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ABSTRACT

The web is nowadays a critical information source for many actors of
the society. As the amount of information exchanged on the web in-
creased, solutions were developed that help humans accessing and
assimilating information better and in a reduced amount of time.
Those include standards for structured information representations
like XML or RDF, as well as techniques like information retrieval and
information extraction. With the advent of the social web, the number
of sources of information, and thus also its diversity, further increased
such that machine processing faces new challenges.

The works we present in this dissertation tackle three challenges
specific to this highly heterogeneous information environment:
1) schema discovery; 2) query relaxation; and 3) propagation of entity
identity revisions. All are approaches to cope with information het-
erogeneity without attempting in vain to impose a unique way of rep-
resenting data for all information providers on the web. We present a
schema discovery strategy that gives humans an overview of the struc-
tured data available in a given heterogeneous entity collection and
that allows them to express queries. With our research in the domain
of query relaxation, we then show how to leverage duplicate entities
to effectively query heterogeneous data in such malleable schemas.
Finally, we study the evolution of entities: we explore techniques for
tracing and revising identities of evolving entities and analyze how
to improve the propagation of information integration revisions to dis-
tributed information consumers.

KEYWORDS: Schema Discovery, Entity Retrieval, Heterogeneous Semi-
Structured Data



ZUSAMMENFASSUNG

Das Web ist eine essenzielle Informationsquelle fiir viele Menschen
in der heutigen Gesellschaft. Mit der Zunahme der Menge an In-
formation, die tiber das Web ausgetauscht werden, wurden Losun-
gen entwickelt, die den Menschen helfen, Information besser aufzu-
finden und aufzunehmen. Dazu zédhlen Informationsrepréasentations-
standards wie XML oder RDF, sowie Techniken wie Information Re-
trieval und Informationsextraktion. Mit dem Aufkommen des Social
Web haben die Anzahl an Informationsquellen, und daher auch die
Vielfdltigkeit von Informationsdarstellungen, stark zugenommen, so-
dass die maschinelle Verarbeitung von Informationen vor neue Her-
ausforderungen gestellt wird.

Die Werke, die wir in dieser Dissertation vorstellen, widmen sich
drei zentralen Herausforderungen, die spezifisch fiir diese sehr hete-
rogene Umgebung sind: 1) Erkundung von Schemata; 2) Relaxation
von Anfragen; und 3) Ausbreitung von Revisionen von Entitdtsidenti-
taten. Die vorgestellten Losungen sind Ansitze mit Informationshete-
rogenitdt umzugehen, ohne vergeblich ein einheitliches Datenrepra-
sentationsmodell anzustreben, das fiir alle Informationsquellen auf
dem Web gelten muss.

Wir diskutieren eine Strategie zur Erkundung von Schemata, die Men-
schen eine Ubersicht iiber die verfiigbaren strukturierten Daten aus
heterogenen Entitditssammlungen geben und sie dabei unterstiitzt,
Datenabfragen beziiglich dieser Sammlungen zu formulieren. Mit un-
serer Arbeit im Bereich der Relaxation von Anfragen, zeigen wir wie
wir duplizierte Entititen ausnutzen konnen, um heterogene Daten
basierend auf flexiblen Schemata abzufragen. Abschlieffend studieren
wir die Evolution von Entitdten: wir erforschen Techniken zum Auf-
spiiren und zur Revisionierung von sich verdndernden Entitiaten und
analysieren wie die Ausbreitung von Revisionen von Entititsidentititen
zu verteilten Informationsverbrauchern verbessert werden kann.

SCHLAGWORTER: Erkundung von Schemata, Abfrage von Entitdten,
Heterogene Semi-Struktuierte Daten
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INTRODUCTION

The internet is a formidable medium of communication allowing
for instantaneous access to an ever-growing amount of information.
The hypertext transfer protocol (HTTP) was elaborated in the early
1990’s to allow the retrieval of hypertext documents (HTML) consist-
ing mainly of text, images and hyperlinks, and intended primarily
for human consumption. As the number of information increased, it
became necessary to develop techniques to facilitate information re-
trieval. Those were first manually maintained catalogs of web pages,
then, later, the first web search engines used inverted indexes (words
as keys and documents as values) together with other techniques to
allow to search for documents given a short keyword query. This ap-
proach to search for information on the web has been further devel-
oped over the years, with the famous introduction of PageRank][18]
in 1998 giving birth to Google.

In parallel to the evolution of keyword based information retrieval,
techniques and formats were developed to facilitate the processing by
machines of the information available on the web. The ultimate goal
of machine processing of web information is to allow humans to find
and assimilate better information in a reduced amount of time. Stan-
dards for representation of structured information facilitating machine
processing include XML and RDE, but also more trivial ones like
comma separated values and spreadsheet files. Even though those are
widely used, an important amount of information remains, primarily
intended to humans and thus more difficult to process machinally.
Those include of course text and images, but also video and audio
data.

The years 2000 saw the advent of the social web characterized by
the increase of user-contributed where information material on the
web are no longer solely contributed by few publishers but also by
an ever-increasing number of users publishing themselves informa-
tion through platforms including forums, blogs, wikis and social net-
works. Examples include Wikipedia, Twitter, Facebook or Blogger, but
also online retailers like Amazon where users can write comments
and reviews about the articles offered. In order to render this informa-
tion intended to human more easily machine processable, information
extraction techniques were developed where different types of natural
language texts can be transformed into more structured formats such
as RDE.

Structured information representation standards and information
extraction techniques enable machines to better process the informa-
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tion available on the web by allowing to identify entities and their
properties that are described online. However, following the dramatic
increase of the number of information sources, the diversity of infor-
mation representations becomes itself a challenge requiring integra-
tion of this information to facilitate machine processing. Information
integration of two sources of structured information like the database
management systems of two merging companies is a well-studied
problem and techniques exist that assist humans in this task. How-
ever, the integration at web-scale of highly heterogeneous informa-
tion constantly produced by a high number of independent sources
is new and presents challenges of different nature. We detail below
some of the challenges that we address in this dissertation and outline
its structure.

1.1 CONTRIBUTIONS

SCHEMA DISCOVERY In Section 2.1.5 we explain how schemas for
structured information are useful to humans not only to know
how to describe new information, but also as a summary of
the information available and as a guide to express queries for
this information. Schemas are also the basis for most existing in-
formation integration techniques. The increase of the number of
structured information sources on the web leads to the dramatic
increase of the number of schemas, whose purpose is canceled
out by their multiplicity. In some cases a schema does not even
exist or is not available. For this reason the first challenge for bet-
ter machine processing of information in highly heterogeneous
environments is to discover a schema for a given collection of
structured entity descriptions.

In Chapter 3 we present an approach to discovering entity types
and their associated attributes when the schema is non-available
or non-existent for semi-structured data presenting a high de-
gree of heterogeneity like the kind of data introduced above
and further detailed in Section 2.2. In this chapter, we show how
an information theoretic measure named Minimum Description
Length (MDL)—a principle for inductive and statistical infer-
ence model selection—can be used as an objective quality mea-
sure to guide a schema discovery process. We devise an algo-
rithm based on spectral graph clustering guided by this schema
quality measure to carry out schema discovery efficiently.

QUERY RELAXATION With the help of a discovered schema, a hu-
man can have an idea of what kind of entities are described in
the data; and she can browse the entity types revealing most
common attributes and particular instance entities. Knowing
what is in a dataset and how the entities are represented allows
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to express queries. However the high heterogeneity among at-
tributes is problematic and leads to the second challenge: for
the user to express queries, i.e., to refer to a particular object’s
property, the user has to express all duplicated attributes repre-
senting this property which is time-consuming and error-prone.

In Chapter 4 we show how we can exploit the dependency be-
tween entity and attribute duplications to devise a query re-
laxation scheme, thus allowing the user to issue more succinct
queries avoiding the repeated mention of duplicated attributes.
Our scheme utilizes duplicates in differently described data sets
to discover the correlations among attributes, and then uses
these correlations to appropriately relax the users” queries. In
addition, it ranks results of the relaxed query according to their
respective probability of satisfying the original query’s intent.

PROPAGATION OF ENTITY IDENTITY REVISIONS In a highly hetero-
geneous and evolving information environment as the web of
today, information integration decisions about entity descrip-
tions have to be constantly revised: two distinct entity descrip-
tions with different identifiers have to be merged because they
describe the same entity, and conversely, one entity descrip-
tion has to be split in two or more descriptions because it am-
biguously refers to more than one distinct real-world entity. It
is impossible to make final information integration decisions
about web entities, mainly for two reasons: 1) new information
about the entities is constantly made available, so that merge or
split decisions have to be revised; and 2) the entities themselves
evolve over time, implying that new descriptions of the same
entity might appear at any time. The last challenge is then to
propagate those entity identity revisions to the agents consum-
ing this information from all over the web, while minimizing
the communication effort required to do so.

In Chapter 5 we propose a solution which relies on labelling
the IDs with additional history information. These labels allow
clients to locally detect deprecated identifiers they are using
and also merge IDs referring to the same real-world entity with-
out needing further communication or processing to resolve the
identity conflict. We investigate how much this lineage labeling
reduces the communication overhead and how this impacts the
uniqueness of the identifiers in the consumers’ local informa-
tion space.

In the next chapter we introduce the concepts and vocabulary nec-
essary to understand in detail the problems addressed in this disserta-
tion and describe in further details the type of data considered. In the
subsequent chapters we present our contributions to the solution of



16 INTRODUCTION

the challenges exposed above; and we conclude with ideas for future
works and an overview of further academic contributions.



PRELIMINARIES & VOCABULARY

We define hereafter the vocabulary and concepts necessary to ade-
quately speak of the matters addressed in the dissertation, and de-
scribe later herewith the nature of the data considered.

2.1 PHILOSOPHICAL BACKGROUND & VOCABULARY

Due to the fundamental nature of some of the subjects addressed
here, experienced by all humans, the literature in philosophy and lin-
guistics on the subject abounds in quantity and diversity, and spans
a long time reaching back to ancient Greece. A rigorous overview of
the subject is way out of the scope of this dissertation. Instead we
share below our personal view on what a web entity is, what is ma-
chine processing of web entities and where discrepancies among web
entities come from, with the goal of better explaining the challenges
addressed and their solutions proposed in the next chapters of the dis-
sertation. The concept exposed are thus not from a particular work or
author, but the followings works were sources of inspiration:

[74] George Lakoff. Women, Fire, and Dangerous Things: What Cate-
gories Reveal about the Mind. University of Chicago Press, 1990.
ISBN 9780226468044

[91] Charles Sanders Peirce. On a New List of Categories. In Pro-
ceedings of the American Academy of Arts and Sciences, volume 7,
pages 287-298, 1868

[98] Howard Robinson. Substance. In Edward N. Zalta, editor, The
Stanford Encyclopedia of Philosophy. Spring 2014 edition, 2014

[109] Linda Wetzel. Types and tokens. In Edward N. Zalta, editor,
The Stanford Encyclopedia of Philosophy. Spring 2014 edition, 2014

2.1.1 Information and its Expression

Humans experience their environment through their senses: sight,
hearing, taste, smell and touch. Charles S. Peirce calls “substance”
this immediate experience of the environment through the senses:

“This conception of the present in general, or it in gen-
eral, is rendered in philosophical language by the word
substance.” [91]

17
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The substance is the raw, uninterpreted experience of the present,
in general, and as such does not have a proper unity. Thanks to our
capacity of abstraction we recognize objects in this always-evolving
substance. This is not trivial: consider observing a small field mouse.
The substance is continuously changing all the time, such that there
is no two moments where the substance is exactly the same. And yet,
among this raw, all-enclosing sensory experience, we recognize one
mouse. Even though the mouse might be moving around sniffing, we
recognize the mouse at two different moments in time to be the same.
This abstraction we call object.

Definition 1 Object. An object is any thing that one can think of, any
thing that can be object of thought.

An object is a construction of the mind and cannot, as such, be
communicated to other humans. To do so requires to express the object
in a way that can be sensed by others. This expressible representation
of an object is what we call an entity.

Definition 2 Entity. An entity is a representation of an object, possibly
including representations of some of its properties—as defined below.

In its simplest form, an entity is a simple token, representing an
object. Examples are “mouse”, “Maus” or “souris” all representing
the same object: the abstract concept of a mouse. An entity can also
include the expression of some of the object’s qualities: in the state-
ment “the mouse is white”, the entity “mouse” is associated with the
entity “white” expressing the object’s whiteness. The expression of an

object’s quality is called a property.

Definition 3 Property. A property is the expression of an object’s quality.
This is realized by the association of the object with one or more other ob-
jects.

The simplest form of an entity consisting of only a token can be
seen as the statement of a simple property: “the object is represented
by the token mouse”, expressing that the object has the quality to be
represented by the token.

2.1.2  Abstraction and Categories

As we defined it above, every object is an abstraction. When we rec-
ognize objects out of our sensory experience—the substance—we ab-
stract the fact that the substance is impermanent and ever-changing
in order to recognize one object. Continuing our previous example of
the mouse: we abstract the ever-changing position, shape and color
of the mouse to recognize the mouse as one and the same object.
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Definition 4 Abstraction. Abstracting consists in removing some proper-
ties of one or several objects in order to generalize them and thus recognizing
them as one. The result of an abstraction is an object and is itself also called
an abstraction.

Definition 5 Super-/Sub-ordinate. If an object a is an abstraction of an-
other object b, we say that a is a super-ordinate of b and, conversely, b is
the sub-ordinate of a.

Since a super-ordinate object a is an abstraction of properties from
a sub-ordinate object b, every property of a is also a property of b
for all a super-ordinate of b; the converse is however not necessarily
true.

