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ABSTRACT
In the push to achieve exascale performance, systems will
grow to over 100,000 sockets, as growing cores-per-socket
and improved single-core performance provide only part of
the speedup needed. These systems will need affordable in-
terconnect structures that scale to this level. To meet the
need, we consider an extension of the hypercube and flat-
tened butterfly topologies, the HyperX, and give an adap-
tive routing algorithm, DAL. HyperX takes advantage of
high-radix switch components that integrated photonics will
make available. Our main contributions include a formal
descriptive framework, enabling a search method that finds
optimal HyperX configurations; DAL; and a low cost packag-
ing strategy for an exascale HyperX. Simulations show that
HyperX can provide performance as good as a folded Clos,
with fewer switches. We also describe a HyperX packaging
scheme that reduces system cost. Our analysis of efficiency,
performance, and packaging demonstrates that the HyperX
is a strong competitor for exascale networks.

1. INTRODUCTION
Every 11 years since 1976, supercomputer performance

has increased by a factor of 1000, reaching petaflop perfor-
mance in 2008 [1]. By 2019, Moore’s law is expected to pro-
vide a 160-fold increase in transistor density. While single-
thread performance is rising only modestly, we expect a com-
mensurate improvement in peak per-socket performance due
to increased core count coupled with advances in memory
technology to provide the necessary memory bandwidth to
maintain system balance. This implies that at least a sixfold
increase in the number of sockets will be needed to achieve
exaflop performance. In 2008, the first two petascale systems
were delivered: IBM’s 18,802 socket Roadrunner [10], and
Cray’s Jaguar [14] comprising approximately 38,000 sockets.
Using these machines as a rough guide, we can expect the ex-
ascale systems of 2019 to require 100,000–200,000 compute
sockets. At this scale, the interconnection networks in these
systems will have a major impact on their cost, performance,
power, fault tolerance, and complexity. A fundamental cost
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driver of any interconnection network is the topology and
its effect on packaging and cabling. Performance is heavily
influenced by the topology, switches, and routing method.

We define radix to be the number of bidirectional ports
that the switch supports, where a port consists of separate
unidirectional input and output channels. Previously, lim-
ited chip-edge bandwidth has forced a tradeoff in switch
chips between radix and port bandwidth. Given the ITRS [18]
prediction that pin count and per pin bandwidth will remain
relatively flat in the next decade, it is likely that this tradeoff
will persist for electrical interconnects. Optical technology
is promising in that: 1) bit transport energy is independent
of length for link lengths of interest in an exascale system,
2) dense wave division multiplexing can be employed to im-
prove bandwidth per port, and 3) optical cables and con-
nectors offer high interconnect densities. These advantages
have already been exploited in long haul networking and in
the global interconnect for both the Roadrunner and Jaguar
petascale systems. Silicon nanophotonics may permit direct
optical connection to the switch chip, breaking the chip IO-
bandwidth barrier and significantly changing the tradeoffs
in network design [9, 20]. We therefore focus on networks
based on high-radix switches.

Previous work has shown that high-radix switches can
help achieve high bandwidth and low latency at reasonable
power [8]. High-radix switches with high bandwidth links
cut the number of routing chips while maintaining high net-
work bandwidth, and reduce latency due to reduced hop
count. Supercomputers have often used a folded Clos (also
called a fat tree) network topology. Kim, Dally, and Abts [6]
showed, however, that when high-radix switches are avail-
able, the flattened butterfly is more cost effective than the
folded Clos.

We improve on this result in several ways. First, we intro-
duce (Section 3) a class of n-dimensional networks that we
call HyperX. In a HyperX, each switch is connected to all of
its peers in each dimension and the number of switches in
each dimension can be different. Second, we present a for-
mal algebraic framework that describes the HyperX topol-
ogy and use it to develop a search procedure that finds a
least-cost HyperX configuration satisfying constraints on bi-
section bandwidth, network size, and switch radix. Third,
we introduce (Section 3.3) a new adaptive routing algo-
rithm (DAL) for HyperX networks. Simulation shows that
DAL takes better advantage than existing flattened butterfly
routing of the path diversity that the HyperX topology pro-
vides. We compare the performance of HyperX and folded
Clos (Section 4), confirming that when high-radix switches
are available, the HyperX is more cost effective. Finally we
use the framework to select HyperX configuration parame-



ters to significantly simplify packaging (Section 5) which im-
proves fault tolerance (Section 6) and cost when compared
to similar sized folded Clos networks.

HyperX can easily be viewed as a simple extension of ei-
ther the flattened butterfly or the hypercube concepts1, and
HyperX certainly has similarities to both. Interestingly,
both flattened butterfly and hypercube topologies can be
expressed in our formal framework and therefore could be
viewed as particular points in the HyperX topology space.
In Section 3.1.2 we find that the general HyperX with fewest
switches (and given network size and bisection bandwidth) is
from 8 to 28 percent smaller than the best flattened butter-
fly. More importantly, we want to emphasize that the novel
contribution of this paper is not the topology but rather the
formalized framework, search procedure, DAL, and packag-
ing results.

