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Abstract—We recently presented a novel unsupervised, non-
Gaussian and contextual clustering algorithm for segmentation
of polarimetric SAR images [1]. This represents one of the most
advanced PolSAR unsupervised statistical segmentation algo-
rithms and uses the doubly flexible, two parameter, /-distribution
model for the PolSAR statistics and includes a Markov Random
Field approach for contextual smoothing. A goodness-of-fit testing
stage adds a statistically rigorous approach to determine the
significant number of classes. The fully automatic, algorithm was
demonstrated with good results for both simulated and real data-
sets. This paper discusses a re-thinking of the overall strategy
and leads to some simplifications. The primary issue was that
the Markov random field optimisation depends on the number
of classes and did not behave well under the split-and-merge
environment. We explain the reasons behind a separation of
the cluster evaluation from the contextual smoothing as well as
a modified rationale for the adaptive number of classes. Both
aspects have simplified the overall algorithm whilst maintaining
good visual results.

Index Terms—Polarimetric Synthetic Aperture Radar, Non-
Gaussian, Statistical Modelling, Clustering, Number of Classes.

I. INTRODUCTION

We have developed and demonstrated an advanced au-
tomatic clustering algorithm that combines a flexible non-
Gaussian class model for multi-look complex (MLC) covari-
ance matrix data, a Markov random field (MRF) for contextual
smoothing, and goodness-of-fit testing to optimise the seg-
mentation and determine an appropriate number of classes
[1]. The main features of this state-of-the-art approach are
summarised in Sec. II. This article will subsequently discuss
recent simplifications to the approach and demonstrate the new
algorithm.

Satellite-borne polarimetric synthetic aperture radar (Pol-
SAR) systems have many benefits, but analysis is hindered by
complicated non-Gaussian statistical methods. PolSAR data
models are generally derived from the product model [2],
which states that the backscattered signal results from the
product between a Gaussian speckle noise component and the
textured terrain backscatter. For multi-looked PolSAR matrix
data, the scaled Wishart distribution [3], [4], Wy, is the
simplest model to analyse but contains no texture parameter,
based upon purely Gaussian speckle. The Iy (or K-Wishart)
distribution [5], [6] and the Qg—distribution [71, [8] are more
flexible, with one texture parameter, and are successful models
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for many PolSAR classes. The two parameter Kummer-U dis-
tribution has been used to model PolSAR vector data [9], with
promising contiguous segmentation results and demonstrated
that the two parameter model is even more flexible and able to
fit real data classes. The multivariate extension of the Kummer-
U distribution for MLC matrix data, hereafter simply called
the U -distribution, that was recently introduced [1], [10], and
used for real analysis in [11], gives improved results because
of its flexibility to model more varied textures and because it
includes the Wy, K4 and Qg models as asymptotic cases.

As with many of these product models, the probability
density functions (PDFs) are complicated. Many variations
lead to different cases of the hypergeometric function that are
complicated to evaluate, often needing numerically integration,
and complicated with respect to maximising parameters in
the order term of the functions. Hence, maximum likelihood
parameter estimators are not usually available with closed-
form solutions. A practical solution is to estimate the model
parameters with the method of matrix log-cumulants [4],
because they have relatively simple numerical expressions and
possess lower bias and variance compared to single channel
(marginal) estimates or moment methods for product based
distributions.

Unsupervised clustering is achieved with the expectation
maximisation algorithm (EM-algorithm) [12], which is an
iterative method that repeatedly estimates the class posterior
probabilities based on the current parameters and then updates
the class parameters based upon the estimated probabilities.
It requires an initial state, the number of classes, PDF ex-
pressions for the class models, and update expressions for
the parameters. The U -distribution shall be used for the
model and the method of matrix log-cumulants for parameter
estimation. The initial state and the number of classes are
addressed with an automatic strategy by consistently starting
as one class and adaptively splitting classes until a statistical
criterion is satisfied.

The number of classes is determined from the additional
information contained in the goodness-of-fit of the data to the
estimated model [13]-[15]. There are several different ways
to implement this general framework, and our new strategy is
significantly improved and simplified.

