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Abstract

To maintain the reliability, availability, and sustainability of electricity supply, electricity companies regularly perform visual in-
spections on their transmission and distribution networks. These inspections have been typically carried out using foot patrol and/or
helicopter-assisted methods to plan for necessary repair or replacement works before any major damage, which may cause power
outage. This solution is quite slow, expensive, and potentially dangerous. In recent years, numerous researches have been conducted
to automate the visual inspections by using automated helicopters, flying robots, and/or climbing robots. However, due to the high
accuracy requirements of the task and its unique challenges, automatic vision-based inspection has not been widely adopted. In this
paper, with the aim of providing a good starting point for researchers who are interested in developing a fully automatic autonomous
vision-based power line inspection system, we conduct an extensive literature review. First, we examine existing power line inspec-
tion methods with special attention paid to highlight their advantages and disadvantages. Next, we summarize well-suited tasks
and review potential data sources for automatic vision-based inspection. Then, we survey existing automatic vision-based power
line inspection systems. Based on that, we propose a new automatic autonomous vision-based power line inspection concept that
uses Unmanned Aerial Vehicle (UAV) inspection as the main inspection method, optical images as the primary data source, and
deep learning as the backbone of data analysis and inspection. Then, we present an overview of possibilities and challenges of deep
vision (deep learning for computer vision) approaches for both UAV navigation and UAV inspection and discuss possible solutions
to the challenges. Finally, we conclude the paper with an outlook for the future of this field and propose potential next steps for
implementing the concept.
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1. Introduction and large industrial clients, and nearly US$94,000 for an eight-
hour interruption. Thus, power grids are required to be mon-
itored, inspected, and maintained regularly to prevent faults

which may cause power failures (Fig. 1 and 2).

The increasing dependence of modern-day societies on elec-
tricity poses corresponding challenges on the monitoring, in-
spection, and maintenance of the electric power grids to ensure
uninterrupted flow of electricity. Due to the lack of incentives
to invest in aged national grid infrastructures, for example, in
Europe and the US, power cuts are becoming more and more
frequent [1]. While short-term power failures typically last only
a few hours, long-term blackouts can last days or even weeks.
Power outages, both short and long-term, can have catastrophic
effects on unprepared businesses. For instance, blackouts can
completely shut down production at companies and critical
infrastructures such as telecommunication networks, financial
services, water supplies, and hospitals [2]. Nowadays, most of
the power grids are interconnected. Hence, a blackout in one
region can trigger a domino effect that could result in supra-
regional blackouts [3]. According to [1], a 30-minute power cut
in the US results in an average loss of US$15,709 for medium

Figure 1: Common faults on power lines (from left to right): trees growing too
close to power lines, trees lying across power lines, icing on power lines. In
warm countries, icing on power lines may not be a relevant fault; however, in
cold countries, such as Norway, it is a very serious problem since thick icing
accumulated on power lines can cause a great deal of damage to the lines.

The traditional methodologies for inspecting power networks
typically include field surveys and airborne surveys, which have
been unchanged for decades [4]. On a regular basis or in emer-
gency situations, such as storms, hurricanes, and earthquakes,
teams of inspectors are sent out, travelling either on foot or by
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helicopters, to visually inspect the power lines with the help
of binoculars and sometimes with infrared (IR) and corona de-
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tection cameras [5]. The main reason why visual inspection is
popular is that it can cover a wide range of common faults on
both power lines components (Fig. 2) and the power lines them-
selves (Fig. 1) in one inspection. However, this methodology
is quite slow, expensive, potentially dangerous, and with detec-
tion rate limited by the visual observation skills of inspectors.
Although digital cameras can be used to separate the data col-
lection from data analysis, both processes have still been per-
formed manually.

Figure 2: Common faults on power lines components (from left to right): bro-
ken poles, broken crossarms, missing toppads. The toppads are used for pro-
tecting wooden poles from rain. In Norway, missing toppads is considered a
fault; however, in the US, it may not be considered as a fault since toppads are
not widely applied.

Over the past few years, many studies have been conducted to
automate the visual inspection by using automated helicopters,
flying robots, and/or climbing robots; however, there are very
few published reviews of different approaches to the problem,
including vision-based approaches. In this paper, with the
aim of providing a comprehensive overview of the possibili-
ties and challenges of automatic autonomous vision-based in-
spection of power lines, we conduct an extensive literature re-
view. First, we examine existing power line inspection methods
including foot patrol, helicopter-assisted, automated helicopter-
assisted, climbing robots, and unmanned aerial vehicles (UAVs)
inspection with special attention paid to highlight their advan-
tages and disadvantages. Next, we summarize inspection tasks
which are well suited for automatic autonomous vision-based
inspection: mapping and inspection of power line components,
vegetation encroach monitoring, icing detection and measure-
ment, and disaster monitoring. Then, we review potential data
sources for vision-based inspection including synthetic aperture
radar (SAR) images, optical satellite images, optical aerial im-
ages, thermal images, ultraviolet images, airborne laser scanner
(ALS) data, land-based mobile mapping data, and UAV data
and point out their applicable tasks. Further, we conduct a com-
prehensive review of current automatic vision-based power line
inspection systems.

Based on that, we propose as a new potential solution an au-
tomatic autonomous vision-based power line inspection con-
cept that uses UAV as the main inspection method, optical im-
ages as the primary data source, and deep learning as the back-
bone of data analysis and inspection.

To facilitate the implementation of the concept, we first
discuss the potential role of deep learning in automatic au-
tonomous vision-based power line inspection. We then high-
light the possibilities and challenges of deep vision (deep learn-
ing for computer vision) approaches for both UAV navigation

and UAV inspection. Finally, we propose possible solutions to
the challenges and suggest potential next steps.

The remainder of the paper is structured as follows: Section
2 summarizes existing relevant literature reviews (related work)
including inspection with vision-based approaches, before we
present a brief introduction to power line inspection in general
together with a summary of different inspection methods, in-
spection tasks, and data sources for visual inspection in Sec-
tion 3. Next, in Section 4, we present a comprehensive review
of existing vision-based approaches for both UAV navigation
and UAV inspection. Finally, in Section 5 and Section 6, we
identify the remaining challenges of vision-based approaches in
automatic inspection, discuss possible solutions to these chal-
lenges, propose potential next steps for implementing the auto-
matic autonomous vision-based power line inspection concept,
and conclude the paper with a summary and an outlook for the
future of the field.

2. Related Work

Although vision-based inspection is one of the most promis-
ing approaches for reducing or completely eliminating people,
in both data collection and analysis, there are very few pub-
lished reviews of vision-based approaches for power line in-
spections.

A review of recent techniques for the vegetation encroach-
ment monitoring was presented in [6]. According to the au-
thors, current methods for vegetation monitoring including vi-
sual field inspection, aerial video surveillance, aerial multispec-
tral imaging, and LiDAR scanning are not reliable due to their
high cost, inaccuracy, and high time complexity. To increase the
reliability of vegetation monitoring, satellite stereo and wireless
multimedia sensor networks (WMSN5s) were proposed to be the
two future technologies. Based on that, the authors discussed
the concept of utilizing multispectral satellite stereo images and
WMSNs in detecting dangerous vegetation.

Miralleés Frangois et al. conducted a survey of computer
vision applications in power line inspection in [7]. The sur-
veyed applications include detection of power lines, inspection
of power lines, detection and inspection of insulators, power
line corridor maintenance, and pylon detection. According to
the authors, computer vision appears to be one of the most im-
portant technologies for automatic vision-based power line in-
spection since both robots and UAVs need it not only for guid-
ance, navigation, and control but also for inspection. Although
this technology has been facilitating some applications, for ex-
ample vegetation monitoring, it has not been widely used for
other important applications such as inspection of defects on
the cables or insulators.

