

Π P - Π E ^ / U ) <x]eP.2

Proof. L e t

( 1 ) u « U E % [ / U ) > x].

We c l e a r l y h a v e x <^ u for e v e r y e l e m e n t x w i th fix) >_ x; h e n c e , t h e funct ion

/ b e i n g i n c r e a s i n g ,

f i x ) < / ( i t ) a n d x < f ( u ) .

By (1) we conclude that

(2) u <f(u).

2 In 1927 Knaster and the author proved a set-theoretical fixpoint theorem by which
every function, on and to the family of all subsets of a set, which is increasing under
set-theoretical inclusion has at least one fixpoint; see [ 3 ] , where some applications
of this result in set theory (a generalization of the Cantor-Bernstein theorem) and
topology are also mentioned. A generalization of this result is the lattice-theoretical
fixpoint theorem stated above as Theorem 1. The theorem in its present form and its
various applications and extensions were found by the author in 1939 and discussed by
him in a few public lectures in 1939-1942. (See, for example, a reference in the Ameri-
can Mathematical Monthly 49(1942), 402.) An essential part of Theorem 1 was included
in [ l , p. 54]; however, the author was informed by Professor Garrett Birkhoff that a
proper historical reference to this result was omitted by mistake.
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Therefore

f ( u ) < f ( f ( u ) ) ,

so that f(u) belongs to the set Ex[f(x) >_ x]; consequently, by (1),

(3) f(u)<u.

Formulas ( 2 ) and ( 3 ) imply that u is a fixpoint of /; hence we conclude by ( 1 )

that u is the join of all fixpoints of /, so that

( 4 ) UP = ΌEx[f(x) > * ] e P .

Consider the dual lattice 2I' = ( A, :>). 21', like 21, is complete, and / i s

again an increasing function in 21'. The join of any elements in 21' obviously

coincides with the meet of these elements in 21. Hence, by applying to 21' the

result established for 21 in (4), we conclude that

(5) ί\P = ΓiExlf(x) <x] eP.

Now let Y be any subset of P. The system

is a complete lattice. For any x £ Y we have x < \JY and hence

therefore UY < / (UY). Consequently, UY < z implies

UY < / ( U Y ) < / ( * ) .

Thus, by restricting the domain of / to the interval [UY, 1], we obtain an in-

creasing function /*' on [UY, l ] to [UY, l ] By applying formula (5) established

above to the lattice B and to the function /', we conclude that the greatest lower

bound v of all fixpoints of / ' is itself a fixpoint of /'. Obviously, v is a fixpoint

of /, and in fact the least fixpoint of / which is an upper bound of all elements

of Y; in other words, v is the least upper bound of Y in the system (P, < ) .

Hence, by passing to the dual lattices 21' and 33', we see that there exists

also a greatest lower bound of Y in [P, <]. Since Y is an arbitrary subset of

P, we finally conclude that

(6) the system ( P, <_ ) is a complete lattice .
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In view of (4) -(6), the proof has been completed.

By the theorem just proved, the existence of a fixpoint for every increasing

function is a necessary condition for the completeness of a lattice. The question

naturally arises whether this condition is also sufficient. It has been shown

that the answer to this question is affirmative. G

A set F of functions is called commutative if

( i ) all the functions of F have a common domain, say B, and the ranges of

all functions of F are subsets of B;

( i i ) for any /, g £ F we have fg = gf, that is,

f ( g ( x ) ) = g ( f ( x ) ) fo r e v e r y x E B .

Using this notion we can improve Theorem 1 in the following way:

THEOREM 2 (GENERALIZED LATTICE-THEORETRICAL FIXPOINT THEO-

REM). Let

( i ) W, = \A9 < ) i e α complete lattice?

( i i ) F be any commutative set of increasing functions on A to A9

( i i i ) P be the set of all common fixpoints of all the functions / G F ,

Then the set P is not empty and the system \ P9 < ) is a complete lattice; in

particular, we have

UP = U E J / U ) > x for every f£F]βP

and

ΓiP=ΓiEx[f(x) <x for every feF] eP.

Proof. Let

( 1 ) u = Ό E x [ f ( x ) > x for e v e r y f e F ] .

As in the proof of Theorem 1 we show that

( 2 ) u < f ( u ) f o r e v e r y f e F .

G i v e n any funct ion g 6 F, we h a v e , by ( 2 ) ,

3 This is a result of Anne C. Davis; see her note [2 ] immediately following this
this paper.
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g(u) <g(fU))

and hence, the set F being commutative,

g(u) <f(g(u))

for every / G F. Thus

g(u) E Ex[f (x) >^ x for every f E F].

Therefore, by ( 1 ) ,

g(u) < u;

since g is an arbitrary function of F, we have

(3) f(u) <u for every fβF.

From ( l ) - ( 3 ) we conclude that u is a common fixpoint of all functions f^F,

and, in fact, the least upper bound of all such common fixpoints. In other words,

U P = U E J / U ) > x for every feF]eP.

In its remaining part the proof is entirely analogous to that of Theorem 1.

Since every set consisting of a single function is obviously commutative,

Theorem 2 comprehends Theorem 1 as a particular case. Theorem 2 will not be

involved in our further discussion.

2. Applications and extensions in the theories of simply ordered sets and

real functions. A simply ordered system 21 = \ A} <^), that is, a system formed

by a nonempty set A and a binary relation <_ which establishes a simple order

in A, is obviously a lattice. If it is a complete lattice, it is called a continuous-

ly (or completely) ordered system. The system 21 is said to be a densely ordered

system if, for all x9y G A with x < y9 there is a z G A with x < z < y.

Theorems 1 and 2 obviously apply to every continuously ordered system 21.

Under the additional assumption that 21 is densely ordered we can improve

Theorem 1 by introducing the notions of quasi-increasing and quasi-decreasing

functions.

Given a function f and a subset X of its domain, we denote by f*(X) the

set of all elements fix) correlated with elements x G X. A function / on B to

C, where B and C are any two subsets of A, is called quasi-increasing if it

satisfies the formulas
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f(UX) > Π/*U) and f(ΓlX) <\Jf*{X)

for every nonempty subset X of δ. It is called quasi-decreasing if it satisfies

the formulas

f(ϋX) < U/*U) and /(ΓU) > Πf*U)

for every nonempty subset X of A. A function which is both quasi-increasing

and quasi-decreasing is called continuous.

THEOREM 3. Let

( i ) U = ( A, < ) be a continuously and densely ordered set9

(i i) f be a quasi-increasing function and g a quasi-decreasing function on A

to A such that

f ( 0 ) > g ( 0 ) and / ( I ) < g ( l ) ,

(ii i) P-Ex[f(x)=g(x)].

Then P is not empty and \P, < ) is a continuously ordered system; in particular

we have

UP = U E j / ( x ) > g(x)]eP

and

Proof. Let B be any subset of A such that

(1) f i x ) >.g(x) for x e B .

Assume that

(2) f(ϋB) < g(\JB).

S i n c e , by h y p o t h e s i s , f ( 0 ) >_ g ( 0 ) , we c o n c l u d e t h a t

( 3 ) U S ^ 0 .