Contextual smoothing is desired to improve the accuracy
and robustness of the image segmentation. It is achieved in
the clustering algorithm with an MRF approach that integrates
the U, -distribution for the PoISAR data statistics conditioned
to each image cluster and a Potts model for the spatial
context. This extends our previous work with the K-Wishart
distribution [16], however, the parameter of the MRF model



are now estimated with a mean-field like method [17]. The
inclusion of the MRF is not expected to compromise the
goodness-of-fit testing stage, because the MRF only affects
the local priors and the underlying model remains a mixture
of Uy-distributions.

The previous strategy applied the MRF based local prior
probabilities and optimised the MRF global smoothing pa-
rameter at every iteration, but this causes serious problems in
relation to the adaptive split-and-merge mixture modelling. We
now propose to entirely separate the EM-algorithm mixture
modelling from the MRF smoothing process in the new
strategy.

The proposed improvements still combine all the benefits
of a flexible non-Gaussian model for the covariance matrix
data classes, an MRF for contextual smoothing, and goodness-
of-fit testing to optimise the segmentation and determine an
appropriate number of classes.

The previous, state-of-the-art algorithm is described in Sec-
tion II, the main characteristics of the new strategy are intro-
duced in Section III, are demonstrated for both simulated and
real data-sets in Section IV, and, finally, the main conclusions
are given in Section V.

II. STATE-OF-THE-ART ALGORITHM

The scope of this algorithm is to analyse MLC data images,
where the data is an image of covariance matrices, C. We
assume the scalar product model is valid and that the MLC
data is formed by a simple box-car multi-look average from
the single-look complex scattering coefficients. The box-car is
used so that we can assume a global number of looks (degree
of smoothing) and “simpler” statistical models, as opposed to
advanced dynamic speckle smoothing methods that produce
a variable number of looks that complicate the modelling.
The number of looks, L is in practise substituted with an
equivalent number of looks (ENL) due to pixel correlations.
The ENL is either estimated in a pre-processing step or
optimised during the iterations by a minimum distance method
using log-cumulant expressions given all the current class
model parameters simultaneously.

Our main objective is to segment the image pixels into
separate clusters based upon the /;-distribution model. The
statistical approach for clustering the images uses the iterative
EM-algorithm with a few modifications, as has previously
been described in detail in [13], [14], [16]. The extension
proposed in [1], was that each class is modelled with the
Ug-distribution PDF and that context has been incorporated
with an MRF technique based upon the Potts model. The key
features are detailed here.

Its main drawback seems to be computation time, but this
can be partly alleviated with a sub-sampling approach, as in
[14], that still finds the major classes of interest but sacrifices
smaller sub/side classes for reduced computation time.

A. Non-Gaussian Modelling: the Ug-distribution

Bombrun et al. [10] have shown the potential of the I/; PDF,
with texture parameters o and A, to model both extremely
heterogeneous, moderately heterogeneous and homogeneous

clutter. It encompasses the other models as special cases, such
that it reverts to the K4y as A — oo, the gg as a — 09,
and the W(? as both a, A\ — oo. Therefore, this one model
supersedes many previous modelling algorithms. Nevertheless,
these special cases may be implemented to improve the
numerical evaluation in different parameter ranges. Table I
lists the probability density functions and the matrix log-
cumulant expressions for the matrix variate Wy, Kq, gg, and
U, distributions.

B. Parameter Estimation

Texture parameter estimation is achieved with the method
of matrix log-cumulants (MoMLC) because closed-form max-
imum likelihood solutions don’t exist. MOMLC has become
the popular estimation choice, because it is fast to compute
and achieves the most accurate results among the practical
alternatives [4]. Although the log-cumulants are also not in
closed-form, they are faster to compute than the probability
density functions. A simple gradient search algorithm in the
multivariate log-cumulant domain is used to optimise the two
texture parameters, o and A, for each class, from member-
ship weighted log-cumulant estimates, and then the ENL is
similarly optimised, but over all classes simultaneously.