Recent advantages in remote sensing sensors and data anal-
ysis approaches have opened new possibilities in automatic
power line inspection. To facilitate the use of remote sensing
techniques in power line inspection, a very comprehensive sur-
vey of the possibilities of modern remote sensing sensors for
automatic power inspection was conducted in [4]. The authors
summarized main applications, advantages, and challenges of
different remote sensing data sources for power line inspection



including SAR images, optical satellite and aerial images, ther-
mal images, airborne laser scanner data, mobile mapping data,
and UAV data. The authors pointed out that while mapping and
analysis of network components is the main focus of most of
the previous studies, vegetation monitoring has been receiving
less attention. Since each remote sensing approach has its own
specific advantages and disadvantages, the authors suggested
that more attention should be given to the use of use multiple
data sources fusion in the future research to benefit from various
approaches in an optimal way.

3. Vision-based Power Line Inspection

In this section, we first review existing power line inspec-
tion methods with special attention paid to highlight their ad-
vantages and disadvantages. Next, we summarize power line
inspection tasks that are well suited for automatic autonomous
vision-based inspection. Then, we survey potential data sources
for vision-based power line inspection and point out their appli-
cable inspection tasks. Finally, we give a brief introduction to
automatic vision-based power line inspection systems and their
required components.

3.1. Power Line Inspection Methods
3.1.1. Foot Patrol Inspection

Foot patrol inspection is typically conducted by a team of
usually two inspectors traveling on foot to visually inspect the
power lines with the help of binoculars and sometimes with In-
frared cameras and corona detection cameras [5]. The main
disadvantage of this inspection method is that it is very slow,
tedious, and labor-insensitive. Another major drawback of this
method is that it may not be possible in harsh terrains, in ex-
treme weather conditions, and after extreme events, such as
hurricanes, wind storms, and snow storms. However, despite
its disadvantages, foot patrol inspection has still been widely
applied because of its high detection rate [4].

3.1.2. Helicopter-assisted Inspection

In helicopter-assisted inspection, a team of usually three (or
two) people including a pilot, an inspector, and/or a camera
operator is sent out traveling by helicopter to perform online
inspection and acquire data for offline inspection. The inspec-
tor is responsible for identifying obvious faults, for example
trees growing too close to power lines, trees lying across or
against power lines, and collapsed poles. The camera operator
films the conductors, pylons, power components (e.g., insula-
tors, transformers, crossarms, toppads), and objects around the
pylons and under the lines. After the flight, an offline inspec-
tion is typically conducted by a team of inspectors manually
browsing through the collected videos and images to identify
more complicated and smaller faults, such as broken insulators,
missing toppads, and missing splints. Although this inspection
method allows access to hard-to-reach locations and increases
inspection speed, it comes with many disadvantages, such as
high cost, low accuracy due to high speeds, the dependence on
human visual observation skills, and always there is a risk of
contacting live lines and loss of lifes [8].

3.1.3. Automated Helicopter-assisted Inspection

Automated helicopter-assisted inspection is quite similar to
the helicopter-assisted inspection method. The main difference
is that the former method utilizes vision-based approaches in
both data collection and and data analysis. Vision-based ap-
proaches, for example power mast detection, can be applied
for guiding cameras to automatically film the conductors, py-
lons, power components, and objects around the pylons and
under the power lines. The acquired videos and images can
be later analyzed automatically by vision-based data analysis
approaches. Although automated helicopter-assisted inspection
can reduce the dependence on human visual observation skills
and increases inspection speed, it has not been widely applied
due to high inspection cost, safety issues, and challenges of ap-
plying vision-based approaches in power line inspection.

3.1.4. Climbing Robots Inspection

In climbing robots inspection, the inspection is conducted by
arobot traveling on power lines. The robot is typically equipped
with many sensors and cameras (e.g., visual cameras, thermal
cameras) for navigating along power lines, crossing obstacles
on the lines, and inspecting the lines and power components.
The main advantage of this method is the inspection accuracy
due to its proximity to the power lines. However, according to
[9], the weight of the robots could damage the lines, and the
robots may not be able to pass across various obstacles on the
lines. Another major disadvantage of this inspection method is
that it is relatively slow compared to other inspection methods
such automated helicopter-assisted inspection or UAVs inspec-
tion.

3.1.5. UAVs Inspection

In UAVs inspection, the inspection is conducted by UAVs
equipped with multiple sensors and cameras for navigating
along power lines, performing online inspection to detect ob-
vious faults, and collecting data for later offline inspections.
UAVs inspection offers great possibilities for addressing most
of the existing issues of other inspection methods such as high
inspection cost, low speed, and safety. The operation costs of
UAVs inspection is relative low compared to foot patrol and
(automated) helicopter-assisted inspections. In addition, UAVs
can fly relatively close to power lines to take detailed images of
conductors, pylons, and power components, which can signifi-
cantly improve inspection accuracy.

However, fully automatic autonomous power line inspection
systems using UAVs still come with great challenges. For ex-
ample, In UAV navigation, detection and tracking of power
lines are crucial tasks; however, existing vision-based detection
and tracking methods are still not accurate enough for detecting
and tracking the power lines since they are typically too small
leading to a lack of rich features for their representation.

3.2. Power Line Inspection Tasks

3.2.1. Mapping and Inspection of Power Line Components
Mapping and inspection of power line components, such
as conductors, pylons, and power components, are among the



most studied topics in the field of power line inspection. These
tasks are typically conducted either online by, for example, a
foot patrol team with the help of binoculars to manually observe
and detect faults or offline by, for instance, analyzing images
taken from UAVs and/or helicopters. Some common faults on
power line components which can be identified by the two ap-
proaches are broken poles, broken crossarms, and missing top-
pads (Fig. 2). In addition to the above mentioned approaches,
other data sources such as thermal images, airborne laser scan-
ner, and land-based mobile mapping data have also been used
as alternatives for mapping and inspection of power line com-
ponents [4].

3.2.2. Vegetation Encroachment Monitoring

According to [6], one of the most frequent causes of
flashovers in both transmission and distribution networks is en-
croachment to the power lines. In addition, maintaining safety
distances between vegetation and the power lines along the cor-
ridor is a legal requirement in some countries. Thus, it is re-
quired that vegetation near power line corridors are cleared reg-
ularly to prevent power outages and damage to the power lines
[10]. The main tasks of vegetation encroachment monitoring
include detecting and classifying near zone vegetation, and es-
timating their height and their relative distance to the power
lines [7].

3.2.3. Icing Detection and Measurement

In cold weather conditions, such as during snowstorm, hail,
and freezing rain, thick icing accumulated on power lines can
cause serious damage to the lines which may lead to power
supply interruption [11]. One of the most important tasks in
icing detection and measurement is estimating the icing thick-
ness parameter, which is a crucial data source for energy com-
panies to make decisions for icing accident prevention. The
parameter is usually calculated by analyzing images collected
from fixed monitoring terminals, which are typically mounted
on power poles, for small areas. For large areas, foot patrol and
helicopter-assisted inspections are usually conducted with the
help of binoculars and/or telescopes to manually observe and
estimate the icing thickness parameter [12].

3.2.4. Disaster Monitoring

Natural disasters, such as storms, hurricanes, and earth-
quakes, can cause a great deal of damage to power lines that
could result in outages or even completely shut down whole
power grids. Thus, we are in an urgent need for a fast approach
for damage assessments to quickly recover the power grids af-
ter natural disasters. However, according to our review, only a
few research articles have been focused on this topic.