2. FOLDED CLOS AND FLATTENED BUT-
TERFLY NETWORKS

This section provides an overview of folded Clos and flat-
tened butterfly networks and their routing algorithms. Clos
is the predominant high-radix topology in use in parallel
computers today [2, 4, 10, 12]. Folded Clos networks can be
constructed with switches of radix 4, but become more cost
effective as switch radix increases due to reduced component
count. Several routing strategies can exploit the path diver-
sity of folded Clos networks. As switches have more ports,
high-radix direct networks can be implemented. The flat-
tened butterfly can be viewed as transformations of folded
Clos networks. The resulting networks permit several rout-
ing strategies, including those derived from the folded Clos.

2.1 Network topologies

2.1.1 Folded Clos networks
Figure 1 illustrates a two-level folded Clos or fat tree [11]

built from 8-port switches. In general, an L-level folded Clos
based on a radix R switch consists of a core layer having
(R/2)L−1 downward-facing switches each having R ports.
There are 2(R/2)L links connecting adjacent layers. The
lower layers can be seen, hierarchically, as consisting of ex-
actly R separate subnetworks, each of which is a virtual
crossbar having (R/2)L−1 ports. These are perfect-shuffle
connected to the core layer. Let N , the network size, denote
the number of terminals in the network, and P denote the
total number of switches. With an R-port switch, an L-level
folded Clos has: N = 2× (R/2)L terminals; (R/2)L−1 core
switches; P = (2L − 1)(R/2)L−1 switches in total; and a
maximum path length of 2L−1 switches and 2L hops. Note
that an arbitrarily large folded Clos network can be built
from switches of fixed radix. The ratio of switches to termi-
nals in a folded Clos is P/N = (2L− 1)/R. Since the num-
ber of levels L = O(logN/ logR), increasing switch radix
reduces switch count faster than linearly: O(1/(R logR)).

The folded Clos is an indirect network: terminals are con-
nected to leaf switches and packets can be routed through
terminal-less internal switches. In a direct network, all switches

1We thank the program committee, in particular K. Scott Hemmert,
for pointing out that several HyperX aspects that we previously
viewed as unique have been discussed in the context of flattened
butterfly networks even though this discussion has not appeared in
a citeable forum.

Figure 1: Folded Clos network L = 2, R = 8.

connect to a number of terminals, and use their remaining
ports to connect to other switches. The mesh and the torus
are direct networks; a torus is symmetric—all switches are
identical and identically located with respect to the network
as a whole. The HyperX network is also a symmetric, direct
network.

A folded Clos provides very high throughput even on dif-
ficult traffic patterns, and any permutation can be routed
without blocking. Depending on their relative location, two
given terminals, s and d, will have a(s, d) = (R/2)m low-
est common ancestor switches, for some 0 ≤ m ≤ L − 1.
The shortest paths connecting them use the unique up-link
path to any of the lowest common ancestor switches, and
then route the message on the unique down-link path to the
destination. To route, the common ancestor can be chosen
at random (with uniform probability) to balance the traf-
fic load. Except at the edge level, any failed switch can be
avoided without losing connectivity. Once the common an-
cestor is chosen, however, there is no residual capacity to
adapt to congestion or faults.

Although a folded Clos is nonblocking for any permuta-
tion, global knowledge is required to allocate a set of link-
disjoint routes; this is impractical in a large-scale network.
With practical routing methods that lack global informa-
tion, packets can be delayed at internal switches by con-
tention for switch ports and links. Folded Clos networks are
deadlock free, since they contain no cycles.

The plethora of paths in a folded Clos suggests that by
modifying the topology and the routing strategy to reduce
the number of alternate paths, a more efficient network can
be constructed. The flattened butterfly [6] network is an
example. For large networks, a folded Clos that provides
full bandwidth between any two levels is expensive and may
not be necessary. Designers save cost by tapering the link
count in the upper levels of the hierarchy [15].

2.1.2 Flattened butterflies
As shown in Figure 2, a flattened butterfly can be derived

from a butterfly network by mapping switches from succes-
sive layers onto a single physical switch [6]. The figure shows
a 4-ary, 2-fly: there are 4 inputs and outputs per switch, and
2 switch levels. An m-ary, n-fly, with mn input terminals
at the bottom and the same number of output terminals
at the top, consists of n levels with butterfly interconnects:
at level `, where ` = 0, 1, . . . , (n − 1), nodes are connected
to others at distances that are multiples of m`. To flatten
a 2 − fly, each switch in the lower layer is first associated
with the switch directly above it, as shown in Figure 2(b).
A 2-fly collapses to an all-to-all network, with each switch
connecting to all of its peers using bidirectional links. In
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Figure 2: Flattening a butterfly network. (a) A 2-ary 4-fly, with unidirectional links. (b) Switches in the
same vertical position will be coalasced. (c) The 4-ary 2-flat. Interswitch links are bidirectional.

general, when an m-ary, n-fly is flattened, the resulting net-
work is identical to an n− 1 dimensional array of switches,
with extent m in each dimension; each switch connects to
m terminals; and each switch is connected to each of the
m−1 other switches that align with it in each of the dimen-
sions, hence (n−1)(m−1) neighboring switches. In order to
maintain full bisection bandwidth and preserve the ability to
route any permutation without contention, the intra-switch
links require twice the bandwidth of the terminal links. The
number of shortest paths in the flattened butterfly is at most
(n − 1)!. Since n = O(logN), we expect that n will be a
small integer in practice. The resulting path diversity, con-
sidering shortest paths only, is far less than in the folded
Clos.