The model covariance matrix 3 is determined with the
sample covariance matrix estimator, which becomes a mem-
bership weighted mean over the C matrix data samples in the
fuzzy clustering sense. Although some authors, e.g. [18], have
recently promoted the fixed-point estimator for the covariance
matrix under the product model, it has a significant bias in
low texture regions and only becomes beneficial in quite high
texture areas. This is clearly demonstrated in [19]. The fixed-
point estimator was tested in early versions of the algorithm,
but showed no significant benefit, even for high texture cases,
given the large sample sizes and that it is slower to compute.

C. Goodness-of-fit testing

The EM-algorithm was modified to incorporate a split-and-
merge stage, at regular intervals within the main iterations. The
stage introduces an hypothesis test based upon the goodness-
of-fit of the current cluster model to the observed data. Given
that the assumed model distribution is appropriate, then a
poor fitting data-set must represent a mixture of clusters and
we therefore split that cluster in two and continue the EM-
algorithm clustering. Conversely, a merge test checks whether
two clusters are converging to the same data group, and was
found to be necessary due to the chance of over-splitting by
testing before full convergence. The true population model will
never be known, so we test against the estimated model instead
and just assume that the variation around the true model and
the variation around the estimated model are similar. Our end
objective is to determine whether the current number of classes
and model parameters could explain the data-set to the given
confidence level.

The hypothesis test may be implemented in several ways
and we have used two distinct methods with acceptable results.
Firstly, we have used a distance measure in a multiple log-
cumulant domain (well described in [14], [20]), since we



TABLE 1
PDFS AND LOG-CUMULANT EQUATIONS FOR THE COVARIANCE MATRIX DISTRIBUTIONS UNDER THE PRODUCT MODEL [4].
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were already using log-cumulants throughout the algorithm.
This was initially implemented with the log-cumulants for the
compacted measure with sampling distribution,

trace(X1C) ~ U, (Ld,d, i, \). (1

This sampling distribution was determined though logical con-
struction from the properties of the U/ distribution under linear
combinations, and has been empirically verified through large
sample simulations. Although it may only be asymptotically
correct, it is sufficiently accurate for the algorithm’s model
fitting test. We used the first 3 to 5 log-cumulants in a multi-
variate distance test, and either assumed the asymptotic Chi-
squared model in [20], or used a Monte-Carlo technique for
low sample sizes. Secondly, we have used a simple histogram
test based on the multinomial distribution and Pearson’s Chi-
squared test. We use an irregular, equiprobable partition of
the data and compare directly to the PDF. The normalised
total squared error is asymptotically Chi-squared distributed
as detailed in standard text books, e.g. [21]. This test is quite
generic and may be easily implemented for any model with
numerical inversion directly from the PDF expressions that are
used in the EM-algorithm.

We recommend the Pearson’s test, because the log-cumulant
distance test shows some loss of sensitivity at both high texture
and low sample sizes that probably reflects that the distance
measure is only asymptotically Chi-squared.

D. Markov Random Fields

Markov Random Field modelling is a contextual smoothing
technique which gives more weight to the class memberships
of spatially neighbouring classes. The class label image is
modelled as an MRF together with an isotropic second-order
neighbourhood system, defining the eight surrounding pixels
as the neighbourhood for each site. The class label MRF easily
combines with a finite mixture model’s spectral clustering, i.e.,

based on the pixel covariance matrix distributions, by replacing
the global class prior probabilities with spatially varying local
prior probabilities determined from the local neighbourhoods.
We introduce the MRF for the class labels, £ with sites S, as a
global, isotropic Gibbs distribution, as in [22], with the energy
function being proportional to the local neighbourhood mean
probability for each class, that is, we implement a mean-field
like method [17] and we optimise the global MRF smoothing
parameter 3 with the pseudo-likelihood approach of [23].

Therefore, the k class mixture model for the matrix-variate
data at the ™ location, C(*), may be summarised as:

k
Po(CD) =Y Us(CO; L, %), a5, 07 (B, L) (2)
j=1
where the local priors for each class, 7r§i), are derived from
the mean of the current class memberships (posterior proba-
bilities), mg’), for each class, j, over the neighbourhood of
site 7, thus

exp (Bmy))
i exp (5"

The MRF spatial smoothing parameter 3 > 0, which is
a measure of correlation between neighbouring pixels, is
found with the pseudo-likelihood method [23], at each MRF
iteration, by maximising

(8, L) = 3)

k
f=arg maxy_ > P(LWD=4|CD, 5, L)logn (8, L)
iesS j=1
4)

III. IMPROVEMENTS

The modifications discussed here keep all the advantages
of the state-of-the-art algorithm whilst simplifying the overall



procedure. They cover three main issues: 1) the MRF opti-
misation under the split-and-merge strategy; 2) computation
speed; and 3) test sensitivity. These points are discussed here
and demonstrated in the Results section, IV.