3.3. Data Sources for Power Line Inspection

Inspired by the comprehensive review of different remote
sensing data sources for automatic inspection conducted by
Leena Matikainen et al. in [4], in this section, we briefly

summarize different relevant data sources for automatic au-
tonomous vision-based power line inspection with special at-
tention paid to highlight their advantages and point out their
potential applications.

3.3.1. Synthetic Aperture Radar Images

Synthetic Aperture Radars (SAR) are active imaging sensors,
which are typically used for creating 2- or 3-dimensional im-
ages of objects, such as landscapes. SAR is also commonly
used for change detection and 4-D mapping (space and time).
SAR images are usually acquired by SARs mounted on various
platforms such as small aircrafts and satellites [13]. Because
SARs can provide high-resolution, day-and-night, and weather-
independent images of large areas, it has been used for various
applications in power line inspection such as vegetation map-
ping and monitoring [4].

3.3.2. Optical Satellite Images

Optical satellite images are collected by passive satellite sen-
sors in the visible and near-infrared (NIR) wavelengths. Al-
though satellite imagery is very expensive and usually does not
work well under cloudy and dark conditions, it offers many ad-
vantages for power inspection such as large-area coverage and
multispectral data. According to [4], optical satellite images
has been mainly used for vegetation monitoring in power line
inspection.

3.3.3. Optical Aerial Images

Optical aerial images are usually collected by either a
manned helicopter or a fixed wing aircraft mainly in the visi-
ble and near-infrared (NIR) wavelengths. With the flexibility
in data acquisition and the ability to collect detailed images of
conductors, pylons, power components (e.g., insulators, trans-
formers, crossarms, toppads), and surrounding areas, optical
aerial imaging has been used in many power line inspection
tasks, for example vegetation monitoring, mapping of conduc-
tors and pylons, and monitoring faults in power line compo-
nents [4].

3.3.4. Thermal Images

Thermal images are formed by thermographic cameras,
which are also known as infrared cameras or thermal imaging
cameras. Thermographic cameras are based on infrared radia-
tion to extend our vision beyond the short-wavelength red into
the far infrared by making visible the light naturally emitted by
warm objects [14]. With that ability, thermal images have been
used for fault monitoring in power line components-based mea-
surement and analysis of relative temperature differences [4].

3.3.5. Ultraviolet Images

Ultraviolet (UV) images are typically formed using UV-
sensitive cameras (e.g., Corona 350 II system) by recording
images using light from the ultraviolet spectrum only. There
are two main approaches for capturing ultraviolet images: re-
flected ultraviolet and ultraviolet induced fluorescence photog-
raphy [15]. With the ability to visualize details which are in-



visible to the unaided human eye, images taken with ultravio-
let light have been widely used for detecting corona discharges
from high voltage electric power transmission lines [16].

3.3.6. Airborne Laser Scanner Data

Airborne Laser Scanning (ALS) is an active remote sensing
technique that uses a laser beam as the sensing carrier [17].
This type of system is usually realised with the ability to ob-
tain range images. This laser radar is also known as LADAR
(LAser Detection And Ranging) and LIDAR (LIght Detection
And Ranging). ALS data is a georeferenced point cloud of LI-
DAR measurements [18]. According to [4], ALS data is appli-
cable for mapping of conductors, pylons, and individuals trees
near power lines since ALS can produce detailed 3D data di-
rectly without the dependence on external lightning conditions.

3.3.7. Land-based Mobile Mapping Data

Land-based mobile mapping data is geospatial data collected
by mapping sensors that are mounted on a mobile platform such
as cars, all-terrain vehicles (ATV), boats, or on a backpack car-
ried by a person. A mobile mapping system typically includes
an image data collecting module (e.g., camera, laser scanner),
navigation and positioning sensors (e.g., GPS), and an inertial
measurement unit (IMU) [19]. The two most common types
of land-based mobile mapping data used in the power line in-
spection literature are images and point clouds. Because of the
panoramic imaging geometry and the ability to produce very
detailed 3D data and images, land-based mobile mapping data
has been used for mapping conductors and pylons, and for in-
specting of power line components [4].

3.3.8. Unmanned Aerial Vehicle Data

According to [4], the two most common types of data that
have been acquired by UAVs in the power line inspection liter-
ature are optical images and laser scanning data. Because of the
low operation costs, the high flexibility in data acquisition, and
the ability to fly relatively close to power lines to take detailed
pictures, UAV data has been used for both mapping and inspec-
tion of power lines components, and for detailed mapping of
vegetation.

3.4. Automatic Vision-based Power Line Inspection

To build an automatic autonomous vision-based power line
inspection system, we need three main components: an inspec-
tion method (e.g., UAVs inspection, helicopter-assisted inspec-
tion), a primary data source (e.g., optical images, thermal im-
ages, SAR images), and a method for data analysis.

Based on the reviews presented above, we propose UAVs as
a promising potential means for automatic autonomous vision-
based inspection because of the following reasons: First, UAVs
inspection has significantly lower operation costs compared to
other inspection methods, such as helicopter-assisted inspec-
tion and foot patrol inspection. Second, UAVs have the ability
to fly relatively close to power lines to take detailed pictures,
which is very useful for detecting small faults, for instance bro-
ken wires and missing splints. Third, with the ability to access

hard-to-reach locations with high speeds, UAVs are considered
as a highly promising solution for many inspection tasks, for ex-
ample for monitoring damage on power lines caused by natural
disasters, or for estimating the height of near zone vegetation,
for detecting dangerous surrounding objects, and for detecting
and measuring icing thickness on power lines (Fig. 1). Finally,
recent advances in battery and fuel cell technologies [20], sen-
sors, and UAV components [21] have significantly improved the
feasibility of UAV-based power line inspection.

We propose optical images collected by UAVs as a potential
data source because (i) they are easy to collect, (ii) relatively
easier to analyze than the other reviewed data sources while
(iii) providing enough information for detecting a wide range
of common faults on both power components (Fig. 2) and the
power lines themselves (Fig. 1).

To have a closer look into different data analysis approaches
for both navigation and inspection, we present a thorough lit-
erature review of current vision-based inspection systems with
special attention paid to systems that are relevant to UAVs and
optical images in the next section.

4. A Review of Current Vision-based Inspection Systems

In this section, we highlight some of the most recently pub-
lished vision-based approaches which are relevant for devel-
oping fully automatic autonomous vision-based power line in-
spection systems using UAVs. The review is divided in two
parts. The first part summarizes vision-based approaches that
are suitable for UAV navigation including power line detection-
based and pole detection-based approaches. The second part is
dedicated to vision-based approaches which have the potential
for automating the four main UAV inspection tasks: icing de-
tection and measurement, vegetation encroachment monitoring,
mapping and inspection of power line components, and disaster
monitoring.

4.1. Vision-based Approaches for Navigation

According to [9], there are three common approaches for
UAV navigation in automatic power line inspection: GPS way
points-based, pole detection-based, and power line detection-
based. While the first approach has been widely applied for
decades, the other two approaches have recently been facilitated
by advances in visual recognition. In this section, we focus on
reviewing recently published vision-based approaches for nav-
igation in power line inspection with special attention paid to
highlight approaches which are relevant to UAVs.

4.1.1. Power Line Detection-based Approaches

A knowledge-based technique specifically designed for
power line detection in aerial images was proposed in [22] by
combining bottom-up and top-down line detection approaches.
First, a filter based on Pulse Coupled Neural Network (PCNN)
was applied to remove background. Then, straight lines were
detected using the Hough transform. Finally, spurious linear
objects were eliminated using the K-means clustering approach.