2.2 Routing algorithms for the folded Clos
We use the term router to mean the logic that determines

the output port taken by a packet arriving at an interme-
diate switch. Deterministic routers choose a fixed route be-
tween any source-destination pair. Oblivious routers choose
paths dynamically but the choice is not based on network
load. Adaptive routers choose a path based on network load
in an attempt to avoid congested regions of the network. De-
terministic routing leads to hot spots and poor throughput
under certain traffic conditions [3]. Adaptive routing on a
per packet basis can cause out of order delivery within a flow
of packets between two terminals, which must be handled by
the end to end packet protocols.

A folded Clos may be routed deterministically, obliviously,
or adaptively. Oblivious routing sends each packet via a dif-
ferent randomly chosen common ancestor to distribute net-
work load over all of the shortest paths. Adaptive routing
selects paths based on buffer occupancy on the candidate
paths. The advantages of adaptive folded Clos routing and
its adequate implementation are discussed in [5]. We will
describe routing options for the flattened butterfly in Sec-
tion 3.3.

3. THE HYPERX TOPOLOGY
A HyperX is a direct network of switches in which each

switch is connected to some fixed number T of terminals. A
terminal can be a compute node, cluster of compute nodes,
I/O node, or any other interconnected device. The switches
are viewed as points in an L-dimensional integer lattice.
Each switch is identified by a coordinate vector, or multi-

index I ≡ (I1, . . . , IL) where 0 ≤ Ik < Sk for each k = 1..L.
In each dimension, the switches are fully connected. Thus,
there are bidirectional links from each switch to exactlyPL

k=1(Sk−1) other switches: a switch connects to all others
whose multi-index is the same in all but one coordinate. The
number P of switches in the HyperX satisfies P =

QL
k=1 Sk .

In a simple HyperX all links have uniform bandwidth.
The topology can be generalized by allowing the link band-
widths to be multiples of some unit of bandwidth, to model
the option of trunking of multiple physical layer links. This
flexibility can be exploited to provide uniform bandwidth
between dimensions with different values of S, and to al-
low different bandwidths between terminal and intra-switch
links. We let K ≡ (K1, . . . ,KL) represent the relative link
bandwidths in each of the dimensions, where the unit of
bandwidth (conceptually offered by one hardware link and
one switch port) is the bandwidth of the terminal-to-switch
connections. A regular HyperX is one for which Sk = S and
Kk = K for all k = 1..L. Thus, a regular HyperX is deter-
mined by the parameters L, S, K, and T and we shall refer
to it as a regular (L, S,K, T ) HyperX.

Figure 3 shows two examples of the HyperX topology.
There are 32 terminals shown in Figure 3(a) where 4 ter-
minals are attached per switch. Switches are organized in
two dimensions. There are two switches in the first dimen-
sion, and four switches in the second dimension creating an
irregular HyperX. The regular HyperX in Figure 3(b) also
has 4 terminals per switch and two switch dimensions, but
each dimension consists of three switches and supports 36
terminals.

Note that a hypercube is a regular HyperX with (S =
2,K = 1, T = 1). A fully connected graph is a HyperX with
L = 1. We can also describe the flattened butterfly topology
as a regular HyperX with T = S and either K = 1 or for
full bisection bandwidth, K = 2. The topology of the YARC
high-radix switch [17] is (L = 2, S = 8,K = 1, T = 1).

The bisection bandwidth of a HyperX is realized by cut-
ting one of its dimensions in half. The channel bisection of
such a cut is

Cm ≡ (1/4) KmSm

LY
k=1

Sk = (P/4) KmSm (1)

if dimension m is bisected. If KmSm is smallest among all
the dimensions of the HyperX, so that KmSm ≤ KkSk for all
k = 1, . . . , L, then (1) determines the bisection bandwidth.
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Figure 3: Two examples of the HyperX topology.
Dark circles (marked T) are terminals, light circles
(marked R) are switches.

A HyperX network needs at least TP/2 bidirectional links
crossing any bisection in order to be nonblocking. Thus,
the ratio β = KmSm/2T measures the relative bisection
bandwidth of the architecture. As discussed above, for a
regular (L, S, 2, S) HyperX, i.e. a flattened butterfly with
double-wide switch-switch links, we have β = 1.

3.1 Achievable HyperX networks
We consider the problem of finding a best possible, by

some criterion, HyperX satisfying switch radix, network size,
and bisection bandwidth requirements. HyperX is a direct
network; for switches with a given radix R we must therefore
conform to the bound:

T +

LX
k=1

Kk(Sk − 1) ≤ R . (2)

To create a system consisting of N terminal nodes, we need
at least this many terminal links. With a total of P =QL

k=1 Sk switches, each having T terminal links, this con-
straint becomes

TP = T

 
LY

k=1

Sk

!
≥ N . (3)

With both R and N viewed as given, fixed constants, these
equations provide both an upper bound (2) and a lower
bound (3) on T for each possible network shape S. Werequire
that there be enough bisection bandwidth. For some speci-
fied minimum relative bandwidth B we require that

β ≡ min(KkSk)

2T
≥ B . (4)
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Figure 4: HyperX Design Space (L = 2, K = 1, R =
128, N = 217). No solutions: the lower bound exceeds
the upper bound on T for all S.