T h e s y s t e m 21 b e i n g d e n s e l y o r d e r e d , we a l s o c o n c l u d e from ( 2 ) t h a t t h e r e i s

an e l e m e n t a G A for w h i c h
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(4) /(US) < a < g(ΌB).

Let

(5) D = Ex[χ < ΌB and g(x) < α ] ,

whence

(6) ΌD < ΌB

and

(7) Ug*(Z)) < a.

If ΌD = US, we see from (3) that ΌD ^ 0 and that consequently the set D is

not empty; hence, the function g being by hypothesis quasi-decreasing, we

obtain

and therefore, by (7),

g(ΌB) <a.

Since this formula clearly contradicts (4) we conclude that ΌD £ ΌB and thus,

by (6),

(8) UD < ΌB.

Let

(9) £ = E J U D < x and x E £ L

If the set E were empty, we would have x < ΌD for every x E B and conse-

quently ΌB £ ΌD, in contradiction to (8). Hence E is not empty. We easily

conclude by (9) that ΌE = ΌB. Since, by hypothesis, the function / is quasi-

increasing, we have

f(ΌE) > Π/*(£)

and therefore, by (4),

a > Π / * ( £ ) .

Hence we must have a > f (z ) for some z £'E, for otherwise
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a < Π / * ( £ ) .

Thus, by (1) and (9),

U D < z 9 z E β , a n d g ( z ) < a ;

therefore, by (5), z £ Zλ The formulas

ΌD < z and z E D

clearly contradict each other.

We have thus shown that formula (2) cannot hold for any non-empty set B

satisfying (1) . In other words, we have

(10) f ((Jβ ) > g ( Uβ ) for every non-empty subset B of

By applying the result just obtained to the dual system ?I '= ( 4 , i> ), we

conclude that

(11) / ( Π C ) < g(ΠC) for every subset C of

Now let Y be any subset (whether empty or not) of the set

P = E x [ / ( * ) = g ( % ) ] ,

and let

(12) u = U E x [ f ( x ) > g ( x ) a n d x < Π Y ] .

By (10) and (11) we have

(13) f ( u ) > g ( u ) a n d f ( f ) Y ) < g ( Γ i Y ) .

Hence, in case u = ΠY, we obtain at once

(14) f(u)=g(u), that is, u eP.

In case u ^ Π y we see from (12) that u < ΓiY, The system 21 being densely

ordered, we conclude that
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(15) U = ΠEX[U <χ < ny] .

We a l s o s e e from ( 1 2 ) t h a t f (x) < g (x) for every e l e m e n t x of the s e t

Ex[u <x < n y ] .

Hence, by (11) and (15), we obtain

f ( u ) < g ( u ) ,

and this formula, together with (13), implies (14) again. Thus we have shown

that

( 1 6 ) f o r e v e r y s u b s e t Y o f P , i f u = U E x [ f ( x ) >_ g ( x ) a n d x < U Y ] ,

then u 6 P.

Dually we have

(17) f o r e v e r y s u b s e t Y o f P , i f v = Γ i E x [ f ( x < g ( x ) a n d x > _ Π Y ] ,

then v G P.

We see immediately that the element u in (16) is the largest element of P

which is a lower bound of all elements of Y; in other words, u is the greatest

lower bound of Y in the system \P9 < ) . Similarly, the element υ in (17) is the

least upper bound of Y in ( P9 <_/ . Consequently,

(18) ( P , < ) is a continuously ordered system.

Finally, let us take in (16) and (17) the empty set for Y, so that Γ\Y = 1

and Uy = 0. We then easily arrive at formulas

(19) U P = U E % [ / ( % ) >g(x)]eP

and

(20) n p = n E j / U ) <g(x)]ep.

By ( 1 8 ) - ( 2 0 ) the proof is complete.

Every increasing function is clearly quasi-increasing. The identity function,

g(x)z=χ for every x G A9 is continuous, that is, both quasi-increasing and

quasi-decreasing, and the same applies to every constant function, g(x) = c £ A

for every x £ A. Hence we can take in Theorem 3 an arbitrary increasing function
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for / and the identity function for g; we thus obtain Theorem 1 in its application

to continuously and densely ordered systems. On the other hand, by taking for

g a constant function, we arrive at:

THEOREM 4 (GENERALIZED WEIERSTRASS THEOREM). Let

(i) 21 = (A, < ) be a continuously and densely ordered system,

(ii) f be a quasi'increasing function on A to A and c be an element of A

such that

/(0) > c > / ( I ) ,

(iii) P = E j / U ) = cL

Then P is not empty and \P9 .< ) is a continuously ordered system; in particular,

we have

and

ΠP = ΠEx[f(x) < c ] e P .

An analogous theorem for pseudo-decreasing functions can be derived from

Theorem 3 by taking an arbitrary constant function for /.

It can be shown by means of simple examples that Theorems 3 and 4 do not

extend either to arbitrary continuously ordered systems or to arbitrary complete

lattices which satisfy the density condition (that is, in which, for any elements

x and y9 x .< y implies the existence of an element z with x < z < y)

We can generalize Theorem 3 by considering two simply ordered systems,

?I= (A,<) and 8 = ( δ , < ) ,

as well as two functions on A to β, a quasi-increasing function / and a quasi-

decreasing function g. The system ?I is assumed to be continuously and densely

ordered. No such assumptions regarding B are needed, instead, the definitions

of quasi-increasing and quasi-decreasing functions must be slightly modified.

For example, a function f on A to B will be called quasi-increasing if, for

every non-empty subset X of A and for every 6 G β we have

f (ΌX) >_ b whenever fix) >_b for every x G X

and
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f (Γ\X) < b w h e n e v e r f ix) < b for e v e r y x E X.

By repeating with small changes the proof of Theorem 3, we see that under

these assumptions the conclusions of the theorem remain valid. (The only

change which is not obvious is connected with the fact that the system B is

not assumed to be densely ordered; therefore we cannot claim the existence of

an element a E β which satisfies (4), and we have to distinguish two cases,

dependent on whether an element a with this property exists or not.) Theorem

4 can of course be generalized in the same way.

Theorems 3 and 4 thus generalized can be applied in particular to real func-

tions defined on a closed interval [α,6] of real numbers. In application to real

functions Theorem 3 can easily be derived from Theorem 4. In fact, if / is a

quasi-increasing real function and g a quasi-decreasing real function on the

interval [α,6], then the function / ' defined by the formula

is clearly quasi-increasing; by applying Theorem 4 to this function, we obtain

the conclusions of Theorem 3 for / and g. Hence the fixpoint theorem (Theorem

1) for increasing real functions is also a simple consequence of Theorem 4.