A similar three-step approach was also used in [23] for detect-
ing power lines. First, linear objects in a clustered background
were enhanced by a double-sided filter. Then, the Radon trans-
form was used to detect straight lines. Finally, a parallel lines
constraint was used to recognize power lines. Tang Wen Yang
et al. proposed a three-step approach for detecting overhead
power lines from UAV video images [24]. First, video images
are binarized using an adaptive thresholding approach. Next,
the Hough transform was utilized to detect lines-candidates in
the binary images. Then, a fuzzy C-means (FCM) clustering
algorithm, which uses the length and the slope of the detected
lines as a feature vector, was applied to discriminate power lines
from the detected line candidates. Finally, spurious lines were
removed by using the properties of power lines.

In [25], an improved version of a Bayesian classifier was pro-
posed for power line detection. The traditional Bayesian classi-
fier was enhanced by utilizing heuristic knowledge obtained by
applying the Hough transform to determine the prior and poste-
rior probabilities. The Bayesian classifier was also used in [26]
for detecting power lines in images collected by helicopters.
To begin with, the Hough transform was used to improve the
Bayesian classifier for classifying pixels. Then, small compo-
nents (misclassified pixels) were removed from the classified
images by performing connected component analysis.

A novel method named Circle Based Search (CBS) for power
line detection based on the search of lines between two opposite
points was proposed in [27]. First, Canny and Steerable filters
were utilized to segment power line images taken from UAVs.
Then, the CBS method, which was based on geometric relation-
ships, together with a procedure for connecting contiguous seg-
ments were used for detecting power lines from the segmented
images.

A sequential local-to-global power line detection algorithm
for detecting power lines from optical images was proposed
in [28]. First, line segments with symmetrical edges were de-
tected using a matched filter (MF) and first-order derivative of
Gaussian (FDOG) to create an edge map. Next, non-power-line
candidates were filtered out by using a morphological filter. Fi-
nally, a graph-cut model based on graph theory was proposed
to group the detected line segments into whole power lines.

To address the threshold selection problem in traditional edge
detection approaches as well as the Hough transform, Guang
Zhou et al. proposed a method that can effectively tune the
threshold in edge and line detection algorithms in [9]. A
database was created for keeping optimal parameters for vis-
ited places, which can be retrieved later based on GPS coordi-
nates. For unvisited places, an objective function and a power
line model were used to predict the best parameters.

Jingjing Zhang et al. proposed a method for detecting and
tracking power lines in complex environments [29]. First, line
segments were extracted using the Hough transform. Second,
an improved K-means algorithm in Hough space was employed
to cluster the extracted line segments to detect power lines. Fi-
nally, the detected power lines were tracked by a Kalman filter
in Hough space.

Michael Gerke et al. proposed a method for detecting and
tracking power lines from cluttered backgrounds [30]. To begin

with, a range filter was used to filter input images in four direc-
tions. Next, the images were converted to binary images, and
morphological operations were then employed to remove un-
wanted objects. Then, the Canny edge detector and the Hough
transform were used to detect power lines. Finally, the detected
power lines were tracked with a gimbal system.

Dewi Jones et al. proposed a method for detecting and track-
ing power lines [31]. First, the contrast of input images were
enhanced. Second, an edge map was formed by applying gra-
dient computation and non-maximum suppression. Then, the
Hough transform was computed thresholded followed by clus-
tering points in the Hough transform to form the Aggregated
Hough transform (AHT). Finally, tracking and acquisition were
performed on the points in the AHT.

In summary, the presented approaches follow a general six-
stage line detection/tracking process. First, input images are
enhanced to remove noise. Second, background are removed
using, for example, color-based background suppression and/or
Pulse Coupled Neural Networks. Third, edge detectors, such as
the Canny edge detector and steerable filters [27], are applied to
generate edge maps. Fourth, straight lines from the generated
edge maps are detected using, for instance, the Hough trans-
form, the Radon transform, and/or Circle Based Search [27].
Fifth, clustering approaches (e.g., the K-means clustering and
fuzzy C-mean clustering [24]) and/or power line constraints,
such as parallel lines, are applied to eliminate spurious lines and
detect power lines. Finally, the detected power lines are tracked
using, for example, visual tracking methods based on fuzzy
logic and Kalman filters. Although this general six-stage line
detection/tracking system is simple to implement and has been
widely used in power line inspection, it has many drawbacks,
such as low speeds and inaccuracy. Thus, this approach is not
well-suited for high-speed, fully autonomous vision-based nav-
igation.

4.1.2. Pole Detection-based Approaches

An approach for identifying power pylons using UAVs and
estimating the relative distance between the pylons and the
UAVs was proposed in [32]. First, a line segment detector
(LSD) algorithm was adopted to detect lines segments. Second,
line segments belonging to the background were removed by a
colour filter. Third, a triple matching strategy which uses Eu-
clidean distance between the description histograms of the two
segment candidates as metric and Left Right Checking (LRC)
as criterion was proposed to match line segments across image
sequences. Finally, an approach that integrates ego-motion of
the UAV and the variation of the object size for estimating the
depth of the pylons was proposed.

Ian Golightly and Dewi Jones proposed an approach for de-
tecting and matching corners for visual tracking in power line
inspection [33]. To begin with, a corner map that contains clus-
ters of corners was produced by a Cooper, Venkatesh, Kitchen
(CVK) corner detector. Then, singleton corner points were re-
moved by cluster aggregation. Finally, a basic corner matcher
was proposed to track the detected corners in image sequences.

An approach for detecting and tracking electric towers was
proposed in [34]. First, a two-class multilayer perceptron



(MLP) neural network was trained for tower-background classi-
fication based on HOG (Histogram of Oriented Gradients) fea-
tures. Second, the network was applied as a sliding window
detector. Third, a hierarchical tracking-by-registration tower
tracker algorithm, which uses Hierarchical Multi-Parametric
and Multi-Resolution Inverse Compositional, was propped to
track the detected towers.

It has been shown in the last two sections that pole detection-
based approaches for navigation have been receiving much less
attention compared to power line detection-based approaches.
This is partly due to its main drawback which is the lack
of information for navigating between poles. In conclusion,
although many attempts have been made to improve vision-
based navigation algorithms in the last decades, to the best of
our knowledge, no high-speed, fully autonomous, vision-based
navigation system for power line inspection has been success-
fully developed. Thus, we are in an urgent need for a novel
vision-based navigation system which is not only fast but also
accurate and capable of providing enough information for nav-
igation between poles.

4.2. Vision-based Approaches for Inspection

As presented in section 3.2, there are four main inspection
tasks that are well-suited for automatic autonomous vision-
based inspection using UAVs: mapping and inspection of power
line components, vegetation monitoring, icing detection and
measurement, and disaster monitoring. In this section, we re-
view some of the most recently published vision-based research
approaches which have the potential in automating the above
mentioned tasks.

4.2.1. Mapping and Inspection of Power Line Components

Wu Haibin et al. proposed an approach for detecting dampers
in helicopter inspection of power transmission lines [35]. First,
a threshold method was adopted to segment dampers from in-
spection images. Then, a modified version of the balloon
force Snake method and Hessian matrix were utilized to detect
dampers from the segmented images.

A novel system utilizing Faster R-CNN object detection
framework and VGGI16 model for detecting dead end body
components (DEBC) was proposed in [36]. The authors pro-
posed a series of simple image processing techniques for aug-
menting 146 input images to create 2437 training samples. The
porposed data agumentation techniques include manually crop-
ping, rotation, morphological operations (slight dilation and
erosion), and “raster scan pattern” cropping. The system was
tested on 111 aerial inspection photos, and achieved 83.7% ac-
curacy and 91% precision. The detection accuracy and preci-
sion were increased to 97.8% and 99.1% by adding 270 addi-
tional training images and including a new insulator class.