Each dimension must consist of at least 2 switches:

Sk ≥ 2 , k = 1, 2, . . . , L . (5)

Our objective is to find HyperX networks that satisfy the
constraints above. Among the feasible networks, we pre-
fer those with least cost, which to a first approximation is
proportional to the number of switches,

QL
k=1 Sk. A low-

dimensional solution (with small L) is also good, since it
decreases the average hop count and yields more easily re-
alized hardware implementations.

In contrast to the folded Clos, with switches of a given
radix one cannot build an arbitrarily large HyperX. In fact,
the largest HyperX network buildable with radix R switches
is an (R − 1)-cube with one terminal per switch, so clearly
we must have N ≤ 2R−1. As N approaches this limit, the
smallest feasible L grows, making these HyperX topologies
unattractive; the study in Section 4.2 bears this out. For
high-radix switches, fortunately, the HyperX designs achiev-
able in three or at most four dimensions turn out to be large
enough for the exascale systems we have in mind.

3.1.1 The space of regular HyperX networks
Since it is determined by fewer parameters, we can visu-

alize the regular HyperX design space more easily than the
general. In a regular HyperX, the network shape S and the
trunking factor K are scalars.

Figures 4 and 5 show the design space of regular Hy-
perX for a baseline example with R = 128 (typical of the
high-radix switches we expect in the near future) and N =
128K (a network size consistent with exascale performance).
There are four free design space parameters, namely L,K, S,
and T . We choose to fix the trunking factor K and dimen-
sion L and think about the resulting (S, T ) space. Hence, we
are seeking integer (S, T ) pairs in the region bounded on the
left by the vertical line S = 2; below by the nonlinear net-
work size bound (3), and above by the linear bandwidth (4)
and switch port (2) bounds that have opposite slopes and
form a roof over the allowable space. For some (R,N,K,L)
combinations, the lower bound lies completely above these
two upper bounds, and there are no feasible HyperX de-
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Figure 5: HyperX Design Space (L = 3, K = 1, R =
128, N = 217).

signs (Figure 4). For others, the region of allowed designs is
bounded by these three constraints, having a leftmost cor-
ner, a topmost corner, and a rightmost corner (Figure 5).
The leftmost is the most interesting, as it is the point of
least switch count. These points (for several values of β) are
shown by blue squares and labeled with their (T, S) values.

3.1.2 Selecting an optimum HyperX: An algorithm
We have implemented an algorithm to find a general Hy-

perX meeting the requirements of Section 3.1 and having
fewest switches. Given the parameters N , R, and β of the
design problem, our algorithm chooses a design specified by
the dimension, L; the number of terminals per switch, T ;
the shape of the network, S (an L-vector); and the trunking
factors, K (another L-vector); so that the network size (2),
switch port (3), and bisection bandwidth (4) inequalities are
satisfied and the switch count is smallest possible. We do
this by an exhaustive search of the design space, but prune
away designs early that are known to be either infeasible
or suboptimal. The runtime of the algorithm for practical,
large cases is a few seconds.

To restrict the design space to be searched, we exploit
certain symmetries. First, we lose nothing by restricting the
search to designs for which

S1 ≤ S2 ≤ · · · ≤ SL. (6)

Since the bisection bound depends on the smallest of the
SkKk, we also can assume that

K1 ≥ K2 ≥ · · · ≥ KL . (7)

Once a feasible design is found, its switch count is an up-
per bound on the best achievable design. Any other design
that cannot be better will be rejected. Let O represent the
smallest switch count for all feasible designs so far discov-
ered. We add the inequality

LY
k=1

Sk ≤ O (8)

to further restrict the set of designs to be searched. In partic-
ular, the network size constraint tells us that if we are seek-

ing to find configurations that reduce O, we can restrict our
attention to designs for which T is large enough to achieve
the desired network size given that the number of switches in
an improved design is going to be less than O; we therefore
restrict the search values of T to those that satisfy

N ≤ T (

LY
k=1

Sk) ≤ TO ⇒ T ≥ dN/Oe ≡ Tmin . (9)

As for the range of dimensions to search, we have 1 ≤ L ≤
R− 1, the upper bound being achieved for a hypercube.

3.2 Comparing general and regular HyperX
We can ask whether or not an irregular HyperX can be

significantly more attractive than a best possible regular Hy-
perX or flattened butterfly. To that end, we conducted an
experiment. For typical values of the design problem pa-
rameters (N = 217, R = 27, and B ∈ {0.125, 0.25, 0.5, 1})
we found best (having fewest switches) regular and general
HyperX designs. Table 1 shows the results.