Finally, since every continuous function is quasi-increasing, and since, in the

real domain, continuous functions in our terminology coincide with continuous

functions in the usual sense, Theorem 4 is a generalization of the well-known

VVeierstrass theorem on continuous real functions. )

Returning to Theorem 3 for simply ordered systems, if we assume that both

functions / and g are continuous, we can strengthen the conclusion of the

theorem; in fact we can show, not only that the system ( P9 < ) is continuously

4Theorem 3 (for both simply ordered systems and real functions) was originally
stated under the assumption that the function / is increasing and the function g is con-
tinuous; see [3] , In 1949 A. P. Morse noticed that this result in the real domain could
be improved; in fact, he obtained Theorem 4 for real functions—under a different, though
equivalent, definition of a quasi-increasing function. By his definition, a real function
/ on an interval ιa,b\ is quasi-increasing if it is upper semicontinuous on the left and
lower semicontinuous on the right, that is, if

( i ) lim f (x) <f(d) < lim fix) for every d E [ α , 6 ] .
x -» d x -» d +

Ry generalizing this observation, the author arrived at the present abstract formulations
of Theorems 3 and 4. According to a recent remark of Morse, the first part of the con-
clusion of Theorem 4, that is, the statement that the set P is not empty, holds in the
real domain for a still more comprehensive class of functions; in fact, for all real func-
tions which satisfy the condition obtained from ( i ) by replacing lim by lim on the right
side of the double inequality (or else by replacing lim by lim on the left side ).



296 ALFRED TARSKI

ordered, but also that, for every nonempty subset X of P9 the least upper bound

of X in \Pf < ) coincides with the least upper bound of X in (A, < ) , and simi-

larly for the greatest lower bound. In application to real functions this means

that the set P of real numbers is, not only continuously ordered, but also closed

in the topological sense. Analogous remarks apply to Theorem 4.

3. Applications to Boolean algebras and the theory of set-theoretical equi-

valence. As is known, a Boolean algebra can be defined as a lattice ?I= \A9 < ) ,

with 0 and 1, in which for every element b £ A there is a uniquely determined

element b G A (called the complement of 6), such that

o u b — 1 and b π b — 0.

Given any two elements a9b G i , we shall denote by a - b their difference, that

is, the element a n b. If 21 = (A9 < ) is a Boolean algebra and a £ A, then

21' = ( [0,α], < ) is also a Boolean algebra, though the complement of an element

b in 21' does not coincide with the complement of b in 21.

By applying the lattice-theoretical fixpoint theorem we obtain:

T H E O R E M 5. Let

( i ) U = (A, <) be a complete Boolean algebra9

( i i) a9b be any elements of A9 f be an increasing function on [0,α] to A9 and

g an increasing function on [0,b] to A.

Then there are elements a'9b'£ A such that

/ ( α - α < ' ) = 6 ' and gib - b')• = a\

Proof. Consider the function h defined by the formula

( 1 ) h{x)=f(a-g(b-x)) for every x eA .

Let x and y be any elements in A such that

χ S. y

We have then

b - x >_ b - y

and since b - x and b —y are in [0,6], and g is an increasing function on [0,6]

to A9 we conclude that
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gib -x) > gib - y )

and

a — g(b — x ) < a - gib - y ) .

Hence, the elements a -gib ~ x) and a - gib - y ) being in [0,α ], and / being

an increasing function on [ θ , α ] to A, we obtain

f{a-gib-x)) <fia-gib~y)),

that is, by (1),

hix) <hiγ).

Thus h is an increasing function on A to A, and consequently, by Theorem 1,

it has a fixpoint b\ Hence, by ( 1 ) ,

( 2 ) fia-gib-b')) = b\

We put

( 3 ) g(b-b') = a'.

From ( 2 ) and ( 3 ) we see at once that the elements a' and b' satisfy the con-

clusion of our theorem.

If in the hypothesis of Theorem 5 we assume in addition that f ia) <b and

gib) <_ a9 we can obviously improve the conclusion by stating that there are

elements a ' 9a "9b \b"' £ A for which

a^a'ua", b^b'ub", α ' n α " = 6 ' n 6 " = 0 ,

fia") = b' and £U")=α' 5

Theorem 5 has interesting applications in the discussion of homogeneous

elements. Given a Boolean algebra ?I = (A9 <c), two elements a,b £ A are called

homogeneous, in symbols a ~ by if the Boolean algebras ( [ 0 , α ] , < ) and

( [ 0 , 6 ] , < ) are isomorphic. In other words, a ~ b if and only if there is a func-

tion f satisfying the following conditions: the domain of / is [ 0 , α ] ; the range

of f is [ 0 , 6 ] ; the formulas x < y and fix) < / ( y ) are equivalent for any

5 In this more special form Theorem 5 is a generalization of a set-theoretical theorem
obtained by Knaster and the author; see [3] ,
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x$y £[0,α] . Various fundamental properties of the homogeneity relation easily

follow from this definition; for example, we have:

THEOREM 6. 21 = ( A, < ) being an arbitrary Boolean algebra,

( i ) a « a for every a £ A;

(i i) if a9b 6 A and a « bf then b « a;

(i i i) if a^b%c E Af α « 6, α/iJ b ~ c$ then a ~ c;

(iv) if aι,a2,bι,b2 £ A, aι n a2 = 0 = bι n b2,

a\ « c>i, β/ifl? CΪ2 ~ &2S ίAeτι α i u 02 « &i u 62?

(v) i/a,b ί 9 b 2 E .4, 6i n 62 = 0, α̂ c? α « ^ u 62,

ίAezi there are elements aχ9a2 £A such that a± u a2 — a, a\ n α2 = 0, α t « b\t

and a2 « 62

In what follows we shall use parts ( i ) - ( i i i ) of Theorem 6 without referring

to them explicitly. If now we restrict our attention to complete Boolean algebras,

we can establish various deeper properties of the homogeneity relation by apply-

ing Theorem 5. We start with the following:

THEOREM 7. 21 = (Af < ) being a complete Boolean algebra, if

afbι,b2,c,d G A% ^ n ί>2 = 0 , c « d9 a n d α u c « ό i u ό 2 u f l ? ,

then there are elements a\%a2 G A such that

a 1 u a2 = α, aγ π a2 = 0, a\ u c « 61 u of, cmc? 02 u c « 62 u (/.

Proof. By the definition of homogeneity, the formula c « c? implies the ex-

istence of a function / which maps isomorphically the Boolean algebra ( [0,c],

.< ) onto the Boolean algebra ( [0,cΠ, < ); we have in particular

( 1 ) f(c)=d.

Similar ly , the formula o u c « ό i v b2 u d i m p l i e s the e x i s t e n c e of a funct ion

g which m a p s i s o m o r p h i c a l l y ( [ 0 , bι u b2 u d\ < ) onto ( [ 0 , α u c ] , < ) , and

we h a v e

( 2 ) g{b\ \j b2 υ d) = a \JC .
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We can assume for a while that the domain of g has been restricted to the in-

terval [0, b\ u d]. Thus, / is an increasing function on [0,c] to A$ g is an

increasing function on [0, bγ u d] to A, and by applying Theorem 5 we obtain

two elements c\d' such that

(3) f { c ~ c ' ) = d ' a n d g ( ( b ι u d ) - d ' ) = c '.

T h e f u n c t i o n s / a n d g b e i n g i n c r e a s i n g , f o r m u l a s ( l ) - ( 3 ) i m p l y

( 4 ) d' <_d and c ' < a u c .

We now l e t

( 5 ) ai = c ' — c and α 2 — o — o i

By ( 4 ) we h a v e c ' ^ c <̂  a9 and h e n c e , by ( 5 ) ,

F r o m ( 4 ) and ( 5 ) we a l s o o b t a i n

w ) i c - c ) u c = α i u c a n d \c *~ c ) n c = 0 ,

( 8 ) α u L v t i u c ί ) — o? / J = 6 i u c ? a n d d'n V\b\ u c ? ) — c ? / ] = 0 .