Given a domain of discourse, it is useful to define a lower bound
on the level of abstraction of the objects considered. Where this is the
case we make the distinction between those objects at the lowest level
of abstraction that we call instances and other, more abstract, super-
ordinate objects called categories. We say that an instance belong to
a category if the category object is an abstraction over the instance
object. There can be a super-/sub-ordinate relationship between cat-
egories, whereas this is usually not the case between instances. It is
worth noting that the distinction between instances and categories de-
pends on the domain of discourse, i.e., on the context in which the
object are represented and mentioned. As a consequence an object
considered as instance in one context can be considered as category
in another context. This distinction is explored extensively in philos-
ophy where instances and categories are usually named fokens and

types.
2.1.3 Nature of Entities

An entity representing an object can take various forms, and the num-
ber of distinct object representations (entities) for a given object is po-
tentially infinite: since an entity serves as the communication of an
object and its properties between a source and a sink, for an entity
to be a representation of a given object, it is sufficient that the source
and the sink of the communication agree on the entity representing
the object. And since there is a priori no limit on the number of enti-
ties the source and the sink can agree on, there is also no limit on the
number of entities potentially representing a given object.

Humans have a long usage history of various kinds of object repre-
sentations: the first object representations were gestures that Australo-
pithecus (4-2 millions years ago) likely already used [48]. Vocal object
representations appeared then at least 2-100,000 years ago with hu-
man speech. Oldest known pictorial representations, cave paintings,
date back 40 thousand years [93]. And, defining the beginning of His-
tory, written object representations appeared after 6,000 BC [81].

19
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PRELIMINARIES & VOCABULARY

Since the invention of the integrated circuit in the late 1960’s [100]
and the democratization of the internet in the 1990’s, computers and
internet play an ever increasing role in representation, transmission
and processing of information in general, and of entities in particular.

2.1.4 Entities on the Web

This dissertation is concerned with entities on the Web and their pro-
cessing by machines. Definitions 1 and 2 define an entity as a repre-
sentation of an object, which is itself an object of thought. An object
is a pure construction of the mind, and as such doesn’t occur on the
web. We find on the web only representations of objects, that is, entities.
The kinds of entities present on the web and processed by machines
differ from the kinds of entities we find elsewhere only by the digi-
tal nature of the former: pictorial, vocalized, symbolized—written. In
the context of the web, those kinds of entities are more commonly
referred to as image, audio, video and text.

We can distinguish two forms of machine processing of those dig-
ital entities: 1) transmission; and 2) computation. The transmission of
entities is the communication of information about objects from one
computer to another, or from one computer program to another, for
the purpose of representing this information to a human or for fur-
ther machine processing. Entity computation refers to machine process-
ing of entities for other purpose than communication. There exists
many tools to process digital entities, ranging from general purpose
programming language like C or Java, to languages specialized for
data management, like SQL. The number of possible operations spec-
ified by means of those processing languages is unbounded, but some
operations are more fundamental and underlies many others. As ex-
amples of machine processing of web entities, we describe further
below the following operations which we believe are fundamental:
equality, grouping, ordering and aggregation. Note that this list is for
example purpose only, and is by no means sufficient to perform all
possible machine processing tasks.

Equality is a function determining whether two entities represent
the same object:

eq:ExE— [truel|false]

true if e; and e, represent the same object;
eq(er, e2) —

false otherwise.

(2.1)

The equality operation is the basis for another important operation:
grouping. The grouping operation arranges entities into groups such
that all entities of a group maps to an entity representing a same ob-
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ject, for a given mapping function. The equality operation is necessary
to determine to which group an entity belongs.
Ordering is a function imposing an order on a given set of entities:

<:ExE— [true|false]

true if e7 represents an object strictly smaller
e <eyr— than the object represented by e;;

false otherwise.

(2.2)

Aggregation is a class of functions producing a summary entity out
of a set of entities. The input set of entities is typically a group output
from the grouping operation, and the output is one entity—or pos-
sibly another group of entities—summarizing the input. A specific
example of an aggregation function would be the arithmetic sum.

Those basic operations are trivial to implement on textual entities
that are themselves the object they represent, like arithmetic objects
such as natural numbers. They are however more difficult to imple-
ment on other entities, like ones described in natural language in
textual or audio form, or entities appearing in image or video format.
Therefore, before a collection of entities can be machine-processed, it
is necessary to parse those entities, i.e., transform an entity from one
format into another format that is more efficiently machine-processable.

Many formats exist that are—more easily—machine-processable.
The most common ones are simple tables like the ones found in
HTML on web pages or spreadsheets, the relational model[31], entity-
relationship model[26], XML and RDEFE. Those formats all share two
characteristics: 1) they allow a machine to separate one entity from
another in a unambiguous way; and 2) they express properties of an
entity by a tuple consisting of a property category, called attribute and
an attribute value which is itself another entity. The former is a prereq-
uisite for any machine processing: before a machine can compute the
equality operation for example, it must be able to distinguish one en-
tity from another; that is, it has to be able to count the entities present
in the collection considered.

Definition 6 Countable Entity. An entity is said to be countable if it can
be unambiguously and deterministically separated from other entities by a
machine.

The latter allows to distinguish between an entity’s properties thanks
to the attribute and to compute operations on the attributes’ values.

Definition 7 Attribute. An attribute is the representation of a category of
properties; that is, an abstraction over properties expressing a quality of a
category of objects.

21



22

PRELIMINARIES & VOCABULARY

Note that an attribute is the representation of a category, and a cat-
egory is an object; therefore an attribute is the representation of an
object and hence itself an entity.

Definition 8 Attribute Value. An attribute value is an entity associated
with an attribute. An attribute value together with the corresponding at-
tribute express an object’s property; that is they represent an object’s quality.

Entities consisting of a set of attribute and value pairs are called struc-
tured. Structured entities are by definition countable. Entities that are
not structured are called unstructured, and unstructured but count-
able entities are called literal.

To better understand the concepts defined here it is useful to pre-
cise the relation between them and the entities and relations as un-
derstood in the entity-relationship model. Entities and relations are
defined as follows by Chen in [26]:

“An entity is a "thing” which can be distinctly identified.
A specific person, company, or event is an example of an
entity. A relationship is an association among entities. For
instance, ‘father-son’ is a relationship between two "per-
son’ entities.” [26]

In our definitions above we do not make the distinction between en-
tities and relationships: a relationship is an entity, and an attribute is
what relates entities between each others, whether they are relation-
ships or not. We intentionally avoid making the distinction between
an entity and a relationship because this distinction is a modeling
decision, that is, in our terms, just ways to represent a same set of
objects with different entities, as Chen mentions it in a footnote to
the previous citation:

“It is possible that some people may view something (e.g.
marriage) as an entity while other people may view it as a
relationship. We think that this is a decision which has to
be made by the enterprise administrator. He should define
what are entities and what are relationships so that the
distinction is suitable for his environment.” [26]

2.1.5 Schema

The purpose to express entities in a structured way as a set of at-
tributes and their values is to allow humans to instruct machines
how to process those entities using query languages such as SQL or
SPARQL [1] for example, or using more general purpose program-
ming languages such as Java or C. Abstraction—the ability to re-
fer with one entity to multiple other more specific ones—is the key
characteristic allowing to describe processing operations using entity
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types and attributes. For this reason, attributes are usually expressed
as literal entities: representations of the property abstraction on which
the equality operation can be computed by exact matching, which
is most efficiently machine computable. This is usually achieved by
using the same textual entity as attribute for all entities sharing a
property in the category represented by this attribute.

A set of attributes allowing to efficiently compute the equality func-
tion are called key attributes. Note that, given an entity, different sets
of attributes can serve as key attributes; notably, if two attributes are
individually key attributes, both attributes together are also key at-
tributes.

In the same way attributes help to instruct machines how to process
categories of properties, entity types help instruct machines how to
process categories of entities.

Definition 9 Entity Type. An entity type corresponds to a category and
specifies the attributes to be used to describe entities representing objects
belonging to the category. An entity type can be associated to an entity
representing the category it corresponds to. This associated entity is called
the entity type’s label.

A schema defines entity types to represent the objects part of the
domain considered and specifies how to describe and interpret literal
entities. The collection of entities to which a schema is assigned is
called the population of the schema.

Countable entities as defined in Definition 6 complying to an avail-
able schema are said to be structured and countable entities for which
no schema is known or exists, or which do not comply to the schema,
are called semi-structured.

We list below the purposes of a schema for humans and for ma-
chine, inspired by [87, 94, 36]. A schema has the following purposes
for humans:

EXPRESSION GUIDE Guide about how to express structured entities
for a given domain. This is typically useful when filling web
or other forms as interface to databases or other structured en-
tity repositories. This includes what literal entities to use for
expressing attributes or how to represent attribute value enti-
ties: must it be a literal entity or the value of a key attribute and
which key attribute?

QUERY GUIDE Guide about how to query or program machines to
process the schema’s population. In particular the entity type
labels and literal attributes are used by a human programmer
to refer a collection of entities.

SUMMARY Summary about what kind of entities the schema’s popu-
lation contains. This is essential and complementary to the query
guide function: if the query guide indicates humans how to refer
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to entities, the summary function indicates what there is to refer
to.

In addition, a schema has also the following purposes for machines:

EQUALITY DEFINITION A schema can define, in a way that is inter-
pretable by a pre-programmed entity repository like a relational
database system, how to compute equality between entities.

STORAGE SPACE OPTIMIZATION The availability of the possible at-
tribute literals, and possibly of constraints on the attribute val-
ues, an entity storage system can optimize the storage for space.

PROCESSING SPEED OPTIMIZATION The schema allows to trade space
for processing speed by building indexes which allows faster se-
lection of the entities. It also allows for automatically optimizing
query execution plans as is typically the case in processing of
SQL queries in relational database systems.

2.2 NATURE OF THE DATA CONSIDERED
2.2.1  Open Information Extraction

The overwhelming majority of the information on the web is written
by and intended to humans and therefore naturally in textual and un-
structured form. In order for a machine to process this information for
tasks other than transmission and display, it is necessary to parse this
unstructured textual information into structured or semi-structured
entities.

Information Extraction (IE) is the task consisting of parsing unstruc-
tured textual information into structured entities’. Information ex-
traction uses supervised machine learning techniques, such as Hid-
den Markov Models [50, 102], Rule Learning [103] or Conditional
Random Fields [92]. Machine learning models are trained on natural
language processing (NLP) features with manually annotated exam-
ples. This traditional information extraction is domain specific and
the entities extracted are structured in the sense that the attributes
and entity types are predefined and thus form a schema.

The need of manual training example annotation for information
extraction makes it inappropriate to extract information at web-scale
where the domain is unbounded and the information to extract un-
known a priori. To address those issues Banko et al. proposed in 2007
the task of Open Information Extraction [9] consisting in parsing the
entity attributes in addition to the subject and object of the attribute.

In the IE literature, the information extracted from text is mostly called “relation” in
reference to the relational model, and the word “entity” refers to a named entity, i.e.,
a noun phrase in English grammar. An IE “relation” is a type of what we name an
entity, due to the broad definition of the latter that we adopted.
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Open information extraction takes in a text document and produces a
collection of tuples of the form (eq; att;e;) where ey and e, are enti-
ties occurring in noun phrases and att is the attribute. Below are out-
put examples from the OLLIE open information extractor presented
in [80]:

1. After winning the Superbowl, the Saints are now the top dogs
of the NFL.

= ( the Saints ; win ; the Superbowl )

2. There are plenty of taxis available at Bali airport.

= ( taxis ; be available at ; Bali airport )

3. Microsoft co-founder Bill Gates spoke at. ..

= ( Bill Gates ; be co-founder of ; Microsoft )

4. Early astronomers believed that the earth is the center of the
universe.

= ( the earth ; be the center of ; the universe )

5. If he wins five key states, Romney will be elected President.

= ( Romney ; will be elected ; President )

The seminal paper of Banko et al. presented TEXTRUNNER which
works in two steps. First, a grammatical parser is used to train a Naive
Bayes model classifying candidate tuples (ey; att; e2) as trustworthy or
not. Second, candidates tuples are generated using heuristics based
on part-of-speech (POS) tags and other simple textual features, and
keeps the tuples labeled as trustworthy. This approach allows to per-
form open information extraction without a grammatical parser in
the Second phase, which is interesting for scalability since grammati-
cal parsers are significantly slower compared to a Naive Bayes classi-
fier.

Following up, REVERB [46, 45] gets rid of the initial learning step
and uses shallow syntactic processing to extract tuples. WOE [111]
uses Wikipedia infoboxes to learn extraction patterns. OLLIE [80] uses
REVERB to learn how to map dependency trees to open IE tuples thus
increasing the number of attributes that can be extracted. oLLIE also
adds contextual analysis, extracting attribution like in sentence #4 in
the example list above and conditional modifiers (if, when, although,
because, ...) like in sentence #5.

Data resulting from open information extraction is semi-structured
in the sense that it is machine countable and that, clearly, no partic-
ular schema is ever used or defined: attributes used in the extracted
data are the result of processing of human contributed and human
intended natural language. Each entity resulting from open informa-
tion extraction has two attributes and their corresponding value: 1) an
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identifying attribute whose value is the subject entity e; of the ex-
tracted relation; the attribute itself is implicitly specified by entity
eq being the subject of the extracted relation; and 2) the extracted
attribute att whose value is e, and object of the extracted relation.
This naturally results in a proliferation of the representations of a
same object in as many two-attributes entities as there is relations
extracted about this object. Those two-attributes entities could be
equated and automatically merged based on the value of the iden-
tifying attribute (the subject of the extraction relation). Those identi-
fying entities present however two main challenges: duplication and
ambiguity.

Entity duplication refers to the representation of one object by enti-
ties that are not automatically equatable. This happens often in nat-
ural languages to render communication faster: humans are good at
contextualization and can therefore easily infer implicit information
from this context. For example, in a political television show taking
place in the US in 2014, the two entities “the president” and “Barack
Hussein Obama II, born August 4, 1961, Honolulu, Hawaii, United
States” would certainly be recognized to represent the same object
by most humans—at least the ones susceptible to watch the show—
whereas it is challenging for a machine to assert those two entities
equal. The shorter time it takes to communicate the first entity than
the second largely compensates the time overhead—if any—a human
needs to appropriately recognize the object represented by “the pres-
ident” given the context.