The irregular HyperX has fewer switches in all cases, the
reduction in number ranging from 8 to 28 percent. Inter-
estingly, the best results were always three dimensional in
the general case, whereas the best regular designs were four
dimensional in two cases. Flattened butterflies are regular
HyperX networks for which K = 2. If we add this restriction
then for the full bisection-bandwidth case (β = 1) we get an
inferior design (L = 4, S = 11, K = 2, T = 9) having 14,641
switches. If we add the additional restriction imposed by the
flattened butterfly, namely T = S, then we have a network
with S = 11 and size N = 115 = 161, 051 with 29,979 more
terminal ports than needed.

3.3 Routing algorithms for the HyperX
The set of shortest paths between two switches in a Hy-

perX is determined by their coordinate vectors. Consider
paths from switch zero (all its coordinates are 0) to switch
I = (I1, . . . , IL). The length of each shortest path is equal
to the number of nonzero elements of I. Let ∆ be the set
dimensions k for which Ik 6= 0. We call these the offset di-
mensions; the others are aligned dimensions. Every shortest
path goes directly (by one step) from the source 0 to the des-
tination in each of the offset dimensions in some sequence.
If the number of offset dimensions (i.e. the cardinality of ∆)
is D, then there are D! shortest paths.

A minimal deterministic routing method is obvious: route
to the destination by the shortest path determined by mov-
ing in the dimensions of ∆ in a fixed order; without loss of
generality, in order of increasing dimension number. This is
known as dimension-order routing. Minimal adaptive rout-
ing is possible. When one dimension is blocked due to buffer
congestion at the downstream switch, we choose another off-
set dimension. We call this Min-AD. Min-AD adaptively
explores the space of D! shortest paths. An oblivious rout-
ing algorithm, inspired by Valiant [19], routes all packets
through an intermediate node chosen at random with uni-
form probability.

As shown by Kim, Dally, and Abts [6], adaptive non-
minimal routing is in general better than either deterministic
or oblivious routing for a flattened butterfly, and this is true
for the HyperX. They proposed the adaptive Clos-AD al-
gorithm, which chooses, at a packet’s source node, between
dimension ordered minimal routing and non-minimal rout-



B Best Regular Switch Count Best General Switch Count
0.125 L = 4, S = 7, K = 2, T = 55 2401 S = (5, 19, 19), K = (4, 1, 1), T = 76 1805
0.25 L = 3, S = 14, K = 2, T = 48 2744 S = (3, 27, 30), K = (9, 1, 1), T = 54 2430
0.5 L = 3, S = 16, K = 2, T = 32 4096 S = (3, 35, 36), K = (12, 1, 1), T = 35 3780
1.0 L = 4, S = 10, K = 3, T = 14 10000 S = (5, 38, 38), K = (8, 1, 1), T = 19 7220

Table 1: Best regular and general HyperX networks for N = 217 and R = 128.

ing, based on estimates of queuing delay. If it chooses to
route non-minimally, Clos-AD routes to a randomly chosen
lowest common ancestor switch, considering the network as
a transformed folded Clos network. The packet therefore
takes dimension ordered minimal paths from source to in-
termediate and from intermediate to destination nodes. The
decision is made at the source node, and no packet can be
derouted (take a non-minimal route) twice.

We argue that Clos-AD can be improved in two respects.
First, by deciding to route minimally or not only at the
source, it loses significant ability to adapt to congestion en-
countered en route. Second, by making a choice of inter-
mediate node that is informed by a mapping of the folded
Clos into the HyperX, it introduces dimensional asymmetry
which has no apparent advantage due to the inherent sym-
metry in HyperX dimensions. To address the issues raised
above, we propose the DAL (Dimensionally-Adaptive, Load-
balanced) routing algorithm:

1. Mark all offset dimensions as deroutable (unmarked)
on creation of the packet at its source. On arrival at a
switch:

2. Find an offset dimension with an unblocked path to an
aligned switch in that dimension. If none exist, then:

3. Find an unmarked offset dimension and unblocked switch
that is offset from the destination and if one exists then
route and mark the dimension as no-longer-deroutable;
else

4. Push the packet into a minimal, dimension-order, de-
terministic routed virtual channel.

Dimension-order routing, and therefore DAL, is deadlock
free; the virtual channel used as a last resort is used to
prevent deadlock.

Unlike Clos-AD, DAL deroutes in one of the HyperX di-
mensions at a time, treating each HyperX dimension inde-
pendently and symmetrically. This tends to cause it to take
shorter adaptive paths. While it may deroute just once per
dimension, DAL can deroute as many times as there are off-
set dimensions. Unlike Clos-AD, DAL routes a packet only
through the subnetwork of those nodes that are aligned with
both the source and the destination. Once a packet comes
into alignment with the destination in a certain dimension it
remains there. Unlike Clos-AD, DAL may deroute a packet
at each hop on its route, thereby adapting to congestion not
visible at the source node.

4. EVALUATING HYPERX
We evaluate DAL routing for the HyperX topology and

the DAL/HyperX combination in comparison to the folded
Clos. We begin by showing simulation results that explore
the performance of various routing algorithms on HyperX.

They show that DAL is more effective than adaptive min-
imal, Valiant, and Clos-AD routing. Further simulations
show that HyperX with DAL is generally better than an
adaptively routed folded Clos with similar system configura-
tions. We then analytically compare the number of switches
in optimum HyperX and folded Clos topologies across a
range of system parameters. For large networks built with
radix 32 switches, folded Clos may be best, but HyperX is
more cost effective when higher radix switches are used, even
for million-node networks.