S i n c e / m a p s i s o m o r p h i c a l l y ( [ 0 , c ] , < ) o n t o ( [ θ , α ϊ ] , < ) , w e c o n c l u d e from

( 3 ) t h a t i t a l s o m a p s i s o m o r p h i c a l l y \ [ 0 , c — c ' ] , < ) o n t o ( [ 0 , 6 ? ' ] , <̂  ) a n d

t h a t c o n s e q u e n t l y

( 9 ) c~c'~d'.

Analogously, by ( 3 ) ,

(10) c'~(b{ ud)-d\

By T h e o r e m 6 ( i v ) , f o r m u l a s ( 7 ) - ( 1 0 ) imply

( 1 1 ) aγ u c » b\ u d.

F u r t h e r m o r e , from ( 4 ) a n d ( 5 ) w e d e r i v e

( 1 2 ) ( c n c

/ ) u [ ( α u c ) ~ c Ί = α 2 u c a n d ( c n c

/ ) n [ ( α u c ) - c / ] = 0 ,
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(13) ( d - d ' ) v [ ( b 2 - d ) \ 3 d ' ] = b2 u d a n d ( d - d ' ) n [ i b 2 - d ) u </ '] = 0 .

The function f being an isomorphic transformation, we obtain, with the help of

( 1 ) and ( 3 ),

f{ c n c') = / ( c - ( c - c')) = / ( c ) - / ( c - c')= d - d ' ,

and hence, by arguing as above in the proof of ( 9 ) ,

( 1 4 ) e n c' ~d~d'.

Since, by ( 4 ) and the hypothesis,

{ b 2 - d ) υ d ' = ( b ι v b 2 υ d ) - [ ( b ι u d ) - d ' ] ,

w e c o n c l u d e a n a l o g o u s l y , w i t h t h e h e l p of ( 2 ) a n d ( 3 ) , t h a t

— d) v d') =

and therefore

(15) U u c ) - c ' ~ ( b 2 - d ) u d \

From (12)-(15), by applying Theorem 6 (iv) again, we get

(16) a2 u c « 62 u d.

By (6), (11), and (16), the proof is complete.

In deriving the remaining theorems of this section we shall apply exclusively

those properties of the homogeneity relation which have been established in

Theorems 6 and 7; thus the results obtained will apply to every binary relation

(between elements of a complete Boolean algebra) for which these two theorems

hold. It may be noticed in this connection that Theorem 6 (v) restricted to com-

plete Boolean algebras is a simple consequence of Theorems 6 ( i ) and 7.

T H E O R E M 8 ( M E A N - V A L U E T H E O R E M ) . U = (Λ9 <) being a complete

Boolean algebra, if a$b9c,a \c' G A, a <^b < c ? a' <^ c\ a ~ a \and c « c\ then

there is an element b' £ A such that a' <^b' <^ c' and b ~ b'.

Proof. We apply Theorem 7, with a9b\$b2$c9d respectively replaced by

c'-a\ b - a9 c - bf a\ α, and we conclude that there are elements aί9a2 £A
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such that

c ' - α ' = o t u α 2 and ( 6 - α ) u α « α i u α ' .

The element 6 ' = ax u α ' clearly satisfies the conclusion of our theorem.

THEOREM 9. 21 = (A9 < ) freircg α complete Boolean algebra, for any ele-

ments a9b £ A the following two conditions are equivalent:

( i ) there is an element a\ G A such that a ~ a\ < b;

( i i) there is an element b± £ A such that a < i i a J.

Proof. To derive ( i i) from ( i ) , we consider an arbitrary element at satisfy-

ing ( i ) , and we apply Theorem 8 with a9c9a\c' respectively replaced by αi,

1, a, 1. The implication in the opposite direction follows immediately from

Theorem 6 (v) (and hence holds in an arbitrary Boolean algebra).

T H E O R E M 10 ( E Q U I V A L E N C E T H E O R E M ) . 21 = (A, < ) being a complete

Boolean algebra, if a9b9c € A9 a < b < c9 and a ~ c, then a ^ b ~ c.

Proof. This follows immediately from Theorem 8 with a' — c' — c.

THEOREM 11. ϊί = (A9 <) being a complete Boolean algebra, for any

elements a\9a2$b £A the formulas

( i ) aιub~a2vb~b and

and

( i i ) a\ u «2 u b w b

are equivalent.

Proof. Obvious ly ,

b < a\ u b < «i u «2 u ^ a n d b < α2 u b < α t u «2 u ^

H e n c e ( i i ) i m p l i e s ( i ) by Theorem 10.

Assume now, c o n v e r s e l y , t h a t ( i ) h o l d s . We c lear ly have

[a2 - ( α i u b)]n (at u 6 ) = [ α 2 - ( α * u ^ ) ) ] n 6 = 0

and

α 2 — ( o i u 6 ) ~ α 2 — ( α i u 6 ) .

By Theorem 6 ( i v ) , t h e s e two formulas t o g e t h e r with ( i ) imply
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( 1 ) α t u o 2 u t = [ o 2 - ( o i u 6 ) ] u ( α 1 u ό ) « [ α 2 ~ ( α ι u 6 ) ] u i .

S i n c e

[a2 ~{a\ u i ) ] u b <LQ>I u b < α^ u α 2 Ό b 9

we derive from (1), by applying Theorem 10,

(2) α 2 u 6 » α ι u α 2 u ί),

Formulas ( i ) and (2) obviously imply ( i i ) , and the proof is complete.

Various properties of the relation of homogeneity can conveniently be ex-

pressed in terms of another, related relation which is denoted by ^< . Thus

^ = \ A9 <) being a Boolean algebra, and a9b being any elements of A, we

write a ^ b if there is an element aγ £/4 such that a « α i < b; in case the

algebra 21 is complete, an equivalent formulation of this condition is given in

Theorem 9 ( i i ) . Theorems 8 and 10 can now be put in a somewhat simpler,

though essentially equivalent, form:

MEAN-VALUE THEOREM. 21 = (A, < ) being a complete Boolean algebra,

if a9b9c G A9 a < c, and a ^< b <̂ c9 then there is an element b'ϊzA such that

a < b' < c and b ~ b'.

EQUIVALENCE THEOREM. 21 = ( 4 , < ) being a complete Boolean algebra,

if a9b £ A9 a ^ b9 and b ^< a9 then a ~ b.

We shall give two further results formulated in terms of ^ .

THEOREM 12. 2I = (/ί, < ) being a complete Boolean algebra9 if

ι$c2 €A9aχ < cχ9a\ ^ c 2 , a2 r< ^i, and a2 < c2,

then there are elements bχ9b2 €A such that a\ < b\ <Lcχ9 a2 < b2 < c29

and bι ~ b2.

Proof. The hypothesis implies the existence of two elements a{9a2' such that

(1) ai « a* < c2 and a2 ~ a'2 < cι.

Since, by (1),
n a

2 <

we conclude from Theorem 9 that there is an element d for which
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( 2 ) G^n α2 ' «fl? < a[.