Entity ambiguity refers to the representation of distinct objects by
the same entity. It happens similarly often than entity duplication
for the same reason: given another context than the one described
in the previous example, the same entity “the president” would rep-
resent another object than “Barack Obama.” For example if the con-
text is that of a political show in France, where the president is as
a central political figure as in the USA, the entity “the president”
would undoubtedly be recognized as representing the French presi-
dent Frangois Hollande.

Both entity duplication and ambiguity in natural language are the
result of omission of some attributes in the entity describing an ob-
ject in order to increase communication speed. Note the distinction
between omission and abstraction described in Section 2.1.2: abstrac-
tion applies to objects and consists in removing some properties from
the object in order to generalize it, whereas by omission the object
intended stays the same but attributes are removed from the entity
representing the object in order to reduce communication time and
effort. In natural language the goal is to reduce communication time
and effort for humans, which might be an inadequate optimization
for machine processing.
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2.2.2  Web Tables

Tables are a common way to present structured entities to humans
and are naturally found on the web, in an HTML-encoded form or as
images. In their work on WEBTABLES [24, 22] Cafarella et al. “applied
an HTML parser to a multi-billion-page crawl of the English-speaking
web to obtain about 14.1B instances of the table [HTML] tag” [24].
Using a classification algorithm they could estimate that 1.10% of
those tables present semi-structured entities®>, which is a small pro-
portion but still represents an important absolute number of 150M
according to their estimations, representing a formidable source of
data for further machine processing. Adelfio et al. [2] improved the
table recognition ratio and applied their approach to spreadsheets as
well. They concluded that the number of semi-structured entities in
tables is likely to be higher.

In their work on Ocrorus [23], following up on WEBTABLES, Ca-
farella et al. proposed to search for relevant tables that can then be
contextualized by adding attribute values from the text surrounding
the table, and to extend the tables by finding other tables that can
potentially be joined with the table considered. Part of this work is
available to the public today in the Google Tables? and Google Fusion
Tables* products.

Elmeleegy et al. [42, 43] showed that collections of entities can be
extracted from HTML lists found on the web. The extracted entities
are not quite structured because they don’t have attributes, but only
attribute values, corresponding to tables without column headers. At-
tributes can be assigned using class labeling techniques [104, 77, 106],
thus yielding proper semi-structured entities as we defined them.

For a survey on table processing see [44] where Embley et al. report
the state-of-the-art regarding detection and recognition of tables from
a range of different input media—paper or electronic—and formats,
and review the potential usage of table processing.

Entities described in web tables are destined to humans, but differ
from entities described in natural language as considered by open in-
formation extraction by their relative structured nature. In this sense
they can be considered as structured data intended for humans. But
they are not structured—nor semi-structured—for machines in the
sense that they are not unambiguously and efficiently countable, nei-
ther are their attributes and respective values; hence the need to parse
them to render them machine-countable. Such entities extracted from
web tables might have literal attributes in case the table has headers

2 They call those tables relational in reference to the relational model introduced by
Codd [31] and they correspond to our definition of a semi-structured entity as a set
of attribute-value pairs.

3 http://research.google.com/tables

4 http://www.google.com/fusiontables
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and those can be extracted; in which case entities extracted from a
same table share the same structure and attributes.

Table headers and attribute value entities—cell content—are pro-
duced by and intended for humans and thus present characteristics
similar to entities in natural language. For this reason, entities ex-
tracted from web tables when considering at scale present character-
istics similar to entities resulting from open information extraction:
an inherent absence of schema, resulting in entity duplication and
ambiguity, including for the attributes and their values.

2.2.3 Social and Linked Data as a Whole

Open Information Extraction and Web Tables extraction can be ap-
plied to traditional web pages, and also to contributions on more re-
cent Social Web platforms like Wikipedia, Twitter, Facebook or Blog-
ger. The social nature of those relatively new supports of information
implies that the entities represented there come from an extremely
high number of sources: before the advent of the Social Web, the in-
formation published on a web site would have a limited number of
sources, i.e., the humans authoring information were relatively small
and their publication were in most cases coordinated, thus limiting
the heterogeneity. This is less true for Social Web platforms, where,
by their very nature, a high number of authors publish, in a com-
pletely independent manner. This implies that the heterogeneity of
the semi-structured information extracted by techniques mentioned
above becomes greatly increased.

Some Social Web platforms support direct publication of (semi-)
structured entities. Wikipedia for example allows to publish semi-
structured information in its Infoboxes. The entities in Wikipedia’s In-
foboxes are not as highly heterogeneous as for Open Information and
Web Tables Extractions as mentioned above, since a system of tem-
plates help contributors to re-use similar attributes and entity types.
However the templates themselves are heterogeneous, and, to allow
a greater liberty of expression, no mechanism exists that would en-
force an Infobox to comply to any template. Freebase is also a Social
Web platform where everybody can contribute structured informa-
tion. Freebase’s schemas are however more controlled and enforced
than Wikipedia’s Infoboxes, but still allows duplicate and ambiguous
entities and attributes.

The Semantic Web initiative of the W3C encourages the publication
of RDF (semi-) structured information on the web, along to traditional
HTML documents. Good practice wants that an RDF instance docu-
ment is also assorted with a schema (in RDFS or OWL). However, the
high number of sources of RDF data implies unfortunately also a high
number of schemas and similar heterogeneity problems (duplication
and ambiguity) can be encountered when considering the Semantic
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Web as a whole or when considering the results of Semantic Web
search engines like Swoogle5 or Sindice® that can retrieve entities us-
ing various schemas that can present heterogeneous characteristics.

The highly heterogeneous semi-structured data described in those
sub-sections is the kind of data presenting challenges addressed in
this thesis, which we develop in the following chapters.

5 http://swoogle.umbc.edu
6 http://sindice.com
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UNSUPERVISED SCHEMA DISCOVERY BASED ON
SCHEMA QUALITY

3.1 INTRODUCTION

As introduced in Chapter 2, schemas play a crucial role in manage-
ment and consumption of structured data. To humans, a schema pro-
vides not only a summary about what can be found in the data, but
also a guide on how to retrieve specific information from the data.
To machines, an appropriate schema provides important information
to enable efficient storage management and query processing. This
is well-known in the case of relational database. Relational schemas,
i.e. definitions of tables and their columns, are the key references for
users to construct SQL queries and to explore a database. They are
also important information for DBMS to perform effective query op-
timization.

Autonomy of structured data creation, ease of data publication
and advance of text processing technologies like automated extrac-
tion have led to an explosion of the availability of structured data on
the Web. However, due to their origin a substantial part of this data
lacks a well-defined and well-understood schema that would enable
users and machines to efficiently make use of it. This phenomenon is
especially notable on the Web:

Open Information Extraction. The overwhelming majority of the
information on the Web is written by and intended to humans and
therefore naturally in textual and unstructured form. In order for a
machine to process information efficiently on the Web, Information
Extraction (IE) is widely applied to transform this textual informa-
tion into structured entities. IE is traditionally designed for domain
specific applications. It assumes predefined data schemas and relies
heavily on supervised machine learning. This prevents it from scal-
ing on the Web, where the domain is unbounded by nature and the
information to extract therefore unknown a priori. To address these
issues, Banko et al. proposed the task of Open Information Extrac-
tion [9], which aims to transform a textual document into a collection
of triples of the form {e;; att; ez}, where e; and e, are entities and
att represents an attribute. Without a predefined schema, Open IE
techniques [9, 111, 80] enable us to extract large amount of structured
data from the Web. However, lacking a schema, the data generated by
Open IE also pose a great challenge for various applications to put it
to good use.
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Web Tables. Tables are a common way to present structured en-
tities to humans and are naturally widely found on the Web, in an
HTML-encoded form or as images. A variety of methods [22, 23, 2]
have been proposed to harvest the tables on the Web, and compose
them into a common knowledge repository. As Web tables are created
by different actors and for different purposes, they are usually highly
heterogeneous in their structures and terminologies. When combined
into a single repository, they lack a common schema for users to query
and explore the data.

Collaborative Content Authoring. In recent years, Web 2.0 appli-
cations have created various platforms for Web users to contribute
contents. Wikipedia is a very successful case. However, as most con-
tent authors do not consistently refer to common structures when
creating the content, the resulting data lacks a well defined schema.
For instance, the Infoboxes of Wikipedia are intended to provide
structured information about real-world entities, visible as a table
on Wikipedia articles. While Wikipedia provides various meta-data
templates for content authors to create Infoboxes, the authors did not
succeed to comply with it, due in part to the lack of coherency of
those templates. As a result, the team of DBpedia [7] had to resort
to laborious manual processes to map the Infoboxes to predefined
schemas.

Considering the scale and the heterogeneity of the data in the afore-
mentioned scenarios, manual schema construction does not seem re-
alistic. It is desirable that a machine can automatically induce the
schema from the data itself, without any interference or guidance
from human. We call such an automated process unsupervised schema
discovery.

To construct a schema for a given dataset, some common activities
include categorizing the various data items into classes, characteriz-
ing each class using a set of attributes and establishing specialization
relationships between the classes. A wide spectrum of choices exist
for each of the activities: one can choose between a fine-grained cate-
gorization and a coarse one; when characterizing a class, one can ex-
haustively list all possible attributes or select only the most represen-
tative ones. As a result, a huge amount of syntactically valid schemas
can be generated for a given dataset, while not all the schemas are
“good” and provide effective means for digesting the data. Therefore,
unsupervised schema discovery is typically faced with two funda-
mental questions: 1) What constitutes a good schema given a dataset?
And 2) how to generate a good schema automatically?

In this chapter, we propose and answer for both challenges. We
apply the idea of Minimum Description Length (MDL) [10, 65] to
measure the quality of a schema, and then use this schema quality
measure to find a good schema given a dataset. MDL is a principle
for inductive and statistical inference model selection, which says that
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the best model is the one that requires the least space for encoding
itself and the data. Practice shows that the principle is able to achieve
an appropriate trade-off between the generality and the descriptive
power of a hypothetical model. A schema can be regarded as an en-
coding model for its data. Along the lines of the MDL principle, we
propose a schema quality measure which aims at encoding an en-
tire dataset, including the schema itself, using the least space, that is,
we aim at minimizing the description length of the schema and the
dataset. Our experiments show that this quality measure is able to
effectively guide unsupervised schema discovery in identification of
good schemas.

Given the quality measure based on MDL, schema discovery can
be regarded as an optimization problem, i.e., finding a schema of
optimal quality. This problem turns out to be non-trivial, especially
when the target dataset is big and heterogeneous. Thus, we propose
a method called SQuaScHeD * for fully automatic schema discov-
ery. Given a dataset about real-world entities, SQUASCHED aims to
automatically identify the entity types, the representative attributes
of each entity type and the specialization relationships between the
entity types. The output of SQUASCHED is a hierarchical conceptual
schema, which can support users in navigating through the data or
in formulating structured queries. To maximize the quality of the re-
sulting schema, SQUAScHED applies spectral graph clustering, which
can accurately cluster both entities and attributes into conceptual
categories. We have evaluated SQuaScHeD on Wikipedia Infoboxes,
which contain a million of data instances and thousands of entity
types. The results demonstrate the feasibility and effectiveness of un-
supervised schema discovery in highly heterogeneous settings.

The rest of the chapter is organized as follows. Section 3.2 pro-
vides a formal definition of the schema discovery problem. Section 3.3
presents our measure of schema quality based on MDL. Section 3.4
presents SQUASCHED, a quality guided algorithm to perform schema
discovery. Section 3.5 presents the results of our experimental evalu-
ation. Section 3.6 summarizes the related work and Section 3.7 con-
cludes the chapter and discusses future research directions.

3.2 PRELIMINARIES

In this chapter, we restrict the problem of schema discovery to a sim-
ple and generic entity-centric model, though our solution can be ap-
plied to a broader scope of data models. We assume that a dataset is
composed of a set of entities (representing real world or abstract ob-
jects), each being described by a set of attributes. For each attribute,
we only consider its type (e.g. person.name) and ignore its value
(e.g. Michael Jackson). We believe that attribute types contain enough

1 Spectral Quality-guided ScaHEma-Discovery
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Schema One: Schema Two:
Class1: Name, Birthday Class1: Name, Birthday
{
Original Dataset: Encoded Dataset: Class2: Major, Grade
Entity1: Name, Birthday, Major, Grade Class1( Class3: Interest, Title Schema Three:
Entity2: Name, Birthday, Major, Grade Entity1: Major, Grade ) Class1{
Entity3: Name, Birthday, Major, Grade Entity2: Major, Grade Class2: Name, Birthday, Major, Grade
Entity4: Name, Birthday, Major, Grade Entity3: Major, Grade Encoded Dataset: Class3: Name, Major, Grade
Entitys: Name, Major, Grade Entity4: Major, Grade Class2 { Class4: Name, Birthday, Grade
Entity6: Name, Major, Grade EntityS: Major, Grade, —Birthday Entityd, Entity2, Entity3, Entityd, Classs: Name, Birthday, Interest, Title
Entity7: Name, Birthday, Grade Entity6: Major, Grade, —Birthday Entity5: —Birthday Class6: Name, Interest, Title
Entity8: Name, Birthday, Grade Entity7: Grade Entity6: —Birthday Class7: Name, Birthday, Interest
Entity9: Name, Birthday, Interest, Title Entity8: Grade ) Entity7: —Major, !
Entity10: Name, Birthday, Interest, Title Entity9: Interest, Title Entity8: —Major }
Entity11: Name, Birthday, Interest, Title Entity10: Interest, Title Class3 { Encoded Dataset:
Entity12: Name, Birthday, Interest, Title Entity11: Interest, Title EntityS, Entity10, Entity11, Entity12, Class2 { Entity1, Entity2, Entity3, Entity }
Entity13: Name, Interest, Title Entity12: Interest, Title Entity13: ~Birthday, Closs3 (Entitys, Entity6 }
Entity14: Name, Interest, Tile Entity13; Interest, Title, ~Birthday Entity14: —Birthday, Clossa (Entity7, Entiye)
Entity15: Name, Birthday, Interest Entity14: Interest, Title, —Birthday Entity15: —Title, lassS { Entity9, Entity10, Entity11, Entity12}
Class6 { Entity13, Entity14)
Entity16: Name, Birthday, Interest Entity15: Interest Entity16: Title } c
Entity16: Interest} lass7 { Entity15, Entity16}
(a) b) © (d)

Figure 3.1: Illustrative Example for dataset Encoding and Schema Quality

relevant information for schema discovery in the way they co-occur
in entities. While attribute values contain additional information for
further enhancing the results of schema discovery, they represent an
additional source of noise and requires further and more complex
processing, which we intend to tackle in future work. For simplicity,
we use the term attribute when we refer to attribute type in the rest
of the chapter. Based on this notion of attribute, our definitions of
dataset and schema are as follows.