As mentioned in the introduction, we previously combined
the mixture modelling and MRF smoothing at each iteration
of the EM-algorithm and we used both split and merge
operations, because we did not wait until full convergence
to test the model fit. Both of these choices have had serious
consequences in relation to the mixture modelling.

Firstly, the early iterations of the EM-algorithm are a
poor representation of the final image and will cause the
MRF smoothing parameter, 3, optimisation to be severely
inappropriate. The ( parameter value is also dependent on the
number of clusters and hence the splitting and merging would
make [ inappropriate at the next iteration. The previous /3
parameter is generally too strong when increasing the number
of classes and allowed multiple clusters to persist even though
they were competing for one density cluster of samples.

Secondly, testing the model fit before full convergence
sometimes split classes based on poor parameter estimates and
often ended up with more classes than necessary. This was
“fixed” by also testing for competing clusters and merging
any that are good-fits to a single combined model. This
required estimating the parameters for the merged data, which
is computationally slow for the flexible ¢/-distribution model,
and testing all pair-wise combinations, which quickly becomes
very many individual tests as the number of classes increases.
In combination with the effect of overly strong 3 parameter
smoothing, this added a huge computational burden to the
algorithm. To avoid these problems, we re-thought the whole
process and realised that the mixture modelling can be entirely
separated from the MRF smoothing and that the split-and-
merge procedure may be faster when simplified to a sequential
split-only procedure with full EM-algorithm convergence.

The contextual smoothing only affects the prior probabil-
ities, replacing the global priors with locally derived prior
probabilities based upon the neighbourhood, and although
the prior probabilities are changing locally, the actual pixel
values never change. Therefore, the independent collection of
samples, without spatial relations, is still correctly modelled
with global priors and a maximum a posteriori mixture model.
Thus, the entire adaptive mixture modelling to find the number
classes and model parameters can be accomplished without
the complications of the MRF. A foreseeable drawback is that
very small classes may be lost in the total sample clustering
(either not represented in the sub-sampling, or being swamped
by larger classes) that may be more distinct on a local level.
The option of sub-sampling to improve the processing speed,
also at the expense of class distinction, is greatly simplified
without the contextual smoothing with its dependence on the
spatial neighbours.

We also observed that under certain situations the combined
multi-variate tests (i.e., compacted to a 1-dimensional measure
using (1)) were not always detecting differences where the
classes were only different in some polarimetric channels
and were similar in others. This can be understood by the
well-fitting dimensions diluting the sensitivity of the poor-

fitting ones. We now suggest testing each of the d dimensions
individually with a confidence level d times less sensitive
to retain the same overall false alarm rate (essentially the
naive Bonferroni correction, from standard textbooks). The
compaction effect must be non-linear with respect to the
confidence level thresholds, because even this d times reduced
sensitivity gives better results than the compacted test. This
may not be ideal, and does not consider correlation effects (to
which we are exploring an whitened version of the testing),
but is simple to implement and appears to work. This also
simplifies the test, because we can use the class model PDF
directly in the Pearson’s goodness-of-fit test, albeit in 1-
dimension, and don’t need to derive the statistical model of the
compaction. In addition, this directs us to a simple splitting
mechanism, since we know exactly which dimension has the
worst fitting model, and we can split the cluster down the
mean or median value in that dimension and re-calculate the
parameters. The actual splitting implementation is not critical
because the next EM-algorithm stage will adapt the parameters
and it only needs to give two distinct groups. These could be
determined by random assignment, however, we found that
splitting in the middle often produces excellent separation at
the next iteration.