4.1 Performance results
We use a cycle-accurate simulator on a variety of synthetic

traffic patterns. In all cases, switches have a four cycle delay
and channels have a one cycle channel transmission delay,
where we define a cycle as the time for a switch to send or
receive a flit via one port. We define latency as the differ-
ence between the time a packet is received at a destination
terminal and the time this packet is generated at the source
terminal. We assume single-flit packets. If a packet makes
four hops through the network from source to destination,
it will transit 4 channels and 3 switches in 16 cycles. For
simulation, sequential allocation is used for adaptive route
computation [5]. For HyperX, we assume 6 virtual channels
(VCs) per port: each port has 3 sets of 2 VCs. Cut-through
flow control is used. One VC in each set is reserved for
deadlock avoidance in the adaptive minimal and DAL rout-
ing algorithms. Each VC can hold up to 32 flits. Switches
are input-queued; the iSLIP algorithm [13] is used for switch
allocation. A crossbar has input speedup of 2.

Figure 6 presents a comparison of the routing algorithms
(described in Section 3.3) on a typical HyperX (regular, with
T = 8, S = 8, and K = 1) with 32-port switches, 4096
terminals, 512 switches, and where β is 0.5. We present
three standard traffic patterns: Bit Complement; Bit Ro-
tate; and Transpose [3], and one additional pattern, Swap2.
Swap2 is a permutation designed to highlight the differ-
ence between Clos-AD and DAL. In this pattern, the even-
numbered nodes exchange messages with a peer across the
bisection in one dimension and the odd-numbered nodes ex-
change messages with a peer across the bisection in another
dimension. These two offset dimensions correspond to the
top two levels of the folded Clos that underlies Clos-AD.

Valiant routing [19] reliably achieves throughput of β:
about half of all packets traverse any given bisection, twice,
when routed via a random intermediate node (independent
of traffic pattern). This throughput certainty comes at the
price of higher latency for light traffic loads due to the in-
creased hop count. Min-AD achieves throughput of 2β on
traffic patterns that do not cause congestion, such as uni-
form random, but throughput can degrade to 1/T on pat-
terns that cause congestion at the source.

The adaptive algorithms, Clos-AD and DAL, are better
choices. For low loads, both algorithms choose a minimal
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Figure 6: Load-latency graphs on the (a) Bit Complement, (b) Bit Rotate, (c) Transpose, and (d) Swap2
traffic patterns [3] of a regular HyperX network with N = 4096, R = 32, β = 0.5, T = 8, S = 8, K = 1.

route and achieve low latency, whereas at high load, they
adapt, choosing nonminimal routes to avoid congestion. The
primary difference between the two algorithms is when they
decide to adapt. Clos-AD estimates, at the source, the delay
of a minimal route and a non-minimal route and makes its
adaptation decision eagerly. DAL makes decisions lazily as
the packet traverses the network and decides on the route
independently per dimension. Eager adaptation means that
Clos-AD has less information which could be out of date,
while lazy adaptation allows DAL to be far more nimble.

Clos-AD is usually better than Min-AD and Valiant, but
for transpose some limitations become apparent. Clos-AD
makes its adaptation decision at the source. With the lim-
ited information available, its delay estimate is inherently
imperfect. The delay estimate will be biased towards mini-
mal paths for some patterns and towards non-minimal paths
for others. Our delay estimate tends to underestimate the
cost of the non-minimal path. This bias is the reason for
the higher average hop counts of Clos-AD at all load lev-
els when compared to DAL. On the Bit Complement pat-
tern, the terminals connected to a given switch communicate
with terminals connected to a single other switch, a pat-
tern which congests the links on the shortest paths between
them. Moreover, these shortest paths span all the dimen-
sions, so DAL will deroute most packets in each dimension.
For these patterns, CLOS-AD has the advantage of mak-
ing that deroute decision once and for all, early, and this
improves latency for low to medium load. On the Bit Ro-

tation pattern, this congestion occurs but on few links. So
the average latency of DAL approaches that of CLOS-AD
for medium load.

DAL has higher saturation throughput than the alterna-
tives on all patterns that we have tested. This is because
it will take the minimal path whenever possible, but route
around congestion when necessary. Furthermore DAL as-
sesses congestion at each hop and independently for each di-
mension. Our Swap2 pattern is a good example of why DAL
excels. The theoretical throughput of this pattern should be
2β, which DAL is able to achieve. For this pattern, Clos-AD
overlays a folded Clos network on top of the HyperX, and
can therefore pick a route that goes through offset interme-
diate nodes in already aligned dimensions.

We follow our comparison of routing algorithms on Hy-
perX by comparing HyperX networks using DAL to a folded
Clos network using adaptive routing. Figure 7 presents the
results of this comparison across the same set of traffic pat-
terns. N = 4096 and R = 32 in all three networks and we
use the same configuration as in Figure 6 for the HyperX
with β = 0.5. The HyperX with β = 0.25 has T = 14,
S = 7, K = 1 so that P = 343. For a tapered folded Clos,
we define β as

β ≡ number of links from core switches

network size
.