Definition 10 Dataset. A dataset is a triple D = (A, E,da), where A
is a set of attributes, E is a set of entities, and da is an entity-attribute
assignment function da : E — P(A) from E to the power set of A, which
assigns a subset of the attributes to each entity.

An example of a dataset is given in Figure 3.1(a). It contains 16
entities described by overall 6 attributes. The first eight entities are
eight students, whose typical attributes include Major and Grade.
The last eight entities are eight researchers, whose typical attributes
include Interest and Title.

Definition 11 Schema. Given a set of attributes A, a schema S(A) =
(R, C,p, aa) is a class hierarchy composed of a root class R, a set of classes
C where R ¢ C, a subclass relationship p : C — C U{R} mapping each
class to its superclass, and a class-attribute assignment function aa :
CU{R} — P(A) assigning a set of attributes to each class. In addition, aa
is subject to the inheritance constraint implied by the subclass relationship.
That is to say, for each pair of classes c1,c2 € CU{R} such that p(cy) = c2,
if a € aa(cy) then a € aa(cy).

Basically, a schema defines the classes (i.e. entity types), their sub-
sumption relationships, and the particular attributes for each class.
Schema Two in Figure 3.1(c) is a possible schema for the data set in
Figure 3.1(a), where Class1 is the root and Class2 and Class3 are its
subclasses. Each class is associated with two explicit attributes. Ac-
cording to the inheritance constraint, we can infer that Name and
Birthday are also attributes of Class2 and Class3. As an interpreta-
tion, we can regard Class1 as Person, Class2 as Student and Class3
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as Researcher. Schema One and Schema Three in Figures 3.1(b) and 3.1(d)
are further example schemas for the same data set. Schema One is spe-
cial, as it contains only a single class, which is the root.

When there is a schema defined, the entities in a dataset can be
described referring to the schema, instead of listing their attributes
exhaustively. There are a variety of ways to encode a dataset based
on a schema. We choose one encoding method for the purpose of
illustration.

Definition 12 Dataset Encoding. Given a dataset D = (A, E,da) and a
schema S(A) = (R, C,p, aa), an encoding of D based on S(A) is represented
by En = (ea,sda). ea is an entity-class assignment function ea : E —
P(C U{R}) assigning a set of classes to each entity. sda is a schema based
entity-attribute assignment function sda : E — P(AU—A). —A repre-
sents all the negated attributes, each indicating the absence of an attribute.
sda assigns to each entity a set of attributes and negated attributes based on
the following principle: (1) given e € E, if a € da(e) and a ¢ aa(ea(e)),
then a € sda(e); (2) given e € E, if a & da(e) and a € aa(ea(e)) , then
—a € sdaf(e).

Figures 3.1(b), 3.1(c) and 3.1(d) show the encodings of the dataset
in Figure 3.1(a) based on the Schemas One, Two and Three, respectively.
In Figure 3.1(b), all the entities are assigned to the root class. As it is
known that Name and Birthday are attributes of the root class, we
do not need to encode them again when describing the individual
entities in the class. Only when attributes are absent in some entities
of a class, we assign their negation to those entities. In Figure 3.1(c), 8
entities are assigned to Class2 and the other 8 are assigned to Class3.
As the attributes of Class2 and Class3 can cover the attributes of
the entities quite well, only a small number of negated attributes
is required to encode the entities. In contrast, Figure 3.1(d) uses a
very fine-grained schema, such that no entity-attribute assignment is
needed for encoding the entities.

3.3 QUANTIFYING SCHEMA QUALITY

The goal of schema discovery is to find a good schema for a given
dataset. As illustrated by Figure 3.1, even for a very small dataset,
there can be a large number of possible schemas. The question is how
to determine which schema is the best. Comparing the three schemas
in Figure 3.1, Schema Two seems to be the best fit. Schema One is
overly general, as it is natural to classify the first 8 entities and the
last 8 entities into two different classes. In contrast, Schema Three is
a case of overfitting. Some of its classes can actually be merged. For
instance, while the attribute Major is missing on Entity7, this does
not seem sufficient to justify a separate class differentiating Entity7
from Entityl to Entity4 — they share the other three attributes and
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missing attributes are very common in an open-world dataset. In com-
parison, Schema Two is sufficiently general while capturing the main
characteristics of the dataset.

Our basic intuition is that a good schema should be precise enough
to capture the regularities in the data while providing a useful amount
of generalization to keep the number of classes under control. This
intuition is similar to the spirit of the Minimum Description Length
(MDL) principle [10, 65], which claims that the best hypothesis should
allow for maximum compression and hence imply minimum descrip-
tion length. Inspired by this principle, we propose to measure the
quality of a schema with respect to the dataset it describes as the
amount of storage space needed to describe both the schema and the encoded
dataset, i.e., the overall description length.

To understand the quality measure, consider the examples in Fig-
ure 3.1 again. For simplicity, we use the number of words to mea-
sure the description length, i.e., the storage space needed to describe
the schema and the encoded dataset. We omit punctuation charac-
ters for the sake of simplicity. As shown in Figure 3.1, Schema One
requires 3 words for describing the schema and 49 words for its en-
coded dataset. Thus, its overall description length is 52. Schema Two
requires 9 words for the schema and 26 words for describing the
dataset. Its overall description length is 35. Schema Three requires 27
words for the schema and 22 words for its encoded dataset. Its over-
all description length is 49. As expected, Schema Two exhibits the
smallest overall description length and thus is of the best quality.

We propose a simple probabilistic model describing a schema and
its related data, which allows us to compute the entropy and finally
the minimum length required to describe the schema and the data.

As introduced in Section 3.2, a schema encodes two kinds of in-
formation: 1) assignment of attributes to types; and 2) assignment of
entity instances to types. To describe an entity knowing its type and
the attributes an instances of this type might have, we need only de-
scribe the anomalies this specific entity instance shows. This is what
we refer to by describing the data with help of the schema.

Given a schema S and a dataset D, we formally define the overall
description length L(S, D) as the sum of the description length of the
schema L(S) and that of the dataset encoded with this schema L(D|S):

L(S,D) = L(S) + L(D|S) (3.1)

According to Definition 11, a schema S is composed of four items:
R, C, p and aa. Among the four, the class-attribute assignment aa
dominates the description length, as we can deduce R and C from aa.
The parent function p is considered by dependencies within aa, as
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will be clarified later. Therefore, the description length of aa can be
used to determine L(S). Thus, we can write L(S) as

L(S) = L(aa) (3-2)

According to Definition 12, a dataset is encoded using an entity-
class assignment ea and a schema based entity-attribute assignment
sda. Therefore, the description length of the encoded dataset can be
calculated as

L(DIS) =L(ea) + L(sda) (3-3)

Given a schema S and a dataset D, there are multiple possible eas
and their corresponding sdas. Nevertheless, we can compute the min-
imum L(DIS) using information theory, without enumerating all the
possible eas and sdas. In what follows, we show how to estimate
L(aa), L(ea) and L(sda), respectively.

3.3.1 Description Length of Schema

As mentioned earlier, the class-attribute assignment dominates the de-
scription length of a schema. Its description length can be calculated
as the amount of information required to describe which attribute is
assigned to which class. There are multiple ways to model this assign-
ment. We choose to represent each class as a random variable, which
takes its value from a binary alphabet {true, false}. The random vari-
able has a certain realization on each attribute. The value of a ran-
dom variable is true if the attribute is present in the class and false
otherwise. We assume that the probabilistic distribution of a class’s
random variable depends solely on its parent’s random variable. This
reflects the parent relation p between a class and its subclasses, as it
favors schemas where child-classes are similar to their parent — more
precisely, of high mutual information.

With the model, given a schema S(A) = (R, C,p, aa), the descrip-
tion length of aa can be calculated as:

L(aa) =|A| H(aa) (3-4)

where A is the set of attributes in the schema and H(aa) is the joint
entropy of the random variables as defined in the model.

We assume that the probabilistic distribution of a class’s random
variable depends solely on its parent’s random variable. This reflects
the subclass relation p between a class and its subclasses. Let aa.
represent the random variable of the class c. The dependency model
defined above allows us compute the joint entropy as:

H(aa) = ) H(aac|aap()) (3.5)
ceC
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where C represents the complete set of classes and p(c) represents
the superclass of the class c. As the root class R has no superclass, its
entropy is simply H(aagr). Note that the entropy of a discrete distri-

bution Pis 3 ,.pp log(1/p).

3.3.2 Description Length of Dataset

3.3.2.1 Entity-Class Assignment

We measure the information of an entity-class assignment analogously
to that of class-attribute assignment. We also correspond each class to
a random variable, while the realization of each random variable on
each entity depends on whether the entity belongs to the class corre-
sponding to the variable. Then, given a schema S(A) = (R,C,p,aa)
and an encoded dataset En = (ea, sda), the description length of the
entity-class assignment can be calculated as:

L(ea) = |E| H(ea) (3.6)

= [E| Z H(ea, |eap(c))
ceC
where E represents the complete set of entities, C the complete set of
classes, and ea. the random variable of the class c.

3.3.2.2 Schema Based Entity-Attribute Assignment

There are two ways to model an entity-attribute assignment proba-
bilistically — either treat each entity as a random variable or treat each
attribute as a random variable. We opt for the latter, since the number
of entities is likely to be greater than the number of attributes, so that
the marginal probability estimation can be more accurate. In other
words, we model each attribute as a random variable. The random
variable has a certain realization on each entity. It takes the value
true for the entities on which it occurs and false for the entities on
which it does not occur.

In analogy to the previous models, given the schema S, the amount
of information needed to describe the entity attribute assignment sda
can be calculated as:

L(sda) =[E[ H(da|S) = [E[H(da|SA) (3.7)

where E represents the complete set of entities and H(da|S) the con-
ditional entropy of the attribute random variables given the schema
S. Concretely S is represented by the entity-assignment ea and the
attribute assignment aa described above, i.e., random variables Sp =
{saVa € A} taking value true for entities assigned in a class where
a is assigned and false otherwise. Note that the sda defined in Def-
inition 12 is for the purpose of illustration. It is not necessarily the
optimal encoding method that can achieve the minimum description
length.
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3.3.2.3 Conditional Distribution of Attribute Variables

The conditional entropy H(da|S) can in principle be expressed as the
difference between two joint entropies, that is, H(da|Sa) = H(da A
Sa) —H(SA). However, as there can be a large number of attributes
(in the order of thousands or more), the samples for estimating the
joint probabilities are usually insufficient, i.e. the number of entities,
resulting in a problem of under-sampling. We choose to adapt the
approach of Chow & Liu in [29] to approximate the joint distribu-
tions, as it is able to deal with the under-sampling problem while
still considering dependency between the schema and the dataset.
This approach approximates the joint distributions as the products
of a subset of the possible second- and first-order distributions, such
that a random variable depends at most on one other random vari-
able, thus building a forest of trees where a child variable depends
only on its parent. In the case of description length for schema quality,
we want to constrain each attribute-entity assignment da, to depend
on the corresponding variable s, for the same attribute a, since we
want to measure how well the schema (s,Va € A) help describe the
data. Therefore, the Chow & Liu selection of second-order distribu-
tions is limited to the variables in Sa. If we use H(SA) to denote the
maximum likelihood estimate of H(S ) computed using the Chow &
Liu method, we can write the joint entropies as:

H(da A'SA)~ ) H(daalsa)+H(SA) (3.8)
acA

where A represents the set of attributes, da, the random variable of
the attribute a realized in the entity-attribute assignment da, and sq
the random variable of the attribute a realized in the schema S as
described above. Since H(SA) is exactly the quantity that we deduce
from the joint entropy to yield the conditional entropy of da given
Sa, we can avoid the computation of HA(SA) and write the description
length of the entity-attribute assignment conditioned on a schema as:

L(sda) =L(da|Sa) ~[E| ) H(daq|sa) (3.9)
acA

This completes our schema quality measure. Finally, we can write
the description length of a schema with respect to a dataset as:

L(S,D) = L(aa) +L(ea)+L(sda) (3.10)
~ |A] Z H(aac [aay(c))

ceC

+ ‘E| Z H(eac ‘ eap(c))
ceC

+ [EJ Z H(daa ‘ Sa)
acA
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3.3.3 Resilience Against Data Heterogeneity

Previous approaches to schema induction [53, 62] emphasize syntacti-
cal compatibility between the schema and the data. These approaches
do not apply well to the data on the Web, which is so heterogeneous
that syntactical compatibility does not necessarily reflect the correct-
ness of the discovered schema. There are a few types of heterogeneity
in Web data. First, Web data makes an open-world assumption, such
that missing attributes are very common. Second, synonymy and pol-
ysemy can be found among different data entities. The synonymy of
attributes is observed when two or more lexically distinct attributes
are used to describe one meaning of a property. For example, when
first_name and forename are both used to describe the given name of a
person, we say that they are synonymous attributes. Conversely, if a
same attribute is used to describe more than one meaning, we say that
the attribute is polysemous. For example, title is used simultaneously
to refer to the title of a book and a person’s professional position.