A. New Strategy

The new recommended strategy, summarised in Fig. 1, is to
separate the clustering from the MRF smoothing, fully con-
verge the EM-algorithm at each number of classes, goodness-
of-fit test each dimension individually and for each class,
and only split the worst class if above the confidence level
threshold. Once the automatic and adaptive algorithm has
found the number of classes and their class parameters, then
the new MRF contextual smoothing stage only requires the
maximum likelihood probability value for each class and each
pixel, calculated once, but needs to iteratively adapt and spread
the MRF field values, care of the Markov property. That is,
the class parameters and pixel-wise probability values are
fixed, and only the mean-field posterior weights and smoothing
parameter are iteratively updated. Starting with the global
priors achieves a smooth transition to the MRF local priors.

The full convergence and split-only approach is a much
simpler solution and still finds the minimum number of classes
that are able to describe the data-set to the given confidence
level.

B. Processing Speed

Initially, we gained a great reduction in processing time
when we separated the clustering from the MRF, because we
could take advantage of sub-sampling in the clustering phase
and still get full smoothing. We also believed that the split-
and-merge strategy was slower than the split-only, because
of excessive merge testing, but we now realise that this was
caused by other issues. Particularly, slower parameter esti-
mation and inaccurate log-cumulant tests for extreme texture
cases, such as mixtures, that was causing cyclic behaviour
(with the same clusters repeatedly splitting and then re-
merging). Such deadlock conditions were previously solved
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empirically by ramping the confidence level sensitivity as
the iterations proceeded, but it is much better to avoid this
situation altogether.

After fixing these problems, and with equivalent code for
all aspects except the split-and-merge strategy, i.e. the same
parameter estimation and the same Pearson’s testing on the
compacted measure, then the timing was roughly equivalent
between the split-and-merge and split-only strategies and de-
pends mostly on the image complexity. Specifically, how many
classes are involved and how well separated or overlapped
the clusters are. We did, however, observe subtle differences
in the segmented results depending on the strategy. We find
the sequential, split-only approach slightly more sensitive and
has a cleaner interpretation with less concern about the /3
optimisation.

IV. RESULTS

We demonstrate the characteristics specifically related to the
new algorithm with both simulated data, for validation, and
with real Pol-SAR images.

A. Confidence Level Check

We found that the Pearson’s test with 10 to 20 bins gave
very good sensitivity using a chi-squared with the number
of bins minus two degrees of freedom. If using the log-
cumulant based test, we found that the degrees of freedom
is a little more complicated and depends on the number of
cumulants used in both the testing and in the estimation
(constraints), as well as the dimensions. However, using an

incorrect degree of freedom will still work consistently, but
with a slightly different sensitivity or false alarm rate than
the chosen confidence level. We will be using the simpler
Pearson’s test hereafter.

Table II indicates the chosen confidence level versus the
observed false alarm rate for the Pearson’s test as a demon-
stration of the goodness-of-fit testing obtaining the specified
confidence levels. The result is for simulated data N = 1000,
d = 4, 9-looks, @ = 14.8, A = 52.8 (approx. texture of a
forest), and X included complex off-diagonal terms for the
co-polar correlation. A wide range of parameter values and
dimensions were tested and all showed this same representa-
tive behaviour.

TABLE II
CONFIDENCE LEVEL VERSUS MEASURED FALSE ALARM RATE. PEARSON’S
TEST WITH 10 BINS AND 8 DEGREES OF FREEDOM, 1000 REPEATS.

Confidence level % | Measured failures %

90.0 9.655
95.0 4.700
99.0 0.915
99.9 0.105

B. Test Individual Dimensions

By chance, one of our test images for Wishart data classes
had two clusters that were difficult to distinguish and at higher
sub-sampling factors were considered a good single class. The
polarimetric colours look distinctly different and we therefore
tried to improve the sensitivity of the testing by looking at
individual dimensions. Fig. 2 shows the segmented images and
the class histogram for both the compacted scalar test, i.e., the
trace statistic in (1), and the individual dimension tests. Note
how the pink class in the “Compacted” image is correctly
separated into the pink and grey classes in the “Individual”
image. The “Compacted” histogram was considered a good fit
at 99%, whilst the “Individual” histogram shows significant
variation in some dimensions that were subsequently split by
the algorithm. Note that the individual dimension test uses
a confidence level that is d times less sensitive, but still
manages to be better than the single compacted test statistic.
Since this is with the same number of samples, the individual
dimension test is considered more sensitive (See also Fig. 4).
The compacted test did manage to separate the classes when
using a lower sub-sampling factor, because the greater number
of samples were better able to distinguish the mixture at the
given confidence level.