The folded Clos (with β = 0.5) needs three levels. There are
205 level 1 switches with 10 uplinks and 20 downlinks; 130
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Figure 7: Load-latency graphs of HyperX networks using DAL routing compared with folded Clos networks
using adaptive routing on the (a) Bit Complement, (b) Bit Rotate, (c) Transpose, and (d) Swap2 traffic
patterns when N = 4096, R = 32, and β is varied.

level 2 switches that have 16 uplinks and 16 downlinks; and
80 level 3 switches with 13 downlinks, 2 of them packaged per
physical switch so that P = 415. In all cases, the folded Clos
achieves a saturation throughput of β because the topology
effectively forces all patterns to behave as if they are routed
by Valiant. For the same reason, the hop count on folded
Clos is generally higher than HyperX with DAL as seen in
the Valiant routing case of Figure 6. The benefit of HyperX
with DAL routing is that it is able to achieve a load of 2β
on patterns that don’t exhibit congestion while maintaining
a load of β on patterns that do.

4.2 Resource comparison
The previous section shows that DAL routing on HyperX

networks provides very low network latencies for a range of
traffic patterns. The focus of this section is a cost compar-
ison of the folded Clos topology and the HyperX topology
for a wide range of topological parameters.

In Figure 8, we vary network size (N), switch radix (R),
and tapering ratio (β). The vertical axis of the graphs de-
picts the number of switches divided by the number of ter-
minals of the network. This measure can be thought of as
an estimation of networking cost per terminal node. Steps
in the graphs indicate that the dimension of the network in-
creased. This is particularly important because an increase
in dimension will result in an increase in cost for both Hy-
perX and folded Clos. In HyperX networks, an increase in
dimension effectively allows fewer terminal nodes to be con-

nected to each switch resulting in an increase of the total
number of switches to achieve a given network size. Folded
Clos networks add another complete layer of switches to the
network with each increase in dimension. In HyperX, be-
cause fewer terminal nodes can be connected to each switch
as dimensions are added, the cost of each additional dimen-
sion is higher than a folded Clos where additional dimensions
result in a constant cost increase. This addition is marginal
at very high dimensions thus making folded Clos a better
choice in this regime. Our data does indeed show that at
low radices (such as radix 32) and high node counts, the
cost of a folded Clos with β = x is comparable with that of
a HyperX with β = 0.5x. The advent of high-radix switches
changes this story because very large networks can be built
with few dimensions. In the radix 128 and 256 cases, the
cost of a folded Clos with β = x is comparable with that
of HyperX with β = x on many configurations. We have
shown that a HyperX can, on many traffic patterns, han-
dle a higher load (as much as double) than a folded Clos of
equal bisection bandwidth; this makes a compelling case for
HyperX.

5. PACKAGING HYPERX
System packaging is a central practical concern in net-

work design, especially for systems that occupy warehouse
sized machine rooms. A good mapping between the network
topology and the packaging hierarchy greatly simplifies the
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Figure 8: The number of switches while the network size is varied using switches with radix (a) 32, (b) 64,
(c) 128, and (d) 256.

system wiring. For example an entire level of interconnect
may be contained within a subsystem, minimizing the num-
ber of individual cables between subsystems. Depending on
the topology, the number of cable assemblies can be further
reduced by using cables with multiple parallel connections.
This is particularly beneficial in optically connected systems
where the number of parallel connections is not constrained
by considerations of cable bulk or connector density. Parallel
ribbon cables with up to 100 fibers have been demonstrated
using MT connectors [16].

Minimizing the total cable length and using a regular
structure that is easy to deploy are also key considerations.
The Dragonfly [7] is an example of a system in which net-
work and system packaging are co-designed to provide the
most cost effective solution. The key difference between Hy-
perX and Dragonfly is that HyperX assumes that all cables
will likely be optical in the future, whereas Dragonfly as-
sumes that intra-rack cables will be electrical (and cheaper)
while inter-rack cables will be optical. As data rates increase

and as optical cables become more commonplace, power and
cost will likely favor optics even for intra-rack applications.

To minimize cabling in folded Clos networks, two packag-
ing strategies are common. The first strategy embeds the
switch hierarchy within the package hierarchy to exploit lo-
cal interconnect within the enclosures. The second strat-
egy combines multiple levels of switch components into a
larger switch chassis. A 128K port folded Clos network us-
ing radix 128 switches requires three levels of switches. The
first level can be integrated with groups of 64 processing el-
ements. The top two levels can be combined to make 8192-
port switch units.

In this arrangement only one stage of cabling is required,
between the 2048, 64-node processing enclosures, and the
16, 8192-port switches. Each processor enclosure has 4 links
to each of the switches. This requires a total of 32768 cables
each with 8 fibers. There is a wide range of connection
lengths, and the distribution of cable lengths is only known
after detailed floor planning of the entire system.
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Figure 9: HyperX chassis showing wiring.

The flexibility of the HyperX topology allows a configu-
ration to be selected such that the different dimensions of
HyperX connectivity map directly onto the physical dimen-
sions of the system. In the case of a 128K port system we
can choose, for example, a three-dimensional HyperX with
T = 16, S1 = 32, S2 = S3 = 16, K1 = 1, and K2 = K3 = 2.
The first dimension is routed within the enclosure, and the
two further dimensions correspond to the placement of the
enclosure within a two-dimensional array in the machine
room.