Fortunately, Minimum Description Length is an information theo-
retical measure rather than a syntactical measure. It is therefore quite
resilient against noise and heterogeneity. This section provides a brief
explanation about why MDL is resilient against the three types of
heterogeneity described above. To this end, we assume that S is the
optimal schema for a dataset D, that is, S has achieved the minimum
description length. We intentionally introduce additional heterogene-
ity into D and assess the likelihood that it turns S’ into a suboptimal
schema.

MISSING ATTRIBUTES. To introduce missing attributes into D, we
randomly select a set of entities with a common attribute A and drop
A from these entities. As a result, we transformed D into D’. We
consider two schemas, S and S’, where S is the original best schema
with the minimum description length L(S,D), and the description
length of S’ is worse than that of S, i.e., L(S,D) < L(S’,D). We con-
sider the likelihood to turn S’ into a better schema on D’, that is,
the chance of L(S/,D’) < L(S,D’). It turns out that the likelihood
depends on both the gap between L(S,D) and L(S’,D) and the dis-
tribution of the selected entities whose attributes are dropped. When
the selection of the entities is completely random and independent
from other information of D, as the MLD in Equation (3.10) is an
information theoretical measure based on entropy, we can infer that
L(S,D)—L(S,D’) ~ L(S’,D)—L(S’,D’). That is to say, the missing at-
tributes will incur the same change on the description lengths of both
S and S’. This will certainly not turn S’ into a better schema than S.
To make S’ a better schema, the distribution of the selected entities
has to be skewed. In other words, if we want to make S a suboptimal
schema, we need first identify a schema S’ with sufficiently small gap
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L(S/,D) —L(S,D), and skew the distribution of missing attributes so
it happens to favor S’. The likelihood of this case is very small, as
missing attributes in real world are rather random. When more miss-
ing attributes are introduced, the randomness would increase, which
would make the case even less likely.

SYNONYMOUS ATTRIBUTES To introduce synonymous attributes
into D, we randomly select a set of entities with a common attribute
A, and replace A with its synonym A’. This case is analogous to the
case of missing attributes. Therefore, we can reach the same conclu-
sion — when the synonymous attributes are randomly assigned to the
dataset, it is unlikely to turn an optimal schema into a suboptimal
one.

POLYSEMOUS ATTRIBUTES The case of polysemous attributes is
different from the cases of missing attributes and synonymous at-
tributes. To introduce polysemous attributes into D, we select two
attributes A and A’ and merge them into one attribute A. The merge
transformed D into D’. Again, we consider two schemas, S and S’,
where S is the optimal for D and S’ is not. We assess the likeli-
hood that S’ becomes a better schema than S on D’. Based on Equa-
tion (3.10), if A and A’ do not co-occur in the same class in S’, the
description length of S’ will remain unchanged. Therefore, only when
A and A’ co-occur in the same class C, it is possible to make S’ better.
Besides, we also need the distribution of A and A’ is skewed, so it ex-
hibits a certain correlation with the other attributes in C. This again
is an unlikely case.

In summary, while Web data is heterogeneous, the heterogeneity is
normally random. Due to such randomness, it has limited influence
on the information theoretical measure of MDL.

3.4 QUALITY-GUIDED SCHEMA DISCOVERY

The schema quality measure presented in the previous section allows
for unsupervised schema discovery. It can be used to guide the de-
cision making required by supervised methods, such as the decision
on the number of subclasses of each entity type or the size of the
schema. We present hereafter an unsupervised schema discovery al-
gorithm leveraging the quality measure.

3.4.1 Problem Definition of Schema Discovery

We define schema discovery as a score optimization problem, i.e,
to find the schema encoding that minimizes the description length
L(S, D) as defined in Equation 3.1. For this purpose, we introduce the
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notion of Schema Space as a basis for defining the Schema Discovery
Problem:

Definition 13 Schema Space. Let D be a dataset over an entity set E and
an attribute set A as defined in Definition 10. The schema space 8 for D is
the set of all possible schemas (see Definition 11) over D.

Definition 14 Schema Discovery Problem. Given a dataset D over an en-
tity set E and an attribute set A, and its schema space 8, find the op-
timal schema s* € § such that the description length is minimized, i.e.,
L(s*, D) = mingeg L(s, D).

Lemma 1 The schema discovery problem is NP-Hard.

Proof 1 The schema discovery problem is reducible from the problem of find-
ing the schema of depth one that minimizes the description length. This is
equivalent to finding the root’s subclasses that minimizes the description
length. As per Definitions 11 and 12, a class consists of a set of attributes
and entities. Therefore, the latter problem is further reducible from the prob-
lem of finding the set of sets of attributes that minimizes the description
length. This is the minimum entropy set-cover problem [68], a variant of
the set-cover problem, which is proved to be NP-Hard. Hence, the schema
discovery problem is reducible from the minimum entropy set-cover problem,
and is therefore NP-Hard.

As schema discovery is an NP-Hard, a practical solution is to de-
sign a heuristic algorithm that produces near-optimal results.

3.4.2 The SQuaScheD Method

Our proposed SQUASCHED method considers schema discovery as
a search problem, where the search space is defined by the schema
space reachable from an initial schema through sequential application
of some schema transformation operations. Specifically, it regards the
initial schema so € 8 as composed of one class Cy containing all
entities and all attributes. The search process assembles that of top-
down hierarchical clustering, which expands a single class step by
step to form a hierarchy of classes. It mainly applies the following
two types of schema transformation:

EXPAND-K Choose a leaf-node class C; in the current schema, per-
form clustering on its attributes and entities to group them into
K subclasses, and add the subclasses as children of C;.

The clustering is supposed to separate the attributes and enti-
ties that are least correlated, so that the schema quality can be
optimized. For this purpose, we use spectral graph clustering
method, which will be detailed subsequently. The number of
subclasses K is determined by the minimum description length
described in 3.3.



3.4 QUALITY-GUIDED SCHEMA DISCOVERY

rULL-N After an expansion, move N attributes back from the sub-
classes to the parent; if all the attributes of an entity are moved
up, also move the entity to the parent class.

Intuitively, the expansion step partition all the attributes and
entities into the subclasses. However, some attributes or enti-
ties should better stay in the superclass. For instance, “name”
should be rather an attribute of “person” than that of its sub-
class “student”. The pulling step is intended to identify attributes
or entities that fits better with the superclass and moves them
backwards.

Given a class C; that has been divided into several subclasses,
attributes satisfying the following properties should be moved
from the subclasses back to C;: 1) a significant proportion of the
entities in the subclasses of C; have the attribute; 2) the entities
described by the attribute are spread uniformly among the sub-
classes. To quantify the two properties, we use the entropy of
the distribution of an attribute’s entities among the subclasses,
and multiply it with the number of the attribute’s entities. Given
an attribute a and a set of subclasses C, this measure can be cal-
culated as:

f(a) = —E(a) ¥ log o) G11)
ceC

where E(a) are the entities described by a, E(C) are all the enti-
ties in the subclasses.

To perform the pulling, we sort the attributes in descending
order of I(a), and select top-N attributes to pull. The number
of attributes to be pulled can be arbitrary and is determined by
the minimum description length in the discovery process.

The schema discovery process is composed of a sequence of expan-
sion phases. In each phase, an expand-K step and a pull-N step are
executed consecutively on a chosen leaf class of the schema. Mini-
mum Description Length, the schema quality measure introduced in
Section 3.3 is used to determine K and N: start with K = 2, for each
K, find the optimal N that yields the minimum MDL. This MDL is
called the pulling-optimum MDL for a specific K. Repeat the opera-
tion by increasing K until the pulling-optimum MDL increases. The
lowest pulling-optimum MDL is then called the expansion-optimum
MDL. Its corresponding expansion and pulling steps are executed if
the MDL decreases. Algorithm 1 provides an overview of the SQua-
ScHED method.
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3.4.3 Spectral Graph Clustering

Most traditional clustering algorithms require that the items to be
clustered share a common set of features, based on which a distance
can be computed. The expand step of schema discovery differs from
traditional clustering in that it needs to cluster two kinds of items
simultaneously: attributes and entities. Besides, the clustering should
consider the interdependence between attributes and entities — enti-
ties sharing more attributes are more likely to belong to the same
class; and inversely, attributes shared by more entities are more likely
to belong the same class.

One can choose to first cluster entities and assign attributes to en-
tity classes based on the schema quality measure. However, we found
that such an approach does not leverage the interdependence be-
tween entities and attributes well. Therefore, we propose to model
entities and attributes as a bipartite graph, and use spectral graph
clustering to group them into subclasses. Basically, given a class ci, its
entities and attributes form a bipartite graph G(ci) = (V(ci), D(ci)),
where the set of vertexes V(ci) is composed of the entity set E(c)
and the attribute set A(ci). An undirected edge (a,e) € D(ci) exists
between an entity e € E(ci) and an attribute a € A(cy), if and only if
the attribute a is used to describe the entity e.

Spectral graph clustering consists of two steps: 1) it first computes
the eigenvectors graph laplacian corresponding to the smallest K eigen-
values, where K is the number of desired clusters; then 2) it applies a
standard clustering algorithm, such as K-Means, on the graph nodes,
which are represented using the eigenvectors. An introduction to
spectral graph clustering can be found in [3]. Several variants of the
graph laplacian exist. In SQUASCHED, we use the generalized formu-
lation of the eigenvalue problem of RW-Normalized graph laplacian:
Lv = ADv, where v and A are the eigenvectors and -values, D is the
graph’s degree matrix, L = D — A is the unnormalized graph lapla-
cian, and A is the graph’s adjacency matrix. For the second step we
use simple K-Means. Experiments showed that they work well for
schema discovery.

Figures 3.2a to 3.5c show the eigenvectors corresponding to the
24 to 5" gmallest eigenvalues of various graph Laplacians for the
Tunnel® and Event datasets computed with an exact and the Arnoldi
methods. We don’t show the first eigenvector since the smallest eigen-
value of all graph Laplacians is 0 with unit eigenvector and thus
present no interest for graph clustering3. In Figure 3.2b for example,
each entity and attribute of the Tunnel dataset are represented as a
point in each of the four graphs. Its color denotes the class to which it

2 The limited size and number of classes of the Tunnel dataset make it the most ap-
propriate for a comprehendable graphical representation.

3 In practice, the smallest eigenvector may present some variation due to the limited
precision of digital computing or approximation errors for approximation methods.
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belongs*. The graph columns depict the coordinates of the eigenvec-
tors corresponding to the second and fourth smallest eigenvalues and
the graph rows those coordinates of the eigenvectors corresponding
the the third and fifth smallest eigenvalues. Each figure thus consti-
tutes a good basis to compare the relative elements position according
to the smallest eigenvectors.

Figures 3.2a and 3.2b show the eigenvectors of non-normalized
and normalized graph Laplacian of the Tunnel dataset respectively,
computed with an exact method. Besides containing more flagrant
outliers, the non-normalized laplacian depicted in Figure 3.2a yields
more compact eigenvector graphs allowing to separate the Waterway
Tunnel class but not to seprate Railway from Road Tunnels. The nor-
malized version of the graph Laplacian in Figure 3.2b makes a clear
distinction between Railway and Road Tunnels, especially on the
fourth eigenvector. Note that since the number of clusters is guided
by the schema’s minimum description length, it is not necessary for
the classes to display clusters with evident inter-cluster distance.

In the light of Figure 3.2b and accounting for similar graphs for
the other datasets, spectral graph clustering present good features for
schema discovery, ideally allowing to prune the search space for an
optimal schema. However, eigenvalue problem solution is computa-
tionally expensive: the exact eigenvalue decomposition of the Lapla-
cian for the Event dataset didn’t terminate after 5 days.> For this rea-
son it is necessary to consider an approximation method: we selected
the implicitly restarted Arnoldi method implemented of the ARPACK
Fortran package. This method solves the eigenvalue problem for a re-
duced matrix of the size of the order of the few eigenvectors desired,
which represents a considerable gain of time and space.

Figure 3.3 shows the time necessary to solve the eigenvalue prob-
lem for the five smallest eigenvalues and their corresponding eigen-
vectors. Note the logarithmic time scale in minutes on the Y-axis.
Even though the five smallest eigenvalues solution is desired, the
exact eigenvalue solver (named “full” in the graph) solves the eigen-
value problem for all values, which scales badly as we see: the time
compares to the one of required by the approximated solution of
the ARPACK package for the smallest Tunnel dataset, but requires
already 1-2 orders of magnitude more time than ARPACK on the
next smallest sample dataset. The exact eigenvalue solver did not ter-
minate after five days of computation on the Event dataset. On the
other hand we see that the ARPACK solver serves its purpose and
requires much less time to solve a limited number of eigenvalues,
and this in a time depending linearly on the cardinality of the full
problem which is shown by the log-shape of the ARPACK curves
on the lin-log axes of Figure 3.3. The times to solve the three kinds of

4 The highest class in the hierarchy for attributes and the lowest class for entities.
5 Using the CERN’s Colt library implementation of the Householder/QL algorithms.
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Figure 3.2: Eigenvectors corresponding to the 2™¢ to 5" smallest eigenval-

ues of various Laplacian of the Tunnel dataset’s graph.
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Figure 3.3: Time spent to solve the eigenvector problems.

eigenvalue problems (standard Laplacian, normalized Laplacian, and
the generalized eigenvalue problem for the normalized Laplacian) ap-
pear to have a similar slope as a function of the cardinality of the full
problem, with the standard Laplacian displaying more variance. Fur-
thermore, the normalized Laplacians’ eigenvalues are solved much
faster than the standard Laplacian ones by 1 order of magnitude. We
also clearly see that the generalized eigenvalue problem (GenRWL)
requires less time to solve than it’s standard formulation (RWL). The
implicitly restarted Arnoldi method used by the ARPACK package is
an iterative process running until convergence. Thus, requiring less
time to converge to a stable solution for GenRWL than for RWL is an
sign that GenRWL is more stable and thus delivers a approximated
solution closer to the exact solution than RWL, which confirm the
observations we made above inspecting the eigenvector plots in Fig-
ures 3.2a to 3.5c. We suspect that the difference in time an quality of
the solutions of in theory equivalent problems is due to the limited
precision of digital arithmetic: the standard problem statement (the
normalized Laplacian) is the result of divisions, whereas the general-
ized problem statement does not.