C. Confidence level and sub-sampling effects

The number of clusters that are considered significant
depends on the chosen confidence level and the actual sep-
aration between the data points. This may be used to simplify
the image clustering result by decreasing the sensitivity, for
example changing from 95% to 99% or higher, and will likely
find fewer classes (and fewer false alarms) since each class
test would be more tolerant of random variation. Extremely
poor fits will still be separated and hence the major class
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Fig. 2. Compacted test versus individual dimension tests. Note how the pink
class in the “Compacted” image is correctly separated into the pink and grey
classes in the “Individual” image. The “Compacted” histogram was considered
a good fit (to the model density, red line) at 99%, whilst the “Individual”
histogram shows significant variation in some dimensions (coloured lines,
model in red), even when reduced to 99.75% confidence.

divisions are still detected, but less distinct clusters (i.e., sub-
class divisions) are grouped together. A simple example of
this effect may be seen in the first two segmentation images,
(b) and (c), of Fig. 3, where 14 classes were found at 95%
and 11 classes at 99.99%. The image is taken from the
EMISAR sample scene over Foulum, Denmark, 1998, L-band,
multi-looked by 18, 150 x 300 pixels. Image (a) shows the
Pauli polarimetric decomposition for reference, where different
colours represent different polarimetric properties, and depicts
agricultural fields, forest and buildings.

An alternative method to simplify the segmentation is by
increasing the sub-sampling factor, which reduces the number
of samples being tested, and hence lowers the sensitivity of the
test. Fewer samples also dramatically speeds up the algorithm,
because far fewer computations are needed during the slow
iterative clustering stage. This effect may be seen in the top
and bottom segmentations, (b) and (d), of Fig. 3 and seems
to have a more dramatic effect than changing the confidence
level. Both images use 95% confidence, but sub-sampling
by 25 obtained 14 classes, and sub-sampling by 100 found
8 classes. The main class distinction between forest (whiter
regions in Pauli) and fields (darker, redder regions in Pauli), . -
and the most different fields (i.e., different colouring) are (d) 95% confidence, sub-sampling by 100, 8-classes.
consistent in both of these two approaches to simplifying the Fig. 3.

i -

Lowering the sensitivity finds fewer classes, but retains the major

image segmentation. class divisions. EMISAR image from Foulum, Denmark, 1998.

Table III gives an indication of the processing times for the TABLE III
Foulum data sub-set. The intention is to see the benefit of SUB-SAMPLING TESTS FOR REAL “FOULUM” IMAGE EXTRACT. NEW
sub-sampling compared to the full resolution analysis. The SPLIT-ONLY STRATEGY, INDIVIDUAL DIMENSION TESTS, 99%.
tests were run on a 2.66GHz Intel Core i7 Apple laptop : i S i
with 4GB memory using MATLAB [24], and have not been sub-sampling | pixels | classes | time (including final MRF)
fully optimised. The old approach used to take hours to days, 1] 45000 ) > 100 | over 1 day,
depending on the size of the scene, but there have been too 4| 11250 29 ) 3k .18 min. 17 sec.

. . . . 16 2850 14 | 36 min. 32 sec.

many ther coding improvements for a fair comparison of the 49 046 12 | 32 min. 50 sec.
underlying strategy. 100 | 450 7 | 12 min. 22 sec.

Note that the huge increase in both time and number of 400 120 5 | 3 min. 21 sec.

classes for sub-sampling level 1 probably indicates a problem



(c) New strategy, split-only, final MRF, individual dimension tests.