Figure 9 shows the connectivity of switches with the en-
closure. As HyperX is a direct topology the switch can be
located on the same card as the processing elements. Each
board thus comprises 16 terminal nodes and one switch. The
32 boards in an enclosure communicate via an optical back-
plane that links all switches in the rack in a fully connected
network, forming the first HyperX dimension. This con-
nects

`
S1
2

´
= 496 pairs of nodes using 992 waveguides or

fibers. The optical backplane further aggregates the second
and third dimension links to enable the use of parallel fiber
ribbons for interconnect between enclosures. The aggrega-
tion networks require a further 1920 waveguides per level.

Figure 10 shows the placement of enclosures in a two-
dimensional array. Each enclosure is connected to each of
its peers in both dimensions. Each pair of enclosures is
connected by two separate fiber ribbons for resiliency. The
wiring therefore consists of many replicated instances of 16-
way all-to-all wiring patterns. Along the mid-line, at every
row or column of racks, there are 64 optical fiber ribbons
connecting all 8 enclosures on one side to the 8 on the other.

Each set of all-to-all wiring between rows or columns of
16 enclosures requires 120 fiber ribbon cables, in 15 distinct
lengths. This pattern is repeated 64 times, 32 times in the
X dimension and 32 times in the Y dimension, giving a to-
tal of 7680, 64-way fiber ribbon cables. Assuming a pitch
between enclosures of 1.2m in each dimension with an addi-
tional meter of overhead, cable lengths range from 2.2m to
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Figure 10: HyperX system floor plan.

19m. The total length of 64 way optical fiber ribbon is 60km.
The direct correspondence between the HyperX dimensions
and the physical dimensions of the enclosure arrays greatly
simplifies the task of connecting the system. It also avoids
wiring congestion points typical of folded Clos wiring at the
core level.

6. FAULT TOLERANCE
Cables and connectors cause most of the failures in large

scale networks. The move to optics will change the fault
characteristics in some respects, but the dominant failure
mechanism will remain individual links rather than switches.
Timeout and retry mechanisms can be used to handle tran-
sient failures, however a network with half a million connec-
tions is likely to suffer hard link failures.

The massive path diversity in folded Clos networks creates
the potential for a high degree of fault tolerance. Although



there are many alternate uplinks to common ancestors, the
choice of downlink is entirely deterministic and will block at
any failed link; with oblivious routing a packet can therefore
get stuck at a failed link. In this case the packet must be
retried from the source. In order to minimize performance
degradation in the presence of failed links it is highly desir-
able to prohibit failed routes from being selected as part of
the routing process.

Adaptive routing in folded Clos networks has the advan-
tage that it can route around failed uplinks. Links with
hard errors are simply eliminated from the possible routing
alternates. In order to extend this to route around failed
downlinks a mechanism is required which checks whether a
given choice of uplink would cause a failed downlink to be
selected in the down path. If this is the case an alternate
uplink is selected. The mechanism for detecting potential
downlink errors uses the packet’s destination to look up a
table of disallowed uplinks for this destination. The table
size can be compressed by recognizing that due to the hier-
archical topology contiguous ranges of destinations can be
handled by a single entry.

HyperX networks offer more possibilities for routing around
failed links, depending upon the routing algorithm being
used. In the case of DAL routing, a packet can only be
blocked by a single failed link when there is only one re-
maining offset dimension, and the deroute has already been
taken in that dimension. A simple solution is to permit a
further deroute. Provided there is only a single failed link
within a fully connected subnetwork this will not livelock.
In order to avoid selecting a nonminimal route that would
lead to a failed link, the same technique of filters on random
routes proposed for folded Clos networks can be applied.
Under DAL routing, the failure information required to be
held on each switch is more localized, since each switch need
only be concerned with failed links attached to its peers in
each dimension.

7. CONCLUSION
To design a network for an exascale system requires trade-

offs in performance, power, wiring complexity, and fault tol-
erance. In this paper, we investigated the impact on those
tradeoffs of high-radix switches and the topologies that they
enable.

We show that the HyperX topology is an attractive can-
didate for exascale networks because of its ability to achieve
a favorable balance among these tradeoffs. We compare the
HyperX to the folded Clos and show several design points
where the HyperX uses significantly fewer routers to achieve
similar bandwidth on benign patterns. For applications that
demand full bisection bandwidth, the folded Clos is gener-
ally more efficient in terms of router components. We further
investigate the routing algorithms possible on HyperX and
compare our new DAL algorithm to other algorithms for
the folded Clos and flattened butterfly and show it achieves
superior performance because of its ability to adapt to con-
gestion on a per-hop basis. We compare the physical pack-
aging of HyperX and the folded Clos, and show how parallel
optical fibers can be used to minimize the number of dis-
crete cable connections in each case such that large 100,000
networks can be constructed with fewer than 10,000 cables.
When these high density connections are available, HyperX
further allows switches to be colocated with the process-
ing elements in these large computer systems, leading to

a simpler structure with a smaller set of component parts
compared to folded Clos networks.
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