The eigenvectors of the non-normalized Laplacian in Figure 3.4a
computed with ARPACK are a very good approximation of the ex-
act solution shown in Figure 3.2a. The eigenvectors of the normal-
ized Laplacian computed with ARPACK in Figure 3.4b however dif-
fer significantly from the exact solution in Figure 3.2b. The eigenvec-
tors of the equivalent generalized eigenvalue problem in Figure 3.4¢
however, is an excellent approximation of the normalized Laplacian’s
eigenvectors. While the solution of the standard eigenvalue problem
still produces clusters similarly separable compared to the general-
ized problem for the Tunnel dataset, on all other datasets, the eigen-
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vectors of the generalized problem corresponding to the normalized
Laplacian computed with ARPACK present much better separation
properties than the standard problem, as can be seen for the Event
dataset in Figures 3.5b and 3.5c.

Figure 3.6 gives an objective overview over all dataset of the obser-

vations we made by observing the eigenvector plots in Figures 3.2a to 3.5c:

it presents the Davies-Bouldin clustering indexes based on the coor-
dinates on the first 5 eigenvectors and the ground truth classes. The
Davies-Bouldin index is an internal clustering evaluation measure in-
dicating the ratio between the “tightness” and the “separatedness” of
the clusters: the lower the value the better the clustering is. Figure 3.6
confirms the observation we made earlier and generalizes them to
other datasets:

e the full eigen solver gives identical results to ARPACK on the
non-normalized Laplacian (L);

e the full eigen solver gives better results than ARPACK on the
normalized Laplacian (RWL);

¢ the full eigen solver on the normalized Laplacian (RWL) gives
comparable results to ARPACK on the generalized formulation
of the same eigenvalue problem (GenRWL);

* eigenvectors of the normalized Laplacian (RWL and GenRWL)
are better clustering features than the standard Laplacian (L) on
all datasets, except on the Event dataset where they show both
the best clustering features compared to other datasets;

* none of the standard (RWL) or generalized (GenRWL) formu-
lation of the eigenvalue problem on the normalized Laplacian
presents consistently better clustering features than the other
across all datasets.

In the light of the above observations and considering the fact that
the generalized formulation of the eigenvalue problem of the normal-
ized Laplacian converges fastest, we recommend the latter for schema
discovery and this is also the one we used in the following experi-
ments.

3.5 EXPERIMENTAL VALIDATION

Our evaluation aims to answer the following questions: 1) Does the
schema quality measure proposed in Section 3.3 reflect the quality
of a schema? 2) Is SQUAScHED able to extract a reasonable schema
from a highly heterogeneous dataset effectively? Before answering
those questions, we introduce the dataset (3.5.1), the evaluation met-
rics (3.5.2), and implementations specifics (3.5.3).
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3.5.1 Dataset: Wikipedia Infoboxes

A Wikipedia Infoboxes is a table presenting the key properties about a
Wikipedia entity, usually located in the top-right corner of a Wikipedia
article. Like the rest of Wikipedia, those info-boxes are contributed
by users. DBpedia [7] encapsulates those Infoboxes in RDF format, so
that they are easily processable by a machine. This structured infor-
mation comes in two versions in DBpedia: 1) raw Infoboxes directly
extracted from Wikipedia without further processing other than pars-
ing and RDF representation; and 2) a processed dataset whose prop-
erties and entities are cleaned and mapped in a community effort to
a manually created OWL ontology. As the users of Wikipedia did
not comply with a common template when creating the Infoboxes,
the data structures of the Infoboxes are highly heterogeneous. In con-
trast, as the DBpedia OWL ontology was created manually, the entity
descriptions based on the ontology are much cleaner. Table 3.1 shows
the number of duplicate and ambiguous attributes among those at-
tributes from the raw Infoboxes that are mapped to a single property
in the ontology. The larger the numbers, the more heterogeneous the
data.

To evaluate our schema discovery method, we applied it to the raw
Wikipedia Infoboxes in DBpedia version 3.7 to generate schemas, and
used the DBpedia OWL ontology and associated mappings as the
ground-truth to measure the accuracy of the discovered schemas. In
fact, there is no absolute ground-truth, as people can define a variety
of good schemas to organize the Infoboxes. In addition, what makes
an ontology good also depends on the purpose of the application.
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£ IPESE
g I EHEE R
g 88|58 | sElfe|fERE
Act.Edulnst 8| 2| 27| 38810| 867| 236| 46| 119
Arch.Struct 25| 4| 5.0/103,900|1,425| 304| 45| 149
Event 15| 2| 75| 19,974| 622| 124| 15| 36
Infrastructure| 14| 3| 4.7| 51,818| 940| 221| 30| 98
Route 9| 2| 4.5| 22,744| 496| 153| 22| 58
Species 25| 4| 5.0|182,702| 367| 86 8| 21
Tunnel 3/ 1| 3.0 196 50| 33 1 4
E.NPWW 34| 4| 42| 92,979|1,438| 266| 39| 124

Table 3.1: Datasets for experiments: subtrees from the DBpedia 3.7 ontology
rooted in the mentioned class

Nevertheless, we believe that DBpedia at least provides a reference
perspective to evaluate our method.

To ensure the generality of our evaluation, we selected a number of
sub-trees of the DBpedia ontology as the evaluating schemas, each
representing a particular domain. Accordingly, we divided the In-
foboxes into several test sets, each corresponding to one evaluating
schema. As shown in Table 3.1, the test sets are of different char-
acteristics. Some are simple and specific, such as Tunnel and Activity-
Educationallnstitution, some are generic, such as Species and Route, and
some are deep, such as Architectural-Structure. The last test set is a
combination of three different test sets, i.e. Event, NaturalPlace and
WrittenWork, representing a dataset with a higher diversity.

3.5.2  Evaluation Metrics

To evaluate the effectiveness of schema discovery, we compare the
discovered schemas against the ground-truth introduced previously.
This comparison can be conducted in two directions covering two as-
pects: 1) how many classes from the ground-truth can be found in
the discovered schema, and 2) how many classes from the discovered
schema can be found in the ground-truth. These two aspects are in
their spirit similar to recall and precision used by IR evaluation. There-
fore, we call the two aspects class-recall and class-precision, respectively.
Note that the subclass relationship can be determined by the entities
in the classes. Therefore, if a discovered schema has a class-precision
and a class-recall of 1.0, then it also has the exact class hierarchy of
the ground-truth.

To measure how well a class in a discovered schema matches a class
in the ground-truth, we compare their entity sets. For real-world data,
there is rarely a perfect match. Therefore, we identify the matches
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based on a the F1-Measure between the two sets. For each class in
a discovered schema, we regard the class in the ground-truth with
the best F1-Measure as its match and average those best F1-Measures
using the harmonic mean weighted by the number of entities in the
discovered classes; this gives the class-precision. The class-recall is com-
puted similarly, inverting the role of ground-truth and discovered
classes. We end up with the following definition of class-recall classR
and class-precision classP:

cheGC |E(gc)l

classR =
Z max |E(gc)|
gceGC dceDC SetFi(gc,dc)

(3.12)

> |E(dc)
classP = deebC HE] (3.13)

dceDC MaAXgeeGC SetFi(ge,de)

where GC represents the set of ground-truth classes, DC represents
the set of discovered classes, |E(gc)| and |[E(dc)| represent the number
of entities in the classes gc and dc, respectively, and setFl1(gc, dc)

represents the standard IR F1-Measure between gc and dc computed
precision(gc,dc)-recall(gc,dc)

precision(gc,dc)+recall(gc,dc)”

To combine precision and recall into a overall evaluation measure,

F1 is usually used, which regard precision and recall equally impor-
tant. In the case of schema discovery, we prefer to put more weight
on recall. On the one hand, good precision is easier to achieve by re-
stricting the number of classes to be discovered. On the other hand, it
is sometimes preferable that a discovered schema has a deeper class
hierarchy than the ground-truth. An increased depth does not affect
the usability of a schema, as a user can decide which level of gran-
ularity to use and access the schema only until that level. The Fa-
measure puts more weight on recall and penalizes less a more fine-
grained hierarchy than F1, and is the only one passing all validation
tests we conducted. We thus use the F2-measure to combine class-
precision and class-recall, resulting in an overall evaluation metric
we call classF2:

as

4 - classP(gc, dc) - classR(gc, dc)

lassF2 =
crass classP(gc,dc) +4 - classR(gc, dc)

(3.14)

A schema also contains attributes. To evaluate the assignment of
attributes to class, we apply class-precision, class-recall and classF2 spe-
cific to attributes.

3.5.3 Implementation and Hardware

We implemented SQUAScHED and the experiment framework in Scala
2.9.2, a JVM programming language. The COBWEB algorithm men-
tioned later in the section was part of the WEKA 3.6 Java library [67].
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We ran all our experiments on Amazon’s AWS m2.2x1large machines.

Eigenvectors for spectral graph clustering were computed using the

SciPy Python framework, which relies on the ARPACK Fortranyy

package for the Arnoldi process for eigenvector solution and the

UMFPACK C package as linear system solver in support to the Arnoldi
process.

3.5.4 Evaluation of Schema Quality Measure

In this section, we show that Minimum Description Length is an
appropriate schema quality measure for guiding schema discovery.
More specifically, we show how MDL (Minimum Description Length
measure) evolves along the steps of the SQUAScHED method and how
it compares with the evaluation measures of the discovered schema
with respect to the ground truth.
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Figure 3.7: Evolution of the MDL, class-precision, -recall, and -F2 along the
steps of the SQUASCHED process on the Infrastructure dataset.

Figure 3.7 depicts the evolution of MDL as well as that of entity
based class-precision, class-recall and class-F2 during the schema dis-
covery process for the Infrastructure dataset. The X-axis represents
each step of the schema discovery process. The graph on the top
shows the depth at which the current process is operating; the color
shows the number of children considered for the expansion step. The
graph in the middle shows the evolution of the schema quality value:
each gray dot is the MDL of the discovered hierarchy returned at line
35 of Algorithm 1; each green dot is the pulling-optimal MDL for
a pulling step, returned at line 39; each blue square is the expand-
optimal MDL for an expansion step, returned at line 17; red triangles
represent the MDLs of the instantiated hierarchies, i.e. updates of
bestMDL at line 25. The graph at the bottom shows the evolution of
F2, precision and recall of the discovered hierarchy with respect to
the ground truth.

A good schema is supposed to have a high class-F2, -precision and
-recall, and a low MDL if it is a good quality measure. In other words,
MDL should be ideally anti-correlated with the evaluation measures.
We can see that the evolution trend of MDL is highly anti-correlated
with that of recall and somehow positively correlated with that of
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precision. Please note that the MDL Y-axis is reversed: the lower the
MDL, the better the schema quality. This is expected. In the process of
the hierarchy expansion, more and more ground-truth classes are dis-
covered, and more false positive classes are supposed to be generated
too. Nevertheless, the trend of MDL is clearly anti-correlated with
that of class-F2, which indicates that MDL does reflect the schema
quality.

To confirm this conclusion, we recorded for each test set the value
of the ML, class-F2, -precision and -recall for each step of the SQua-
ScHED method at line 35 of Algorithm 1. We then computed the
Spearman’s rank correlation coefficient between MDL and the eval-
uation metrics. As MDL is supposed to be anti-correlated with the
schema quality, a Spearman’s p of —1 would be the ideal case.
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Figure 3.8: Spearman’s rank correlation coefficients comparing MDL used
by SQuUAScHED to the F2, precision and recall with respect to
the ground truth. A perfect MDL would show a correlation of
—1: a good discovered hierarchy has a low MDL and a high F2,
precision and recall.

The Spearman’s rank correlations between the MDL and the eval-
uation measures are shown in Figure 3.8. We observe that MDL is
strongly anti-correlated with the class-recall, with a p value of -0.61
or lower (i.e., better) for all datasets except Tunnel. In contrast, MDL
is positively correlated with class-precision, even though this correla-
tion is weaker than the anti-correlation with class-recall. This is nat-
ural, as SQUASCHED adopts an expansion approach, which would
unavoidably include more false positive results as the recall increases.
Finally, class-Fz is anti-correlated with MDL with p values below 0.67
on 5 out of 7 datasets. This shows that the MDL as a schema qual-
ity measure reflects well the class-F2 measure, slightly favoring recall
over precision. This is a remarkable property considering that our
MDL-based schema quality is completely unsupervised and of course
has no knowledge of the ground truth.
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3.5.5 Comparison with COBWEB & Freebase

In this section, we evaluate how good the SQUAScHED method is by
comparing it with a state of the art method and Freebase, a human-
designed hierarchical schema. Unsupervised hierarchical schema dis-
covery over heterogeneous datasets has not been addressed in previ-
ous works, thus no well-established method exists to solve this par-
ticular problem. There are 4 characteristics a method needs to fulfill
to be a candidate for the comparison:

1. ability to produce a hierarchical classification;

2. ability to determine the number of children of each node, in an
unsupervised manner;

3. ability to determine the height and granularity of the hierarchy,
in an unsupervised manner;

4. ability to cluster both attributes and entities simultaneously;

COBWEB [47] is a hierarchical clustering algorithm that fulfills the
first 2 requirements, and the 3¢ one given a predetermined parame-
ter. It uses a utility metric (the category utility) to guide the search of
the best hierarchy, and is a conceptual clustering method similar in
some aspects to schema discovery. This makes it an interesting can-
didate for the comparison. Thus, we decided to adapt COBWEB for
schema discovery and use it for evaluation.