A vision-based approach for broken spacer detection was
proposed in [37]. To begin with, the Canny edge detector, the
Hough transform, and scanning window approach were utilized
to detect spacers as region of interest (ROI). Second, image fea-
tures were extracted using morphological operations. Finally,
broken spacers were detected by connected domain analysis.

Wai Ho Li et al. proposed an image processing system for con-
ductor localization and spacer detection [38]. To begin with,
conductors were localized by applying a template matching ap-
proach in a sliding window fashion. Then, the conductor lo-
calization results were used to crop and rotate images. Finally,
Gabor filters were applied on the cropped and rotated images
to detect spacers by looking for large clusters of pixels that re-
spond strongly to the filtering process.

An approach based on artificial neural networks (ANNs) for
identifying poles and crossarms in images of power distribu-
tion lines was proposed in [39]. First, an ANN was trained to
classify image pixels into four classes: poles, crossarms, veg-
etation, and others. Second, a threshold filter was used to re-
move unwanted areas. Finally, a template matching approach
was applied to identify crossarms and poles. Carlos Sampe-
dro et al. proposed an approach based on HOG features and
MLP neural networks for detecting and classifying electric tow-
ers for power line inspection in [40]. First, a 2-class MLP was
trained for background-foreground segmentation in a sliding-
window fashion. Then, a multi-class MLP was trained for clas-
sifying within four different types of electric towers. A four-
stage approach for detecting transmission towers from aerial
images was proposed in [41]. First, filtering via Optimized
Mean Shift Segmentation was utilized to reduce background
clutter and simultaneously accentuate the foreground. Second,
candidate granules were selected based on gradient density and
cluster density based thresholding. Third, the selected granules
were merged via shared boundary criterion. Finally, context
information was used to discard false positives. An approach
for detecting electricity pylons in aerial video sequences was
proposed in [42]. First, straight line pixel extraction was per-
formed by combing a two-dimensional separable infinite im-
pulse response (IIR) filter and non-maximal suppression. Next,
straight lines were detected using the Hough transform. Finally,
electricity pylon detection was performed based on the detected
power lines. Xian Wang et al. proposed an approach for iden-
tifying insulators from aerial images in [43]. To begin with,
a novel approach based on Otsu threshold and morphological
operations was proposed for background suppression. Then, a
Support Vector Machine (SVM) model was trained on features
extracted by Gabor filters to classify insulators. In [44], a ro-
bust algorithm for detecting insulators in aerial images was pro-
posed. First, an improved Harris corner selection strategy was
used to detect local features. Second, a multiscale and multifea-
ture (MSMF) descriptor was proposed to represent the local fea-
tures. Third, several spatial orders features (SOFs) were found
to improve the robustness of the algorithm. Finally, a coarse-to-
fine matching strategy was utilized to determine the region of
insulators. Jingjing Zhao et al. proposed an approach based on
lattice detection for detecting insulators in images of overhead
transmission lines in [45]. First, corners detected by the KLT
corner detection algorithm were used as low-level visual fea-
tures. Mean shift clustering was then used to cluster the corners
to find the repeating features that can represent the insulators.
Next, insulators lattice modes were proposed based on a vot-
ing mechanism. Then, insulators were localized by performing
lattice finding using a Markov Random Field (MRF) model to-



gether with the spacial context information. Finally, minimum
bounding rectangles of the target image was extracted by ana-
lyzing the geometric characteristics of the insulators region. An
approach for detecting and inspecting insulator were proposed
in [46]. In the detection phase, a part-based model with Circular
GLOH-like (CGL) descriptor, which treats each insulator cap as
one part of the model, was built. Next, a k-Nearest Neighbors
(kNN) classifier with the descriptors of detected Difference of
Gaussians (DoG) keypoints was trained for distinguishing be-
tween insulators cap and clutter. Then, the bounding boxes for
the insulators were determined from the classified keypoints.
In the inspection phase, the detected insulators were first parti-
tioned into caps. Then, a Elliptical GLOH-like (EGL) descrip-
tor was extracted from each cap. Finally, Local Outlier Factor
(LOF) approach was utilized to identify faulty caps.

A method for detecting cables damaged by lightning strokes
was proposed in [47]. To begin with, the statistical analysis of
the brightness of the cable, which is based on the mean bright-
ness of the cable and its standard deviation, was performed to
detect arc marks. Then, shape information, which was obtained
from the comparison between a real cable contour and an ideal
cable contour, was utilized for detecting cut wires.

4.2.2. Vegetation Encroachment Monitoring

A novel method for monitoring vegetation encroachment of
transmissions lines using cameras integrated on each transmis-
sion pole was proposed in [48]. First, initial reference frames
were acquired from the cameras. Next, image frames with inap-
propriate illumination (e.g., rainy images, foggy images) were
filtered out. Then, the Hough transform was utilized to iden-
tify the horizontal and vertical lines of far away poles. Fi-
nally, motion tracking based on Laplacian kernel filtering and
background-subtraction were applied to detect the encroached
vegetation in the current scene images with respect to the refer-
ence images.

Juan 1. Larrauri et al. developed an automatic inspection
system based on UAVs for buildings, trees, and vegetation en-
croachment monitoring and for detecting bad conductivity and
hot spots on power lines in [10]. First, power lines were iden-
tified and recognized based on a regularized Hough transform.
Second, the distance between the UAVs and the power lines
was calculated. Third, the distance between the conductor lines
and the ground was calculated based on inputs from laser al-
timeters. Fourth, trees, vegetation, and buildings were detected
based on the identification of solid surfaces or group of pixels
that contain the same intensity value. Finally, stereoscopic vi-
sion methods using consecutive image frames were applied for
calculating the distance from the conductor lines to trees, vege-
tation, and buildings.

4.2.3. Icing Detection and Measurement

Huang Huan et al. proposed an approach for measuring ic-
ing thickness of transmission lines based on photogrammetry
method in [12]. To begin with, images of power lines were ob-
tained by a high resolution camera. Next, the distance and level
angle of a target below the power lines were recorded by a laser

rangefinder and an IMU. Then, icing thickness parameter was
calculated based on the recorded distance and angel.

A new image-based algorithm for icing detection and icing
thickness estimation was proposed in [11]. First, edge detection
accuracy was improved by using an ice-prior-based scheme.
Next, a novel method for calibrating a monitoring camera based
on single-image-based scheme was proposed. Then, a new
thickness estimation scheme was proposed by introducing cali-
bration information and utilizing a ROI tracking scheme.

4.2.4. Disaster Monitoring

Yan Liu et al. proposed an approach for estimating the height
of power transmission towers with the single TerraSAR-X im-
agery in [49]. According to the authors, the proposed approach
opened many possibilities for monitoring the situation of power
transmission towers in natural disaster conditions since it is
based on images from SAR, which is capable of producing high
resolution radar images in all-weather conditions.

A review of some of the possible applications of UAVs for
routine and emergency power line inspection was presented
in [50]. According to the authors, damage assessments af-
ter extreme events, such as hurricanes, wind storms, and snow
storms, is the most immediate application for UAVs. With the
ability to access hard-to-reach areas and fly at high speed, UAVs
allow almost immediate assessment of power line damage after
natural disasters.