We have, by ( 1 ) ,

a2 « (« ι n α 2 ' ) u (α 2 ' - αi ) and ( α t n o^) n ( α 2 ~ αi ) = 0;

hence, by Theorem 6 ( v ) , there are elements e\$e2 such that

( 3 ) α 2 = e i u e 2 a n d e i n e 2 = 0 ,

( 4) e i ~ αi n α 2 and e 2 ~ α 2 ~ α i

By ( l ) - ( 4 ) and the hypothesis,

^ < α i " £ C2ί e i < c 2 , G? ~ e l f and c 2 « c 2

hence, by Theorem 8, there is an element / for which

( 5 ) ex <f<c2 and a[ « / .

Since, by ( 4 ) ,

<?2 ""/" 1 e 2 ~ α

2 ~ " α i »

Theorem 9 implies the existence of an element g with

( 6 ) e 2 - / « g < α 2 ' - α l β

We now put

( 7 ) i t = α ! U g and 6 2 = / u ( e 2 - / ) = / u e2 .

By ( 1 ) , ( 3 ) , ( 5 ) , ( 6 ) , ( 7 ) , and the hypothesis, we obtain

( 8 ) ai < bι < cι and α 2 < b2 < c2 .

By ( 5 ) and ( 6 ) we have

ax n pr = /n ( e 2 - / ) = 0 , o i « f , g « e 2 - / ;

hence, by ( 7 ) and Theorem 6 ( i v ) , we get

( 9 ) δ i « 6 2 .

From ( 8 ) and ( 9 ) we see that the elements bι and b2 satisfy the conclusion of

our theorem.
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From the theorem just proved, by letting α t = cχ9 we derive as an immediate

consequence the mean-value theorem; if we put a\ =Ci and a2 = c2, we obtain

the equivalence theorem. A further consequence of Theorem 12 is :

T H E O R E M 13 ( I N T E R P O L A T I O N T H E O R E M ) . 21 = (A, < ) being a com-

plete Boolean algebra, if a\9a29cχ9c2 G A and aι ^< Cj for i9j = 1,2, then there

is an element b G A such that aι •< b ^< CJ for i9j = 1,2.

Proof. The hypothesis implies the existence of two elements a^ and a^ for

which

( 1 ) ai « α ' <_ ci and a2 « a' < c2 .

Hence, as is easily seen,

aι S cι> aχ Z^L
 C2i a

2 ~ ci» °2 — C2 •

Consequently, by Theorem 12, there are elements bχ,b2 such that

( 2 ) aι ^L ^ι ^i cis a

2 — ^2 S C2$ a n ( l bi ~ b2 *

From ( 1 ) and ( 2 ) , with the help of Theorem 9, we obtain

ai nί ^l ϋl C7 ^ 0 Γ *>/ = -̂ >̂

Thus the element b = b[ satisfies the conclusion of our theorem.

From Theorems 7 and 11-13 we obtain by induction more general results in

which the couples (aί9a2), (^1,^2) ( c i * c 2 ) a r e replaced by finite sequences

(«i , , α π ) , (61, , bn) , ( c i , , c π )

with an arbitrary number n of terms; in Theorem 13 the couples (al9a2) and

(cχ9c2 ) can be replaced by two finite sequences with different numbers of

terms. The results discussed can be further extended to infinite sequences;

however, these extensions seem to require a different method of proof, and we

see no way of deriving them by means of elementary arguments from the fix-

point theorem of § 1. 6

6Theorems 6-13 concerning the relation of homogeneity and their applications to
cardinal products of Boolean algebras and to the theory of set-theoretical equivalence
are not essentially new. (Theorem 12 is new, but it can be regarded simply as a new
formulation of the interpolation theorem 13.) All these results are stated explicitly or
implicitly in [7, >v 11, 12, 15-17], where historical references to earlier publications
can also be found. However, the method applied in [7] is different from that in the
present paper and is not directly related to any fixpoint theorem. Also, the axiom of
choice is not involved at all in the present discussion, while the situation in [7] is in
this respect more complicated (compare, for instance, the remarks starting on page 239).
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All the results of this section, except Theorem 5, remain valid if the Boolean

algebra 21 = (A9 <C ) is assumed to be not necessarily complete, but only count-

ably-complete (σ-complete). This can be seen in the following way. To prove

Theorem 5 we have constructed, in terms of two given increasing functions / and

g, a new function h, and we have shown that this function h is increasing and

hence has a fixpoint. In the subsequent discussion, Theorem 5 has been applied

only once, namely in the proof of Theorem 7. The functions / and g involved in

this application not only are increasing, but have much stronger properties, in

fact, the distributive properties under countable joins and meets; that is, for

every infinite sequence (αi , , an , ) we have

/ (α i u « «« u αn u « « ) = / ( α i ) u u / (αΛ ) u ,

/ (α i n . . . n αΛ n . . . ) = / ( α ι ) n . . n / ( α r a ) n . . . ,

and similarly for g. It can be shown that the function h constructed from f and

g in the way indicated in the proof of Theorem 5 also has these distributive

properties. It is also easily seen that, in any countably-complete Boolean

algebra (and, more generally, in any countably-complete lattice with 0), every

function h which is distributive under countable joins has at least one fixpoint

a; in fact,

α = 0 u λ ( 0 ) u Λ ( λ ( 0 ) ) u . . . .

The results obtained in this section have interesting consequences con-

cerning isomorphism of cardinal (direct) products of Boolean algebras. To

obtain these consequences it suffices to notice that every system of Boolean

algebras ( 21 j ) can be represented by means of a system of disjoint elements

(a/ ) of a single Boolean algebra 21 (in fact, of the cardinal product of all

algebras 21 { ) in such a way that ( i ) each algebra 2It is isomorphic to the sub-

algebra \[θ,αj], < ) of 21; hence (i i) two algebras 211 and 21; are isomorphic

(2Ij ^2I ; ) if and only if the elements α; and αy are homogeneous ( α j « α ; ) ;

(iii) for i£j, we have 211 x 2Iy = 21̂ . if and only if α/ u αy ~ α^; (iv) 211 is

isomorphic to a factor of 21 £ if and only if aι^±a^ Keeping this in mind, we

derive, for example, the following corollary from Theorem 11:

21 j , 2I2, B being three complete Boolean algebras, we have

if and only if

811 χ 2 I 2 x B ~
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Results of this type can again be extended to countably-complete Boolean

algebras.

Any given sets A9 B9 C, . can be regarded as elements of a complete

Boolean algebra; in fact, of the algebra formed by all subsets of the union

i u δ u C u , with set-theoretical inclusion as the fundamental relation. As

is easily seen, two sets A and B treated this way are homogeneous in the

Boo lean-algebraic sense if and only if they are set-theoretically equivalent,

that is, have the same power. Hence, as particular cases of theorems on homo-

geneous elements, we obtain various results concerning set-theoretical equiva-

lence; for instance, Theorem 10 yields the well-known Cantor-Bernstein theo-

rem. *

4. Applications to topology.8 By a derivative algebra we understand a

system 21 = \A3 <, D ) in which (A9 < ) is a Boolean algebra and D is a unary

operation (function) on A to A assumed to satisfy certain simple postulates;

the main consequence of these postulates which is involved in our further dis-

cussion is the fact that D is increasing. The element Dχ (for any given x € A)

is referred to as the derivative of x. The derivative algebra 21 is called complete

if the Boolean algebra (A9 < ) is complete.