COBWEB takes as input a set of items described by a fixed set of
features and produces a hierarchical classification of the items. Each
item is assumed to take a categorical value for all the features. This
is not the case for schema discovery in heterogeneous environments,
as two entities can be described with two completely different sets
of attributes. In our schema quality measure, we do not count the
values of attributes but only whether an attribute is used to describe
an entity. We take the same approach for COBWEB, that is, an entity
takes a binary value for each attribute in the dataset based on whether
the attribute is used to describe the entity. After clustering the items,
we assign each attribute to the cluster whose entities it is most fre-
quently used to describe. After clustering the entities, we partition
the attributes among the clusters based on the following principle: an
attribute is assigned to the cluster it appears most frequently in the
entities.

An additional aspect of COBWEB is that it is an incremental method:
the hierarchy is built incrementally by adding the items one at a time.
It appears that the order for adding items has non-negligible influ-
ence on the results, as we will see in the result of the experiments.
Therefore, we considered 3 orderings for adding the entities to the
COBWEB hierarchy: in order of increasing or decreasing number of
attributes, or randomly.
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Finally, the height of a COBWEB hierarchy is controlled via a pa-
rameter called “cutoff” — a node with a category utility below the
cutoff will not be expanded. Because of this parameter, COBWEB can-
not be regarded as a completely unsupervised approach. To facilitate
the comparison, we set the cutoff to the value that yields a hierarchy
with more nodes than the hierarchy discovered by the SQuUAScHED
method, and iteratively remove the children of the node with the
lowest category utility, until the number of nodes are equal to that of
the hierarchy discovered by SQuaScHED. This makes the COBWEB
results fairly comparable to the SQUASCHED results in terms of both
precision and recall.

Even though the choice of COBWEB for hierarchical schema discov-
ery is reasonable, it was not designed for the task, and it is difficult
to demonstrate how SQUASCHED compares with manually created
schemas. To allow this, we extracted entity hierarchies from Freebase®
corresponding to each dataset presented in Section 3.5.1 by means of
the links to Wikipedia English pages available in Freebase. For each
entity we selected the Freebase class defined by the notable_types
property, thus representing a human-supervised entity hierarchy that
we can use to compare our results. Those Freebase hierarchies are re-
ported below along the other 4 algorithms.
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Figure 3.9: Details F2-Precision-Recall graphs comparing schema discovery
algorithms among all datasets.

6 http://www.freebase.com
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evaluated
elements  algo F2 P R

entities COBWEB-dec 6.9% 409% *1.9%
entities COBWEB-inc 6.8% 389% *28%
entities COBWEB-rand 72% 574% *2.6%
entities Freebase *03% *43% *0.2%
attributes COBWEB-dec *03% *03% *1.2%
attributes COBWEB-inc *07% *04% 13.7%
attributes COBWEB-rand *22% *09% 8.6%

Table 3.2: Paired one-tailed T-Test p-values with unequal variances with the
null hypothesis "SQUASCHED’s mean is lower than algo’s (COB-
WEDB’s or Freebase’s)".

Figure 3.9 shows the class-precision, class-recall, and class-F2 for
the entities and attributes over 8 datasets for the 4 schema discovery
methods plus the Freebase hierarchies. The results of SQuaScHED
and Freebase hierarchies are plotted in a distinct color, to distinguish
it from other methods, they do not have a specific order. Table 3.2
presents the corresponding p-values of the paired one-tailed T-Test
(unequal variance) comparing F2, precision and recall of the results
of SQuaScHED with that of the COBWEB variants. P-values below 5%
are marked with a star.

As we can see from the T-Test’s p-values in Table 3.2, SQUAScHED's
entity recall is significantly higher than any of the COBWEB vari-
ants’ entity recall. Results with a similar tendency can be observed
for the attribute recall, even though SQUAScHED does not achieve
a significantly higher attribute recall than COBWEB-increasing and
COBWEB-random. How the COBWEB variants compare with SQua-
ScHeD with respect to entity precision is however less clear: the pre-
cision plots in Figure 3.9 show that SQUASCcHED achieves a better
precision than the COBWEB methods on some datasets, and similar
or worse on others. This is confirmed by the p-values of the entity
precisions in Table 3.2, which are close to 50%. Attribute precision is
however clearly at the advantage of SQUAScHED with p-values below
1%. SQUASCHED appears to achieve a better entity F2 than the COB-
WEB variants, even though not significantly. SQUAScHED’s attribute
F2 is however clearly better than any of the COBWEB variants with
very low p-values.

SQuUAScHED has also a significantly better F2, precision and recall
than the human-supervised Freebase hierarchies, which is also ob-
servable in Figure 3.9. We can see that there can be big variation
among human generated schemas, because there are different valid
ways to classify data. Therefore, the results of SQuaScHED and COB-
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WEB appear reasonably good. To get an insight about the quality of
the discovered schema, please visit the visualization on our Web site.
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Figure 3.10: Schema discovery times.

Figure 3.10 shows the execution times of the COBWEB variants
on the y-axis with respect to the datasets complexities (#entities x
#attributes) on the x-axis. For the purpose of timing, all COBWEB
variants were run with a same cutoff of 0.5. We clearly see that COB-
WEB takes much more time than SQuUAScHED: where SQUASCHED is
able to stop adequately when a reasonable granularity in the discov-
ered hierarchy is reached, COBWEB might discover a much bigger
hierarchy. As mentioned earlier the influence of the cutoff on the dis-
covered hierarchy depends on the number of attributes and entities,
which makes it difficult to set a priori.

To summarize, SQUASCHED has three advantages over the adap-
ted COBWEB method. First, SQUASCcHED is a completely unsuper-
vised approach. Second, it can obtain better schemas than the COB-
WEB method, as demonstrated in the experimental evaluation. Third,
SQuAScHED is much faster than COBWEB —in our experiments, SQua
ScHED discovered all hierarchies within 3 hours, COBWEB requires
up to 115 hours for the same datasets.

3.5.6 The Discovered Schemas

According to the results in the previous section, whereas SQUAScHED
can achieve a good class-recall of 0.8, its class-precision is relatively
low, which can make wonder whether the automated method can
yield useful schemas. In Figure 3.11, we can see that the depths of
the schemas discovered by SQUAScHED are similar to the depths of
the ground truth, while the number of discovered classes is higher
than that of the ground truth. This explains in part the low preci-
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Figure 3.11: Comparison of hierarchy depth and number of classes between
the ground truth and the schemas discovered by SQuaScHED
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Figure 3.12: Distribution of the bottom-most ground-truth classes in the dis-
covered class hierarchy for the Event dataset.

sion — SQUAScHED tends to discover a more fine-grained schema.
Figure 3.12 shows a class hierarchy by SQuaScHED for the Event test
set, where the colors show how the different bottom-level classes in
the ground truth distribute in the discovered classes — colors similar
in hue represent classes closer to each other in the hierarchy. We can
see that discovered hierarchy is reasonably good, as the discovered
classes are rather homogeneous. This can be explained by the good
class-recalls achieved by SQuaScHED, as presented in the previous
section.

3.6 RELATED WORK

With the advance of data publication practices, the volume and di-
versity of the available digital information keep growing. To ease the
usability of large and evolving data, researchers have made exten-
sive efforts, among which data summarization and schema induction
are two important sets of techniques. They both aim at creating an
abstract aggregating layer on top of a dataset, so that data can be
browsed, digested and queried more efficiently by humans and ma-
chines. In this sense, they are within the same scope as this chap-
ter. However, as the existing approaches were proposed for particular
data models or application scenarios, they do not constitute a general
solution. Neither do they propose an explicit measure for schema
quality.
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Data summarization aims to automatically generate a summary of
a dataset. Such a summary usually serves two purposes. First, it pro-
vides an overview of the information contained in the dataset. Second,
it offers a browsing structure for information seeking. The prevailing
approach to data summarization is clustering. A number of clustering
algorithms (e.g. [17, 88]) have been developed for extracting categor-
ical structures from a heterogeneous dataset. Several methods have
also been proposed for identifying keywords for representing each
data cluster [90, 84]. Even for conventional structured databases, sum-
marization has been suggested to improve their usability [113]. Nev-
ertheless, as a data summary is mainly used in browsing, it usually
does not provide a basis for formulating structured queries. Moreover,
data summarization usually applies supervised approaches. Without
a concrete quality measure, most of the existing approaches depend
on either human intervention or supervised learning to determine the
granularity of the summary:.

Schema induction, on the other hand, aims to induce a schema
from a dataset. This schema can be used as meta-data for efficient
query processing. Early schema induction techniques were mainly tar-
geted on semi-structured data, such as XML or OEM data. Being self-
describing, such semi-structured data can and often does omit a pre-
defined schema. However, for speedup of data processing, an a poste-
riori created schema can be very helpful. For this purpose, a number
of schema induction techniques such as [62, 89, 63, 6, 54, 107, 108]
were introduced for semi-structured data. XTRACT [53] uses mini-
mum description length to quantify the quality of such automatas. In
this sense, its shares the spirit of SQuaScheD, as both utilizes the prin-
ciple of MDL to reach a trade-off between the generality and descrip-
tive power of a schema. However, the problem of schema induction
is fundamentally different from the problem addressed in this paper.
In their settings, “schema” has different meanings. For schema induc-
tion, a schema is a definition of syntactical patterns. For SQUASCHED,
a schema is an hierarchical ontology over a large number of hetero-
geneous data entities. Although both approaches may resort to the
measure of MDL, it applies MDL in different ways and for different
purposes.

In [21], the author considered schema discovery for Web data. Sim-
ilar to our work, they aim to identify the entity types of a set of data
instances. Also, the authors proposed a measure related to the quality
of a schema and modeled schema discovery as a score optimization
problem. In contrast to our approach, they measure schema quality
by fitness, which assumes that the fewer the missing attributes, the
better the schema. However, missing attributes are very common in
Web data, where an open-world assumption is made. Thus, the fitness
measure does not apply well to heterogeneous datasets. In addition,
as their approach does not consider the subclass relationship among
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entity types, it is unable to generate a schema with a categorical hier-
archy, which limits its applicability to large scale datasets.

The field of ontology learning, despite its name similar to schema
discovery, addresses a different and broader task: given a collection of
textual documents, build a taxonomy of concepts, possibly enriched
with non-taxonomic relationships and axioms. [110] describes the first
steps of the ontology learning’s process:

1. extract terms from textual documents;
2. form concepts by aggregating synonym terms; and
3. discover taxonomic relations (hierarchy) among concepts.

The latter, taxonomic relation discovery is the task approaching most

schema discovery because they both aim at discovering a hierarchy.

The items organize in a hierarchy are however of very different na-
ture: concepts in ontology learning are sets of synonym terms, whereas
classes in schema discovery are sets of entities and attributes and each

entity is itself a set of attributes. The attributes are not synonyms and

they describe the entity by their combination rather by their intrinsic

meaning. This important difference implies that features used to dis-
cover taxonomic relations in ontology learning are not directly appli-
cable to schema discovery. For example, external resources like Word-
Net are not directly usable for schema discovery as they are for ontol-
ogy learning. Also entities we consider in schema discovery do not

have textual documents associated to them such that co-occurrences

analysis nor natural language processing techniques as they are used

in ontology learning can be used to support schema discovery.

3.7 CONCLUSION AND OUTLOOK

We presented SQUASCHED, an unsupervised schema discovery method
for highly heterogeneous datasets, based on spectral graph cluster-
ing and guided by a novel objective measure of schema quality. The
quality measure, inspired by the Minimum Description Length prin-
ciple, achieves an appropriate trade-off between generality and the
descriptiveness of a model, in our case the schema. We conducted
experiments on Wikipedia Infoboxes, a real-world user-contributed
heterogeneous dataset, and compared SQUAScHED against COBWEB,
a hierarchical conceptual clustering method we adapted for schema
discovery. The results showed: 1) MDL is an appropriate measure
for schema quality; 2) SQuAScHED outperforms COBWEB in terms
of both quality and time complexity; 3) The schemas generated by
SQUuUASCHED were reasonably well structured, compared to manually
created schemas and perform better than the Freebase hierarchies
evaluated on DBpedia.



3.7 CONCLUSION AND OUTLOOK

In our future work, we plan to apply unsupervised schema discov-
ery to real applications, such as browsing and query formulation. We
will also investigate new methods to further improve SQUAScHED.
For instance, we would like to investigate how attribute values can
be leveraged to improve the quality of schema discovery. We would
like to explore how schema discovery can both improve and profit
from information integration techniques as they are used in schema
matching and duplicate detection.
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Algorithm 1 The SQuUAScHED Method
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: function D1SCOVERSCHEMA(D, A, E)

> a dataset D over set of attributes A and set of entities E
root < new class with all attributes A and all entities E
add root to an new empty hierarchy H
EXPAND(H, root)

: function ExPAND(H, node)

bestMDL « MDpL(H)

bestH <+~ H

K<+ 2

repeat
g < G(node) > graph of elements in node
C <+ sPECTRALCLUSTERING(g, K) > Section 3.4.3

add children to node corresponding to clusters in C
H « rurr(H, node)
currentMDL <« MDL(H)
if currentMDL < bestMDL then
bestMDL « currentMDL
bestH < H
K+ K+1

until currentMDL > bestMDL | | K > num elements in node
for all ¢ € children of node do
H < expanD(bestH, c)
currentMDL < MDL(H)
if currentMDL < bestMDL then
bestMDL « currentMDL
bestH «+ H
return bestH

bestMDL « currentMDL
bestH <+~ H
A <« attributes in node ordered by decreasing I(a) as per Equa-

tion 3.11

forall a € A do
remove a from all children of node and add it to node
remove each entity e from each child c of node that are such that

no non-inherited attribute in ¢ describe e

currentMDL < MDL(H)

if currentMDL < bestMDL then
bestMDL + currentMDL
bestH «+ H

return bestH




QUERY RELAXATION WITH MALLEABLE
SCHEMAS

4.1 INTRODUCTION

Highly heterogeneous information environments like the social and
semantic web poses specific challenges that we introduced in Chap-
ter 1 and developed in Chapter 2, namely:

1. Schema Discovery
2. Query Relaxation

3. Propagation of Entity Identity Revisions

In the previous chapter we presented our approach to discover a
schema for data from such environments, enabling the user to formu-
late a concrete query to answer her information needs using specific
attributes. However, the high degree of redundancy of the attributes
describing object’s properties renders it difficult for a user to formu-
late a query that would mention all attributes used to describe a de-
sired property. In this chapter we address the second challenge and
show how to automatically relax a query by expanding the proper-
ties expressed by attributes in the query to other attributes likely to
describe similar properties, and we show how to rank the results of
such expanded queries: entities matching attributes more similar to
the one specified by the user in the original query are ranked higher
than those entities matching less similar attributes.