To conclude, mapping and inspection of power line com-
ponents is the main focus of most of the previous studies,
whereas vegetation monitoring, icing detection and measuring,
and disaster monitoring have been receiving much less atten-
tion. Many task-specific, traditional vision-based approaches
have been proposed to detect and inspect power components
(e.g., spaces and dampers) and power lines. A few deep learn-
ing approaches, which are based on ANNs, multi-class MLPs,
and CNN-based object detectors such as Faster-RCNN, have
been applied for detecting and inspecting poles, crossarms, and
dead end body components. Although these approaches work
to some extend, they still have many drawbacks. In the next
sections, we analyze the drawbacks in detail, and based on that,
we propose a new automatic autonomous power line inspection
concept.

4.3. Limitations of Current Vision-based Inspection Systems

It can be clearly seen from the review that even though many
attempts have been made to automate power line visual in-
spection, no fully automatic autonomous vision-based inspec-
tion system that is capable of detecting a wide range of faults
has been successfully developed. Most of the previous stud-
ies presented in the review focused on proposing task-specific
approaches for either inspection or navigation. Those task-
specific approaches worked to some extend for tasks that they
were designed for; however, they showed great limitations not
only in terms of accuracy but also in terms of the ability to
adapt to related tasks. Hence, a lot of efforts are required for
developing a fully automatic autonomous vision-based inspec-
tion system since each sub-task (e.g., detecting poles for navi-



gation, detecting broken insulators, detecting missing toppads)
requires its own carefully hand-designed solution.

Thus, we are in an urgent need for a new approach that is
(i) more accurate, (ii) requires less effort in hand-designing so-
lution, (iii) and generalizes well across related tasks. To ad-
dress the existing limitations of current vision-based inspection
systems, we propose deep learning as a potential data analy-
sis approach for moving toward automatic autonomous vision-
based inspection because of the following reasons: First, deep
learning algorithms, especially Convolutional Neural Networks
(CNNs, or ConvNets), have greatly improved the performance
of visual recognition systems for many advanced applications
such as self-driving cars, image search, and image understand-
ing. Second, deep learning provides a general method for auto-
matically learning features, which can dramatically reduce the
effort in hand-designing solutions for every sub task in power
line inspection. Finally, deep learning approaches typically
generalize well across related tasks [S1]. The generalization
ability of deep learning opens great possibilities for vision-
based inspection since a model trained for one task with a very
little effort in fine-tuning can be adapted for use in many other
related tasks.

To facilitate the use of deep learning algorithms, particu-
larly ConvNets, in addressing the existing problems of current
vision-based inspection systems, in the next section, we review
the potential role of deep learning and ConvNets as an advanced
data analysis approach and as a potential solution to move for-
ward automatic autonomous vision-based inspection.

5. The Potential Role of Deep Learning for Automatic Au-
tonomous Vision-based Power Line Inspection

With the aim of utilizing recent advances in deep learn-
ing (DL) and UAV technologies for facilitating automatic au-
tonomous UAV-based inspection of power line, eSmart Sys-
tems' has initiated a project, code named Connected Drone.
The project is expected to run from 2016 to at least until the
end of 2018, and involves as of today 12 Norwegian power grid
companies (such as Hafslund and Ringeriks-Kraft), universities
(NORUT/ASUF, NTNU AMOS, and UiO), technology part-
ners (Telenor, Microsoft, Teleplan Globe, and Eker Design),
and drone experts (IRIS Group and Robot Aviation). The cur-
rent work represented by this paper is funded by The Research
Council of Norway (RCN) and eSmart Systems as an industrial
PhD project in collaboration with the UiT Machine Learning
Group?. In this project, we have developed a system for auto-
matically mapping and inspecting power line components using
ConvNet-based object detection and classification models (SSD
[52] and ResNet [53]). The system is capable of mapping ba-
sic power components including poles, toppads, crossarms, and
insulators (Fig. 3) and inspecting common faults on the com-
ponents, for instance incorrectly mounted insulators, cracked
poles, and missing toppads (Fig. 4). This line of work has in

leSmart Systems: https://www.esmartsystems.com/
2UiT Machine Learning Group: http://site.uit.no/ml

our opinion demonstrated a potential promising role of deep
learning, especially ConvNets, for automatic mapping and in-
spection of power line components, but has also revealed many
challenges. From this starting point, we discuss in this sec-
tion the potential role of deep learning and ConvNets in au-
tomatic autonomous vision-based power line inspection using
UAVs based on the reviews presented in Section 4 and our own
work.

Figure 3: An illustration power line component mapping using our proposed
power line inspection system. First, a power mast detection model is utilized to
detect power masts from images acquired by UAVs. Then, the detected power
masts are cropped from input images and passed through a power component
detection model for mapping.

The remaining of the section is divided in three. First of all,
we highlight the possibilities of DL vision-based navigation and
DL vision-based inspection using UAVs. Secondly, we identify
challenges of applying DL vision-based approaches in develop-
ing a fully automatic autonomous UAV-based inspection sys-
tem. Finally, we suggest potential solutions to the challenges
and propose approaches for facilitating the use of DL vision-
based approaches in both UAV navigation and UAV inspection.

5.1. Possibilities of DL for Vision-based UAV Inspection

5.1.1. DL Vision-based UAV Navigation

DL vision-based navigation approaches (e.g., pole detection-
based and power line detection-based) can be combined with
traditional navigation approaches, such as GPS way points-
based, and UAV autopilots to facilitate self-driving UAVs. This
not only can dramatically reduce the risk of power line inspec-
tion, but it also can increase the speed of online inspections and
data acquisition for offline inspections.

In addition, DL vision-based approaches hold great promise
for facilitating the implementation of automatic data acquisition
(ADA) systems. In these systems, outputs from pole detectors



and/or power line detectors are utilized for guiding cameras fo-
cus when taking pictures of power line components; as a result,
the need of camera operators is eliminated and the quality of
data acquisition is increased.

The combination of a self-driving UAV and an ADA system
forms a basic automatic autonomous UAV-based power line in-
spection system. With a predefined flight plan, the UAV can au-
tomatically navigate along power lines to collect data for later
offline inspections and perform online inspections.

pole: 0.9

Figure 4: An illustration of power line component inspection using our pro-
posed power line inspection system. Results produced by power line compo-
nent mapping models (Fig. 3) are passed through fault detection models to
detect potential faults, such as missing toppads (toppad_-missing), incorrectly
mounted insulators (insb4_side), cracked poles (pole_cracked), and woodpecker
attacks (pole_woodpecker).

5.1.2. DL Vision-based UAV Inspection

Advanced DL vision-based approaches and UAVs technolo-
gies offer many possibilities for automating the four most com-
mon tasks in power line inspection: mapping and inspection of
power line components, icing Detection and measurement, veg-
etation encroachment monitoring, and disaster monitoring. For
example, state-of-the-art object detectors powered by deep con-
volution neural networks (e.g., Faster R-CNN [54], SSD [52],
YOLO [55], and R-FCN [56]) together with deep neural net-
works for image classification, such as ResNet [53], Inception-
v4, and Inception-ResNet [57], can be used for detecting, clas-
sifying, and mapping power line components (Fig. 3). Next,
deep learning-based semantic segmentation approaches (e.g.,
DPN [58] and Mask R-CNN [59]) and/or traditional back-
ground removal methods, for example colour-based suppres-
sion [60] and pulse coupled neural filter (PCNF) [22], can be
utilized for removing background from the detected compo-
nents. Finally, inspections can be performed on the segmented
images by, for example, performing texture analysis and/or
vision-based anomaly detection to detect faults (Fig. 2). The
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above mentioned approaches are also useful in the case of dis-
aster monitoring. For instance, a tree detection model can be
used together with a power line detection model in detecting
trees lying across or against power lines after natural disasters,
such as storms, hurricanes, and earthquakes.