In topology the notion of the derivative of a set is either treated as a funda-

mental notion in terms of which the notion of a topological space is character-

ized, or else it is defined in terms of other fundamental notions (for example,

the derivative of a point set X is defined as the set of all limit points of X).

At any rate, all point sets of a topological space form a complete derivative

algebra under the set-theoretical relation of inclusion and the topological opera*

tion of derivative. Hence the theorems on complete derivative algebras can be

applied to arbitrary topological spaces.

^ - {A$ <, D) being a derivative algebra, an element α E A is called closed

if Dα < α; it is called dense-in-itself if Dα > α, and perfect if Dα = a; it is

called scattered if there is no element x <_a different from 0 which is dense-in-

itself.

As a consequence of the fixpoint theorem we obtain:

T H E O R E M 14 ( G E N E R A L I Z E D C A N T O R - B E N D I X O N T H E O R E M ) .

7 These extensions can be found in [ 7 ] . The proof of Theorems 12 and 13 extended
to infinite sequences requires an application of the axiom of choice (to denumerable
families of sets ). Compare the preceding footnote.

8 In connection with this section see [4, pp. 182 f. ]; compare also [ 5 ] , in particular
pp. 38 f. and 44.
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being a complete derivative algebra, every closed element a EA has a decom-

position

a = b u c , i n c = 0 ,

where the element b € A is perfect and the element c £ A is scattered.

Proof. We put

(1) b = UE % [αn Όx > x] and c =a - b.

Hence obviously

(2) a = b u c and b n c = 0.

D being an increasing function on A to A, the same clearly applies to the func-

tion Dα defined by the formula

Όax = a n Όx for every x £ A .

Hence, by Theorem 1, we conclude from (1) that b is a fixpoint of Dα that is,

(3) 6 = D α ό = α n D ό .

Consequently b <. a a n ( l D& <. Dα; since the element a is closed, we have

Όa < a? Ώb < a and therefore, by (3), b = D&; that is, the element b is perfect.

If an element x <^ c is dense-in-itself, that is, D% > x9 we have, by (1),

a n DJC >_ Λ; ,

and hence Λ; < b; therefore, by (2), x = 0. Thus the element c is scattered.

This completes the proof.

It should be mentioned that the operation D in a derivative algebra

21= (A,<,Ό)

is assumed to be not only increasing, but distributive under finite joins, that is,

D (x u y) = Όx u Dy for any x$γ 6 A .

Under this assumption we can improve Theorem 14 by showing that every closed
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element a £A has a unique decomposition

α = & u c, 5π c = 0 ,

where b is perfect and c is scattered. In fact, let

α = i ' u c', i ' n c ^ O

be another decomposition of this kind. We then have

Hence

b-b' < Ό(b-b');

that is, b — b' is dense-in-itself. Since, moreover, b — b' < c\ and c ' is scat-

tered, we conclude that o - 6 ' = 0 . Similarly we get 6 ' - 6 = 0 . Consequently

b -b\ and hence also c - c\

If, instead of Theorem 1, we apply Theorem 5, we obtain the following result

(of Λvhich, however, no interesting topological consequences are known):

THEOREM 15. 21= (A9 <, D ) being a complete derivative algebra, every

closed element a GA has two decompositions

where b9 c, b\ c' are elements of A such that

Όb'=b and D c ' = c .

Proof. From Theorem 5 (with a = b) we conclude that there are two elements

c,b' G A such that

(1) D ( α - c ) = 6 / and D ( α - 6 ' ) = c.

By putting

(2) b -a - c and c ' — a - b'

we obtain, from (1),

(3) D& = 6 ' and D c ' = c .
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Since the function D is increasing and the element a is closed, ( 1 ) implies

c < Όa < a and b' < Όa < a

hence, by (2),

(4) a=buc=b'uc' and έn c = έ ' n c

/ = 0 ,

By (3) and (4) the proof has been completed.

Theorems 1 and 5 can be applied not only to the operation D, but also to

other topological operations which are defined in terms of D and, like the

latter, are increasing; for instance, to the operation I defined by the formula

Iχ = x — Όx

Iχ referred to as the interior of the element χ% Theorem 5 can of course be

applied to two different topological operations, provided both are increasing.
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A CHARACTERIZATION OF COMPLETE LATTICES

ANNE C. DAVIS

1. Introduction. A complete lattice 21 = (A, < } has the property that every

increasing function on A to A has a fixpoint.1 Tarski raised the question whether

the converse of this result also holds. In this note we shall show that the

answer to this question is affirmative, thus establishing a criterion for complete-

ness of a lattice in terms of fixpoints.2

We shall use the notation of [6], In addition, the formula a ^ b will be

used to express the fact that a < b does not hold. By ( a^ ξ < Ot ) , where

α is any (finite or transfinite) ordinal we shall denote the sequence whose

consecutive terms are α 0, «i, , a<μ , (with ξ < α) ; the set of all terms

of this sequence will be denoted by ί aμ ζ < d }. The sequence ( a * ξ < Ct )

is, of course, called increasing, or strictly increasing, if a^ < α^/, or a^ < a^ /,

for any ζ < ζ' < OC analogously we define decreasing and strictly decreasing

sequences.

2. A lemma. We start with the following:

LEMMA 1. // the lattice 21= (A9 < ) is incomplete, then there exist two

sequences ( bμ ζ < β ) and ( c<η η < γ) such that

( i ) b^ < c-η for every ξ < β and every η < y,

( i i ) ( bε ζ < β ) is strictly increasing and (c-η η < γ) is strictly decreas-

ing,

( i i i ) there is no element a EA which is both an upper bound of\b^; ζ < β \

and a lower bound of \ c-η η < y !•

See L6J (where further historical references can also be found).

2 This result was found in 1950 and outlined in [2J .

3 A related, though weaker, property of incomplete lattices is mentioned implicitly
in [ l , p. 53, Exercise 4 ] .

Received June 29, 1953. The present note was prepared while the author was work-
ing on a research project in the foundations of mathematics sponsored by the Office of
Ordnance Research, U.S. Army.
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Proof. We first notice that there exists at least one subset of A without a

least upper bound (for otherwise the lattice would be complete).4 Hence we can

find a subset B of A with the following properties:

(1) UB does not exist

(2) if Jt is any subset of A with smaller power than B, then ΌX exists.

Let ,8' be the initial ordinal of the same power as B (that is, the smallest

ordinal such that the set of all preceding ordinals has the same power as B).

The ordinal β' may be equal to 0; if not, β' is certainly infinite and, since

it is initial, it has no predecessor; that is, ζ < β' implies ζ + 1 < β' for every

ordinal ζ. Thus all the elements of B can be arranged in a sequence \ bί;

ξ < β' ) . For every ξ < /3', the set { bC; ζ < ζ + 1 ! is of smaller power than

β' and therefore, by (2), its least upper bound

exists. The sequence ( u* ζ < β' ) is clearly increasing but not necessarily

strictly increasing. However, by omitting repeating terms in this sequence, we

obtain a strictly increasing sequence ( bg ζ < β ) , where β is an ordinal

< β\ such that

{ b ξ ; ξ < β \ = { u ξ ; ξ < j 8 Ί .