Fig. 4. Results for different strategies. Main class boundaries are similar,
and all are smooth. The individual dimension test is more sensitive and
distinguishes more classes. EMISAR image from Foulum, Denmark, 1998.

and was therefore cancelled before it finished. The goodness-
of-fit tests become very sensitive when the sample sizes are
very large. Imprecise parameter estimation, particularly the
ENL parameter, or an incorrect model distribution could both
make the test fail under high sensitivity, even though they are
acceptable for a lower number of samples. Thus, there may be
extra benefits of using the sub-sampling, or setting a maximum
number of samples to test per class, but an optimum level is
probably application and data dependent.

D. Different Strategies

Some differences between the old split-and-merge approach
and the new split-only approach are shown in Fig. 4. All are
from the Foulum data-set, 18-look averaging, and sub-sampled
by 49. The segmentation with the old, split-and-merge strategy
and compacted tests found 8 major classes in (a), and is very
similar to the new split-only strategy results under the same
test conditions in (b). Segmentation (c) shows the result for
the new strategy when testing individual dimensions, which are

Fig. 5. Seaice around Point Barrow, Alaska. Pauli image (top) and automatic
segmentation into 12 classes (bottom). Radarsat-2, C-band, June 2011, 16-look
averaging, sub-sampling by 256, 99% confidence level.

more sensitive, and found 12 classes. In all cases, the major
class boundaries are similar, the regions are smooth and solid,
and they can be seen to correspond with different coloured
regions in the Pauli image in Fig. 3 (a). Note that the boundary
between sparse forest and the dense forest is different in Fig. 4
(a) (red & blue classes) than in (b) (yellow & brown classes),
and must reflect the influence of the MRF strategy, because all
other aspects of the algorithm were the same. However, given
that both scenes have a constrained number of classes due to
sub-sampling, it is difficult to state which is best.

E. More Real Data Examples

We include two very different real image examples just to
demonstrate the flexible modelling and simplified segmented



23 classes

Fig. 6.
into 23 classes (bottom). Radarsat-2, C-band, June 2008, 25-look averaging,
sub-sampling by 25, 99% confidence level.

San Francisco city. Pauli image (top) and automatic segmentation

images that may be generally used as an initial step for further
studies.

Fig. 5 shows an area of sea ice around Point Barrow, Alaska,
from a Radarsat-2, C-band, 16-look scene from 2011. It clearly
separates the darkest regions of open water (several classes due
to varying wind conditions) from the ice floes, the land-fast ice
and the land. The research interest here is in the few classes
in the land-fast ice region, which is of interest to the local
community who travel and hunt on the ice. This segmentation
may be used for further analysis of the polarimetric properties
to identify the type of ice in the regions.

Fig. 6 shows San Francisco city from the Radarsat-2 sample
scene, 25-looks, from 2008. Although 23 classes is a little
complicated, the different coloured segments do appear to
correlate with different coloured regions in the Pauli image
and has quite fine distinction at this sub-sampling level. Note
that urban areas have the most varied textures, which are satis-
factorily clustered with this flexible model. Besides capturing
these visible regions well, this segmentation also demonstrates
that the rotated buildings and the forested vegetation are
distinguished in the polarimetric data. Urban analysts may
subsequently explore the specific properties or features of the
polarimetry that best separate these regions.

V. CONCLUSIONS

We have proposed an improved strategy for our advanced
non-Gaussian clustering algorithm which maintains the bene-
fits of the flexible U -distribution for multi-look covariance
matrix data classes, Markov random fields for contextual
smoothing, and goodness-of-fit testing to optimise the number
of clusters. The new strategy simplified the logic of the
algorithm, making it more robust, improves the sensitivity, and
often leads to faster results.

This paper demonstrated that the goodness-of-fit testing is
statistically correct by measuring the expected failure rate,
gave an example to demonstrate the improved sensitivity by
testing each dimension separately, demonstrated how changing
the sensitivity and sub-sampling affects the number of classes
and can be used to simplify the segmentation result, gave an
example of the subtle differences that the choice of strategy
may produce, and included further examples for real PoOISAR
images to demonstrate the generality of the algorithm for
different scene types and that the optimised MRF smoothing
level seems appropriate.

Visual inspection indicates that it achieves good results
that appear valid for real data images and is fully automatic.
Subsequent interpretation and identification of the segments
may be accomplished with ground truth information, or by
exploring the polarimetric class parameters.
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