In the case of vegetation encroachment monitoring and ic-
ing detection and measurement, detecting power lines is one of
the most challenging tasks. However, recent advances in deep
vision have opened up many possibilities for addressing this
challenge. For example, state-of-the-art deep CNN-based edge
detectors, such as Holistically-Nested Edge Detection [61], and
contour detectors, for instance DeepEdge [62] and DeepCon-
tour [63], can be applied to produce very high quality edge
maps. The edge maps can then be used by traditional straight
line detection methods (e.g., Hough transform [64]) to detect
power lines.

5.2. Challenges of DL Vision-based UAV Inspection

5.2.1. DL Vision-based UAV Navigation

According to [9], there are three common approaches for
UAV navigation in automatic power line inspection: pole
detection-based, GPS way points-based, and power line
detection-based. Unfortunately, none of the three methods offer
a sufficient navigation accuracy for fully automatic autonomous
UAV inspection.

Pole detection-based navigation detects electricity poles
without providing specific methods for navigating along the
power lines. In addition, when multiple poles are detected, it
is very challenging to correctly identify the next target pole.
In contrast, GPS way points-based navigation has no problem
identifying the next target pole; nevertheless, it requires pre-
specified exact locations of every electricity poles, which is
typically not available for many existing power grids. Further-
more, GPS has a large error range that could result in low nav-
igation accuracy. The power line detection-based navigation
provides sufficient information for UAVs to navigate along the
power lines; however, power lines are typically very thin and
lack of rich features. Thus, detecting and tracking the lines
is an extremely challenging task. Another major challenge of
the power line detection-based approach is “out-of-sight navi-
gation”. During inspection, UAVs might be blew far away from
power lines by, for example, strong wind. This could result in a
deadlock since UAVs no longer “see” the power lines.

5.2.2. DL Vision-based UAV Inspection

Our work in automating UAV-based power line inspection
has in our opinion demonstrated the potential role of deep learn-
ing for automatic mapping and inspection of power line, but has
also revealed many challenges.

The first challenge is the lack of training data. Deep learn-
ing models for mapping and inspection of power line compo-
nents typically require a huge amount of data to train. Unfortu-
nately, to the best of our knowledge, there are no publicly avail-
able datasets that are big enough for training such models. The
most straightforward solution is to create a training dataset from
scratch by manually tagging images; however, it is a very slow,



tedious, and expensive process. To move forward, we have cre-
ated a medium-sized dataset by manually tagging 30000 images
with 54 classes (e.g., toppad_plastic, toppad_metal, pole, trans-
former). The average number of objects per image was 8; the
average tagging speed (for a normal person) was 40 images per
hour; thus, it required around 750 working hours to create the
dataset.

The second challenge comes from the long-tailed distribution
of component classes, which is also known as the class imbal-
ance problem [65]. Datasets for training object detection, image
classification, and semantic segmentation models are typically
required to have balanced classes. In other words, all classes in
an ideal training dataset should have a similar number of exam-
ples [66]. Unfortunately, in power line images, a small number
of component classes, such as Insulator-Brown-4 and Wooden-
Pole, appear very often while most of the other classes, for
instance Broken-Insulators and Toppad-Missing, appear more
rarely. For example, in the 30000-image dataset that we cre-
ated, there are 43275 examples of the Insulator-Brown-4 class
while only 210 examples of the Toppad-Missing class are found
(Fig. 5). The imbalance of object classes typically makes deep
learning models bias towards classes that have more examples
and overlook classes which have fewer examples. This is a huge
problem in power line inspection since the classes which have
very few examples are usually the faults that we need to iden-
tify, such as missing toppads, broken insulators, and cracked
poles.
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Figure 5: Distribution of the 15 most common power line component classes
in our 30000-image dataset. While there are 43275 (17%) examples of the
Insulator-Brown-4 (insbr_4) class, only 210 (0.08%) examples of the Toppad-
Missing (tp-missing) class are found.

The third challenge is the detection of small power compo-
nents and small faults. Most of the well-known CNN-based
object detectors, such as SSD [52], YOLO [55], R-FCN [56],
and Faster R-CNN [54], perform poorly on very small objects
[67]. This is a major problem in mapping and inspection of
power line components because many important power compo-
nents (e.g., insulators) and faults on power lines, for instance
missing toppads, broken wires, and broken insulators, are very
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small compared to other components (e.g., poles, crossarms)
and surrounding objects, such as trees (Fig. 6).

Figure 6: Small faults on power lines components (from left to right): cracked
insulator, missing splint, broken wire.

The fourth challenge is the detection of unseen components
and faults. Many existing power grids, especially in Norway,
utilize a wide range of power components; thus, the grids are
vulnerable to a huge number of types of faults. In addition,
faults on power components and power lines, even simple ones
such as missing toppads, can occur in many different forms
(Fig. 7). This, together with the lack of training data, pose a
major challenge for DL vision-based inspection of power line
due to the limitation of deep learning models in predicting pre-
viously unseen classes.

Figure 7: Faults on toppads can be in many different forms (left to right): about
to be missing, covered by unwanted objects, missing.

The fifth challenge is the detection of power lines in cluttered
backgrounds. In both UAV navigation and UAV inspection (ic-
ing detection and measurement, vegetation encroachment mon-
itoring), detecting power lines is one of the most crucial task.
However, this is a very challenging task for two reasons: First,
power lines in images taken from UAVs or helicopters are very
thin leading to a lack of rich features for their representation.
Second, because of color similarity, weather conditions, and
lightning conditions power lines are typically very difficult to
be separated from backgrounds. For example. during the win-
ter in cold countries, such as Norway, both power lines and the
ground are usually covered in snow and/or ice making them in-
distinguishable, even for humans (Fig. 1).

The last but not least challenge is the lack of metrics in evalu-
ating the performance of DL vision-based UAV inspection sys-
tems. Since there are no publicly available datasets for power
line inspection that have a significant number of examples of
faults, how to evaluate the performance of DL vision-based
UAV inspection systems still remained an unsolved problem.
Synthetic images of faults can be used to address the challenge
to some degree; however, the performance of the system on
synthetic images typically does not give an accurate estimation
of the performance of the system on real images.



5.3. Possible Solutions
5.3.1. DL Vision-based UAV Navigation

A potential solution for UAV navigation in automatic au-
tonomous power line inspection is to combine the GPS way
points-based, pole detection-based, and power line detection-
based navigation approaches with an autopilot to build a hybrid
navigation system. In this system, outputs from a pole detec-
tor can be used to together with GPS way points to accurately
identify the next target poles. Based on that, an autopilot can
be utilized to navigate the UAV to the identified poles by, for
example, following the lines detected by a power line detector
and/or tracker.

To address the “out-of-sight navigation” problem, wide angel
cameras, such as 360-degree cameras, can be applied to ensure
that UAVs can always “see” the power lines during navigation.

5.3.2. DL Vision-based UAV Inspection

There are four main approaches for mapping and inspection
of power line components. The first approach is based on the
comparison of power masts with their ideal models. This is a
relatively simple approach; however, it is required that the ideal
models must contain the perfect spatial configuration of the
power masts, which is typically quite tedious, time-consuming,
and expensive to create. The second method is related to the
detection of changes that appear after the last inspection. For
example, the structure of a power mast, which is usually de-
fined by its components and their relative position, can be es-
timated and compared with results from the previous inspec-
tion to detect changes, which may lead to power outages, for
instance missing splints, missing toppads, and missing insu-
lators. Similar approach can be applied for the detection of
differences among a set of neighbouring pylons of the same
type, usually in the same power line. Neighboring pylons of
the same type in the same power line typically have the same
architecture except for pylons at special locations; thus, faults
on a power line can be detected by measuring the consistency
of power mast structure on that line [68]. The final approach
is related to the direct detection of faults from inspection im-
ages, usually based on deep learning models and/or traditional
vision-based approaches, such as texture analysis and pattern
matching. Each of the above-mentioned approaches has its own
advantages and comes with unique challenges. Following are
our proposed solutions to some of the major challenges.