(Actually, one can easily prove that β = /3'») Obviously,

(3) for every b £ B there is a ζ < β such that b <_ be

(4) for every ζ < β' there is a subset X of B such that b^ = UZ.

By (3) and (4), if the least upper bound Uί b^; ξ < β \ existed, it would co-

incide with \JB; hence, by (1),

( 5) U { bξ ξ < β \ does not exist.

Let C be the set of all upper bounds of ί b^ ξ < β}. Clearly DC does not

exist, for if it did, it would coincide with U{ bμ\ ξ < β\; this result would con-

tradict (5) . Now C, like B, is either empty or infinite. Since C is partly ordered

by the relation < , there is a strictly decreasing sequence ( c η η < γ) such

4See [1, p. 49].
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that \cv; η < γ\ is a subset of C with which C is coinitial ( that i s , there is

no element of C which is a lower bound of ί c η; η < γ\ without belonging to

\cv; η < γ\). 5 If the greatest lower bound Π f c ^ ; η < γ} existed, it would be

an upper bound of { b^ ξ < β\; but s ince U{ bμ\ ξ < β\ does not exist, there

would be an element c G C such that Π{ cv; η < γ\ <£_ c. Hence we would have

c n ί l j c η ; ? | < y ! G C a n d c r\ f ] \ c v ; η < y \ < f \ \ c v ; η < γ \ ,

in contradiction to the assumption that C is coinitial with \cv', η < γ\. Con-

sequently,

(6) Π{ cv; η < γ\ does not exist.

The sequences ( b* ζ < β) and ( c η ; η < γ) obviously satisfy conditions

( i ) and (i i) of our lemma. To show that ( i i i) is also satisfied, assume that an

element a G A is both an upper bound of { bμ ζ < β \ and a lower bound of

{ Cη η < y}. We have then, by definition, a G C. Hence, C being coinitial with

{ cv; η < γ j , we must have

a e \cv; η < γ\,

and therefore

a = ίl{ cv; η < γ\,

in contradiction to (6) . This completes the proof.

3. The main result. With the help of Lemma 1 we now obtain the main result

of this note:

THEOREM 2. For a lattice 21 = \A, < ) to be complete it is necessary and

sufficient that every increasing function on A to A have a fixpoint.

Proof. Since the condition of the theorem is known to be necessary for the

completeness of a lattice, we have only to show that it is sufficient. In other

words, we have to show that, under the assumption that the lattice 21 = ( A9 <)

is incomplete, there exists an increasing function f on A to A without fixpoints.

In fact, let ( bμ ξ < β) and (cv; η < γ) be any two sequences satisfying

conclusions ( i ) - ( i i i ) of Lemma 1. To define / for any element xEA9 we

distinguish two cases dependent upon whether x is a lower bound of { c η ; η < γ}

or not.

*Cf.[3, p. 141].
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In the first case, by conclusion ( i i i ) , x is not an upper bound of { bμ ξ < β \;

that i s , the set of ordinals

(1) Φ ( * ) = E f [ f < β and bξ

is non-empty. We put

(2) φ(χ) = mmΦ(x) and f{χ)

(Δ being any non-empty set of ordinals, min Δ is of course the smal lest ordinal

belonging to Δ.) In the second case, the set

( 3 ) ψ ( ^ ) = = E r ? [ r 7 < γ and x ± cv]

is nonempty. We let

( 4 ) 0 ( * ) = m i n Ψ ( * ) and f (x) = cφ{χ).

We have thus defined a function / on A to A. From ( l ) - ( 4 ) it follows clearly

that either fix) j^ x or % £ fix) for every x £ A; thus / has no fixpoints.

Let x and y be any elements of A with x < y. If x is a lower bound of

\c-η', η < β \ but y is not, then, by ( l ) - ( 4 ) and conclusion ( i ) of Lemma 1,

fix) < _ / ( y ) . If both x and y are lower bounds of \c-η, η < γ\, we see from

( 1 ) that Φ ( y ) is a subset of Φ ( x ) ; hence, by ( 2) and conclusion ( i i ) of Lemma

1, it follows at once that fix) < / ( y ) Final ly, if x is not a lower bound of

\c-η; η < y}, then y is not either, and by an argument analogous to that just

outlined (using (3) and (4) instead of (1) and ( 2 ) ) we again obtain fix) < /(y) .

Thus the function f is increasing, and the proof of the theorem is complete.

4. Extensions. More difficult problems seem to arise if we try to improve

Theorem 2 by considering, instead of arbitrary increasing functions, more

special c las ses of functions. In particular, we have in mind join-distributive

(or meet-distributive) functions, that i s , functions / on A to A which satisfy

the formula

/ ( « u y ) = / U ) u / ( y ) ( o τ f ( x n y ) = f ( x ) n f ( y ) )

for all x, y £ A. The problem is open whether Theorem 2 remains valid if the

term "increasing" is replaced by "join-distributive" or by "meet-distributive".

We are going to give (in Theorem 4 below) a partial positive result concerning

this problem.
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The lattice 21 = ( A9 <J is called α- join- complete (or a-meet-complete) if

\JX (or ΠX) exis ts for every nonempty subset X of A with power at most equal

to K α .

LEMMA 3. Let 21 = \A$ <C / be an incomplete lattice with the set A of power

Kα //" 21 is δ-join-complete for every δ < CX, then there exist two sequences

(b^; ξ < β) and (c-η; η < γ ) which satisfy conclusions ( i ) - ( i i i ) of Lemma 1

as well as the following condition:

( i v ) if an element % G A is a lower bound oflc^; η < γ\, then there exists

an ordinal ζ such that ζ < β and x <_ bμ .

Proof, From Lemma 1 we easily conclude that there exists a strictly de-

creasing sequence ( c^; η < y ) of elements of A such that Π{ c^; η < γ\ does

not exist. Let B' be the set of all lower bounds of { c-η η < γ\. Then clearly

U S ' does not exist. Hence, by hypothesis, B' must be either empty or of power

Kα; since 21 is δ-join-complete for every δ < CC, it follows that S ' satisfies

conditions (1) and (2) in the proof of Lemma 1 (with B replaced by B'). There-

fore, by literally repeating the corresponding part of the proof of that lemma, we

obtain a strictly increasing sequence ( b* ξ < β) of elements of B' for which

conditions ( 3 ) - ( 5 ) (with B = B') hold. Obviously the sequences (b^; ξ < β)

and (c-η η < γ) satisfy conclusions ( i ) and ( i i) of Lemma 1. To show that

conclusion (i i i) is satisfied, assume, to the contrary, that a is both a lower

bound of \cv', η < Ύ \ and an upper bound of { be ξ < β }. Therefore, by the

definition of B\ we have aEB'; using (3) of the proof of Lemma 1 we see

that a < fe>: for some ξ < β, and hence, a being an upper bound of { bξ ζ < β\,

we conclude that

a = U { b ξ ; ξ < β\,

which contradicts ( 5 ) . Final ly, in view of the definition of B*', conclusion ( i v )

of our present lemma simply coincides with condition ( 3 ) in the proof of Lemma

1 (again with B - B').

With the help of Lemma 3 we now obtain:

THEOREM 4. Let 21 = (A9 < ) be a lattice with the set A of power Kα 'For

A to be complete it is necessary and sufficient that

( i ) 21 be δ-join-complete for every δ < (X and

( i i) every join-distributive function on A to A have a fixpoint.
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Proof. If 21 is complete, then obviously ( i ) holds. To show that the com-

pleteness of 21 implies ( i i ) we need only note that every join-distributive func-

tion is increasing, and then apply Theorem 2. Thus ( i ) and ( i i ) are necessary

conditions for the completeness of 21.

In order to show that these conditions ( joint ly) are also sufficient, we

assume that 21 is an incomplete latt ice which is δ-join-complete for every

δ < OC, and we show that there exists a join-distributive function / on A to A

without fixpoints.

Let (b^; ξ < β) and (cv; η < γ) be any two sequences satisfying con-

clusions ( i ) - ( i i i ) of Lemma 1 and the additional conclusion ( i v ) of Lemma 3.

In order to define / for every % G i we distinguish two cases dependent upon

whether % is a lower bound of { c-η η < γ \ or not.

In the first case , by ( i v ) of Lemma 3, the set

( 1 ) θ ( χ ) = E ξ [ ξ < β a n d * <bξ]

is non-empty. We notice that, by conclusions ( i i ) and ( i i i ) , the sequence

{bc\ ζ < β) cannot have a last term; that is ξ < β always implies ζ + I < β.

Hence we may put

( 2 ) # ( * ) = min θ(x) and / ( * ) = fyk)+ι •

In the second case, the set

( 3 ) Ψ ( * ) = Ev[η < γ and x ± Cj] ]

i s nonempty. We le t

( 4 ) 0 ( * ) = m i n Ψ U ) and f (x) = cφ (χ).

We have t h u s defined a function / on A to A. If x G Af and % i s a lower bound

of ί c-η η < γ!, it follows from ( 1 ) , ( 2 ) , and c o n c l u s i o n ( i i ) of Lemma 1, t h a t

while if x i s not a lower bound of { c ^ ; η < γ\, we s e e from ( 3 ) and ( 4 ) that

x _̂ f (x); thus / h a s no f ixpoints .

Now let x and y be any e l e m e n t s of A Assume first that both x and y are

lower bounds of i c ^ ; η < γ\. L e t , in addi t ion, u(x) < $ ( y ) . T h e n , obvious ly ,
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and, by ( 2 ) and conclusion ( i i ) of Lemma 1, we obtain

C l e a r l y , x u y i s a l o w e r b o u n d of { c η ; 77 < y ί a n d w e s e e from ( 1 ) t h a t θ(x u y )

i s a s u b s e t of θ{y); t h e r e f o r e i t f o l l o w s from ( 2 ) t h a t

( 6 ) #{y) < dixuy).

On t h e o t h e r h a n d , b y ( 1 ) , ( 2 ) , a n d c o n c l u s i o n ( i i ) of L e m m a 1, w e h a v e

hence x u y < bai \ and, by ( 1 ) , u(y) G θ(x u y ) . Then, using ( 2 ) , we obtain

ά(x υy) < tf(y);

h e n c e , w i t h t h e h e l p of ( 2 ) , ( 5 ) , a n d ( 6 ) , w e c o n c l u d e t h a t

( 7 ) / ( % u y ) = / ( % )

Assume next that x is a lower bound of { cv', Ϊ? < y\ while y is not. Then,

by ( 2 ) , ( 4 ) , and conclusion ( i ) of Lemma 1, we have

< 8 ) / ( * ) u / ( y ) = b#ix)+t u cψ{y)=cφ{y).

Since y is not a lower bound of { cv r/ < y}, Λ; U y is not either, and by ( 3 ) we

see that Ψ (y ) is a subset of Ψ ( x u y ); therefore, by ( 4 ),

( 9 ) φ(x u y ) < ι/ ' (y) .

From ( 3 ) and ( 4 ) it is obvious that

and hence either

But since x is assumed to be a lower bound of { c<η r/ < y}, it follows that

therefore, by ( 3 ) , i/»U u y) e Ψ ( y ) ; and, by ( 4 ) ,
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(10) φ(y) < φ(χ u y).

Apply ing ( 4 ) , ( 8 ) , ( 9 ) , and ( 1 0 ) , we c o n c l u d e t h a t ( 7 ) h o l d s .

F i n a l l y , a s s u m e t h a t n e i t h e r x nor y i s a lower bound S c η ; η < γ\, a n d

l e t φ (x) < φ{y). F r o m ( 4 ) and c o n c l u s i o n ( i i ) of L e m m a 1, w e o b t a i n

( 1 1 ) 1'ix) U ί~{y]= Cφ(x)U c ψ ( y ) = cφ{x)'

S i n c e , by ( 3 ) , Ψ ( % ) i s a s u b s e t of Ψ ( % u y ) , i t f o l l o w s from ( 4 ) t h a t

( 1 2 ) φ ( x u y ) < φ ( x ) .

Using (3) and (4) again, we see that

and hence either

x i c ψ(*uy) O Γ y i c ψ U u y )

Therefore,

φ{x) <_φ{x v γ) or φ(γ) <_φ(x \j γ)

But if φ(y) £ φ(x u y ) , then, since φ(x) <_φiy), it is also the case that

(13) φ(χ) < φ(χ u y ) .

Using (4), (11), (12), and (13), we again obtain (7) . Thus the function / is

join-distributive, and the proof of the theorem is complete.

As an immediate consequence of Theorem 4 we obtain:

COROLLARY 5. Let 21 = {A, < ) be a lattice in which the set A is de-

numerable. For 21 to be complete it is necessary and sufficient that every join-

distributive function on A to A have a fixpoint.

By analyzing the preceding proofs we easily see that Theorem 4 and Corol-

lary 5 remain valid if we replace in them "join" by "meet" everywhere; we also

notice that in every lattice 21 = (A9 <_ ) without 0 the conclusions of Lemma 3

(with /3 = 0) hold, and hence there is a join-distributive function on A to A

without fixpoints.

If, instead of considering arbitrary lattices, we restrict ourselves to



A CHARACTERIZATION OF COMPLETE LATTICES 319

Boolean algebras, we immediately conclude from Corollary 5 that in every

Boolean algebra 21 = (A 9 < ) in which the set A is (infinitely) denumerable

there is a join-distributive function / on A to A without fixpoίnts. This result

can be extended to a wider class of Boolean algebras, in fact to all infinite

Boolean algebras with an ordered basis; 6 the proof will not be given here. 7

However, the question remains open whether the result can be extended to

arbitrary incomplete or even to arbitrary countably incomplete Boolean algebras

(that is, to those which, in our terminology, are not O-join-complete).

6 For the notion of a Boolean algebra with ordered basis, see l 5 j . It is well known
that every denumerable Boolean algebra has an ordered basis, and that every infinite
Boolean algebra with an ordered basis is countably incomplete, but that the converses
of these statements do not hold.

7 The essential property of infinite Boolean algebras with an ordered basis which is
involved in this proof is that every such algebra contains a sequence of disjoint non-
zero elements ( bn', μ. < Cύ / such that, for every element x of the algebra, either the
set Eμ[6μΠ%= Oj or the set Eμ[όμ,n % ^ θ] is finite. The idea of the proof was sug-
gested to the author by an argument in [4, p. 92l], where a particular case of the result
in question was obtained.
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