One of the most straightforward approaches for dealing with
the lack of training data problem is to manually create train-
ing data; however, this is a very slow, tedious, and expensive
process. A potential way to speed up the process is to use pre-
trained models and fine-tune them with a small amount of man-
ually created training data to automatically create more data.

When only a small amount of training data is available, data
augmentation techniques can be utilized to increase training
performance. Some examples of simple data augmentation
techniques that are useful for training deep learning models are
flipping, cropping, and color jittering. Recent advances in im-
age style transfer have opened up new possibilities in advanced
data augmentation by, for example, transferring the time of day,
weather, and season [69, 70, 71].
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Another solution to the lack of training data problem is to use
synthetic images. However, how to effectively combine syn-
thetic images with real images in training deep learning models
still a challenging question. To address this challenge to some
extend, supervised domain adaptation [72] can be applied. In
this approach, a model is first trained only on synthetic images
and/or images from related tasks; it is then fine tuned for the
target task that typically has very few training examples. In the
case of no training examples available, unsupervised domain
adaptation [73, 74, 75, 76], which is capable of adapting mod-
els trained only on synthetic images and/or images from related
tasks to use on the target task, is a potential solution.

The class imbalance problem can be tackled to some extent
with synthetic images by, for example, generating more syn-
thetic images for classes that have fewer training samples to
balance out the imbalanced classes. Another alternative solu-
tion is to use median frequency balancing approach in which
classes with fewer training examples will be assigned higher
weights during training [77, 78, 79].

To detect small components and faults, object detection, im-
age classification, and semantic segmentation pipelines can be
utilized. For example, a power mast detection model can be
applied to locate masts in inspection images and crop them as
Region of Interests (ROIs). Then, detailed component and fault
detection models can be employed to detect small components
(e.g., insulators, toppads) and faults (missing toppads, cracked
poles) from the cropped ROIs. The detected components can
be further cropped and used as inputs for more detailed fault
detection models to detect smaller faults, for example missing
splints, broken wires, and cracked insulators (Fig. 6).

To detect unseen components and faults, one-shot learning
[80, 81, 82, 83], which allows a trained model to learn to de-
tect new classes (components and faults) from only one or a
few examples per class, is a very promising approach. An al-
ternative solution is to first train a model with synthetic im-
ages of components and faults, then adapt it for detecting real
components and faults using unsupervised domain adaptation
[73, 74, 75, 76] . Recently, advances in Generative Adver-
sarial Networks (GANs) [84] have opened new possibilities
for unsupervised anomaly detection. GANs can be employed
for learning the data distribution that generates normal compo-
nents. Then, different metrics, such as discrimination score and
residual score, can be combined and used as “anomaly score”
to perform anomaly detection [85]. The main advantage of this
approach is that the training requires only images of normal
components, which are relatively easy to collect.

In vegetation encroachment monitoring and icing detection
and measurement, a power line detection pipeline can be uti-
lized to address the thin line and the lack of rich feature chal-
lenges. First, outputs from edge detection algorithms, for
instance the Canny edge detector [86], Matched filter [87],
and Holistically-Nested Edge Detection [61], contour detectors
such as, DeepEdge [62] and DeepContour [63], and/or line de-
tectors, for example the Hough transform [64] and the Radon
transform [88], can be used together with prior knowledge of
power lines properties (e.g., parallel lines) to locate ROIs in
low resolution images. Then, the identified ROIs are mapped



to and cropped from higher resolution images. Finally, more
advanced line detectors algorithms can be employed to detect
power lines from the cropped ROIs in which power lines are
typically bigger and have richer features than those in original
images.

To separate power lines from clustered backgrounds, back-
ground removal approaches can be used as a pre-progressing
step prior to the edge detection and line detection steps. Some
examples of background removal techniques are colour based
suppression [60], pulse coupled neural filter (PCNF) [22], and
deep learning-based semantic segmentation (e.g., DPN [58] and
Mask R-CNN [59]). After the background is removed, clus-
tering approaches (e.g., the K-means clustering [89] and fuzzy
C-means clustering [90]) together with power line constrains
(e.g., parallel lines) can be combined to eliminate spurious lin-
ear objects and detect power lines.

5.4. DL Multimodal Inspection

Optical image based fault detectors are capable of detecting
a wide range of visual faults, for example missing toppads, pole
cracks, and woodpecker attacks. However, they have numerous
drawbacks, such as their sensitivity to illumination changes [91]
and their incapability of detecting faults that are invisible to the
unaided human eye (e.g., hot spots on power line components).
To overcome the drawbacks, information of a visible camera
can be fused with information provided by other sensors, such
as thermal cameras and ultraviolet cameras, to perform multi-
modal inspection [92].

Recently, deep learning has been successfully used for learn-
ing from multimodal data sources for various vision tasks,
for instance polar bear detection [93] and pedestrian detection
[91, 94, 95]. This approach can be easily adapted to fuse im-
ages from multiple sensors, such as optical cameras, thermal
cameras, and ultraviolet cameras, to improve the performance
of power line inspection systems. The fusion can typically
take place at three different levels of abstraction: pixel-level,
feature-level, and decision-level fusion [91].

In power line inspection, images from different sensors are
suitable for detecting a different set of faults. Optical images,
for example, are well-suited for detecting visual faults, whereas
thermal images and ultraviolet images are useful for detect-
ing faults that are invisible to the unaided human eye, such as
equipment bad connections and corona discharges. Thus, fus-
ing images from multiple sensors can extend the range of faults
that inspection systems can detect. In addition, images chanels
fusion can also improve inspection performance since images
chanels such as optical images and thermal images typically
provide complementary visual information which are useful for
deep learning models [94].

6. Conclusion

In this paper, we have presented a thorough literature re-
view of automatic power line inspection research including
vision-based approaches for both UAV navigation (power line
detection-based and pole detection-based approaches) and UAV
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inspection (mapping and inspection of power line components,
vegetation encroachment monitoring, icing detection and mea-
surement, and disaster monitoring).

Further, we have summarized the possibilities of DL vision-
based approaches and UAVs in developing a fully automatic
autonomous power line inspection system.

Following a comprehensive review of current vision-based
automatic power line inspection research approaches, we have
identified existing challenges of both DL vision-based naviga-
tion and DL vision-based inspection and discussed solutions to
these challenges.

Finally, with the aim of providing an initial starting point for
researchers who are interested in developing a fully automatic
autonomous vision-based power line inspection system using
UAVs, we have proposed four potential next steps: (i) com-
bine pole detection-based, GPS way points-based, and power
line detection-based navigation approaches with autopilots to
facilitate self-driving UAV's and automatic data acquisition, (ii)
utilize multistage object detection, classification, and segmen-
tation pipelines to detect faults in various sizes, forms, and con-
ditions, (iii) employ contextual information (e.g., power mast
structure) to further improve fault detection performance by, for
example, eliminating invalid faults, and (iv) apply multiple data
sources fusion (e.g., infrared cameras, ultraviolet cameras, and
3D cameras) for detecting complicated faults (e.g., cracked in-
sulators, rotten poles, and corona discharges).
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