Vague schemas can be the result of schema discovery on the web as
we presented in Chapter 3. Other well-known examples include Per-
sonal Information Management (PIM) [71, 66] and Enterprise Infor-
mation Management (EIM) [19] systems. In these applications, struc-
tured and unstructured data are always mixed: unstructured data
usually include documents, images, audio/video and all kinds of hu-
man consumable information, while structured data include prop-
erties associated with unstructured items (such as title, creation date,
origin, file format) and various relationships among them (such as au-
thor, reference). Such property and relationship information can be de-
fined by users, generated by specific applications or extracted using
Information Extraction techniques. This information is usually very
diverse and vague, so that it is difficult to handle with conventional
DB systems, which rely on a clear and rigid data schema.

In [40], the authors proposed malleable schemas as a modeling tool
for the diverse and vague data structures in the real world. The ap-
proach recognizes that the structure of a particular domain is usually

65



66

QUERY RELAXATION WITH MALLEABLE SCHEMAS

first_name

xml is the sur=hame
standard for body titl author Pan

data exchange \
Doc M.. Person ame
/ John Gary
ISA—book
Wwriter
sender

subject Doc ISA—pape
email m
Dear Sergey, WS

Please find the

co\\ﬁ:nts

Desktop Search
attached paper

We have many

Figure 4.1: Data Modeled by Malleable schema

extremely complicated, and by nature its model should allow some
vagueness or redundancies in order to capture all intended seman-
tics. In contrast to the predefined and rigid schemas in conventional
database systems, malleable schemas intentionally contain heteroge-
neous and overlapping definitions of data structures that can be en-
riched and queried anytime. For example, Figure 4.1 shows a data in-
stance modeled by a malleable schema. There exist various attributes
and relationships. We can see that name, first_name and sur_name are
overlapping attributes; so are <title, subject>, <body, contents> and
<author, writer>. The schema contains a lot of redundancies, so that
it is able to effectively capture the diverse semantics in the domain.

Due to these characteristics, malleable schemas are a suitable tool
for managing the vaguely structured data in various PIM and EIM
systems. In this chapter, we complement the initial work on malleable
schemas in [40] by proposing a query scheme that enables users to
effectively and efficiently search structured and unstructured infor-
mation by exploiting malleable schemas for query relaxation

4.1.1  Challenges

While a malleable schema is intended to capture heterogeneous data
structures (i.e. properties and relationships), a data instance modeled
by the malleable schema is usually described by only a part of the
structures based on its specific usage. Hence, when a user queries
the data using a malleable schema, he has to appropriately relax the
query in order to retrieve the complete set of relevant results. For
example, a user might issue the following query to search for a person
whose first name is “Daniel”.
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Ql: SELECT Person WHERE first_name = ’‘Daniel’

Not all persons in the system will be represented with both at-
tributes first_name and sur_name, though. As shown in Figure 4.1,
some persons may only use a single attribute name. Thus, to find all
the persons named “Daniel”, the user needs to relax Q1 to Q2.

Q2: SELECT Person WHERE first_name = ’Daniel’ OR name
ni ‘Daniel’

Although the relaxation can find more relevant results, it might
also introduce some irrelevant results, because not all persons hav-
ing name > “Daniel” also satisfy first_name = “Daniel” (“Daniel” could
be a sur_name). A reasonable trade-off is to rank the query results ac-
cording to their probabilities of relevance, such that the user’s need
can be satisfied as soon as possible. Considering Q2, the results sat-
isfying first_name = “Daniel” should be returned prior to the results
satisfying name > “Daniel”, as the latter may contain irrelevant results.

In summary, to query data using malleable schemas, we should be
able to:

CHALLENGE ONE

1. properly relax the query such that it allows to retrieve all rele-
vant results;

2. rank query results according to their probabilities of matching
the original query’s intent.

To provide proper query relaxation, we must first identify the corre-
lated elements in a malleable schema. For example, we need to know
that first_name is a part of name in order to know that Q1 should be
relaxed to Q2. Furthermore, to enable the ranking of query results,
we need to quantify these correlations. If we know that the title of an
article has a stronger correlation to its abstract than to its body, we can
infer that the results of relaxing title to abstract are more relevant than
the results of relaxing title to body.

Therefore, to address Challenge One effectively, we need to address
the following challenge first:

Challenge Two:

1. identify correlated schema elements;
2. quantify these correlations.

This chapter aims to handle these two challenges to enable effective
query relaxation using malleable schema.

There is a significant body of work on schema matching [97, 38, 79,
69], focusing on how to discover correspondences between two dif-
ferent schemas. These techniques utilize all kinds of resources, such

67



68

QUERY RELAXATION WITH MALLEABLE SCHEMAS

as schema description, data instances and domain knowledge, to find
the schema elements that are similar to each other. Some systems also
assign weights or ratings to their outcomes, as quantifications of de-
tected schema matches. However, the semantics of those matches and
quantifications are different from the schema correlations needed in
query relaxation (see Section 4.3), so that we cannot rely on them to
obtain good rankings of query results. In real-world data, there are
usually some objects that have been classified and stored in more
than one way. In this chapter, we present a novel scheme which uti-
lizes these duplicates within the data sources to discover and quantify
the correlations within a malleable schema.

There has been intensive research recently on approximate query-
ing over structured data, like XML documents [51, 25, 5, 95, 76]. Sim-
ilar to our work, they focus on query relaxation and ranking query
results based on various similarities. However, as they only consider
the explicit correlations given by the hierarchies of XML trees, they
cannot be used to handle queries over malleable schemas. Our results
are therefore a useful complement to that field of research.

The contribution of this chapter can be summarized as follows:

1. We propose a query relaxation model that enables users to query
vaguely structured information by exploiting malleable schemas
(Section 4.2).

2. We propose a scheme that utilizes the duplicates in the database
to find and quantify the correlations in a malleable schema (Sec-
tion 4.3).

3. We devise a query engine that can efficiently perform query
relaxation and return ranked results (Section 4.4).

4. We conduct extensive experiments on practical data crawled
from Web sources like the IMDB collection and the Amazon cat-
alog to show the effectiveness and performance of our approach
in typical scenarios (Section 4.5).

Section 4.6 compares our approach against related work, and Sec-
tion 4.7 concludes the chapter as well as discusses directions for fu-
ture research.

4.2 DATA AND QUERY MODELS

We first present the data model that malleable schemas use to define
vaguely structured data, and will then introduce a query model and
a probabilistic model for query relaxation.
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4.2.1  The Data Model

Following [40], we assume that malleable schemas use a Entity-Relationship
data model, which expresses data by a number of entities, attributes
and relationships. An entity is represented by a set of attributes,
where each attribute is a binary relation between the entity and a
value (usually text). A relationship is a binary relation between two
entities. For simplicity, we do not consider relationships involving
more than two entities, and we do not assign attributes to relation-
ships. The types of entities, attributes and relationships are identified
by keywords, which enables users to easily issue queries. Figure 4.1
shows some example data represented in this model. It includes en-
tities such as document, person and email, attributes such as name, title
and date, and relationships such as author, sender and attachment. We
consider this data model appropriate and sufficient, because data in
real PIM and EIM systems is usually organized around entities such
as articles, photos, emails as well.

We will represent categorical attributes of an entity in pivoted form.
In other words, we express that an entity belongs (or does not belong)
to a category by assigning it an attribute like ISA-category = true/false.
For example, Figure 4.1 states that the first document is not a book
and the second document is a paper. As shown in Section 4.3, such a
representation will enable us to find correlations between individual
categories.

A malleable schema is created based on this data model. Different
from a rigid schema in traditional relational database, a malleable
schema does not need to be concise, but contains imprecise and over-
lapping definitions of attributes or relationships. In this way, a mal-
leable schema can capture such heterogeneous data structures as in
Figure 4.1.

4.2.2  The Query Model

Since in PIM and EIM systems user search is usually targeted on
entities (like documents, emails and web pages), we use an entity ori-
ented query model for malleable schemas. In this model the objective
of a query is always a single entity. A user can express her needs by
specifying the attributes of the entity or the relationships between this
entity to other entities. For example, the user can issue the following
query based on the schema in Figure 4.1,

Q3: SELECT Doc AS E1
WHERE E1.title CONTAINS ’XMLQuery’
AND E1.ISA-paper CONTAINS ’true’
AND El.author CONTAINS E2
AND E2.name CONTAINS ’Daniel’
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which queries for a paper whose title contains “XML Query” and
whose author is named “Daniel”.

To simplify subsequent analysis, in the following we restrict the
comparison operator in a query to containment (3) only, and the con-
nector between selection criteria to conjunctions only (no disjunction
or negation). Hence, our queries can be expressed as a conjunction
of predicates, each in the form of “A > t”, where A is an attribute or
relationship and t is a term or entity. For example, Q3 can be written
as:

Q3 ={E1 | El.title 5 XML’ N\
El.title > ‘Query” /\
E1.ISA-paper > "True’ /N
El.author 5 E2 /\

E2.name > ‘Daniel’ }

All entities satisfying these predicates will be correct answers to the
query. While the expressiveness of this query model is limited, we
believe it can satisfies user needs in most practical cases. Moreover,
it can be straightforwardly extended to include more operators. For
example, when disjunction is involved, we can first transform the
query to disjunctive normal form and process each conjunctive clause
separately.

4.2.3 A Probabilistic Query Relaxation Model

As each data instance uses only a subset of the attributes or rela-
tionships defined in a malleable schema, the predicates in a query
have to be properly relaxed to retrieve all relevant results. Such relax-
ation is achieved by extending the types of attributes or relationships.
For example, Q3 can be relaxed by extending Ez.name > ‘Daniel’ to
E2.first_name>'Daniel’, which would still retrieve relevant results. By
query relaxation, a query will be turned into a set of queries. We call
those the relaxed queries of the original query. For example, the relaxed
queries of Q3 contain:

Q5 ={E1 | El.title 5 "XML’" N\
El.title > ‘Query’ N\
E1.ISA-paper > “True’ /\
El.author > E2 N\
E2.first_name > ‘Daniel’ }
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and

Q6 ={ET | El.subject > XML" A
El.subject > ‘Query” N\
E1.ISA-paper > “True’ /\
El.writer > E2 A
E2.name > ‘Daniel’ }.

As stated earlier, because query relaxation might introduce irrele-
vant results, the system should return query results based on their
probabilities of relevance. That means, given a query Qo that could
be relaxed to Q1 V Q2 V...V Qn, we should return their results ac-
cording to the probabilities P(Qo|Q1), P(Q0lQ2), ..., P(QolQn ), where
P(Qi|Qj) represents the probability that a result of Q; is also a rele-
vant result of Q;i. As an example, Qo = {EJA > a A B > b} is relaxed
to Q1 VQy, where Q = {EJA7 > a/AB7 > b} and Q2 = {EJA2 >
a/ABy > b} If we know that P(A > a/AB > blJA; > a/AB; > b)
< P(A > a/AB > DblA; 3 a/ABy, > b), we will return the results of
Q2 prior to the results of Q1, because Q, will retrieve more relevant
results than Q.

Thus, query relaxation requires estimating the correlation between
the original query and each of its relaxed queries, i.e. P(Q|Qj). These
conditional probabilities cannot be estimated straightforwardly, as
there exist a huge number of query variances even in a simple mal-
leable schema. We therefore use a probabilistic model that relies on
two basic assumptions to make the computation of P(Q|Q;) feasible.

Assumption 1 Suppose Q = {E|A1 2 a1 ANA2 3> ax Ao ANAx D axlis
a query, and Q' = {EJA] 3 a1 AAL > ax A AAL > ax} is a relaxed
query of Q. For any i,j € [1,k] such that i # j, Ay > a; is independent of
A; 3 a5, and A{ > a; is independent of A; > aj.

Assumption 1 states that all the predicates in a query are indepen-
dent and their corresponding predicates in the relaxed query are also
independent. This assumption is reasonable, because a user seldom
uses two correlated predicates in one query. For instance, a user will
not say “I am looking for a person whose name is ‘Daniel” and whose
first_name is also ‘Daniel””, as this is too wordy. Similar assumptions
have been widely used in IR models [99, 96]. Some techniques [69]
even can identify synonyms by assuming that synonyms rarely co-
occur in the same paragraph.

Assumption 2 For each pair of terms a and b, P(A 3 a|]A’ 5 a) =P(A >
bJA’ 5 b). Subsequently, we use P(A|A’) to denote P(A 3 x|A’ 3 x).

Assumption 2 states that the correlation between two predicates
is independent of the values in the predicates. This is equivalent to
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saying that the correlations in a malleable schema apply to all data
instances defined by the schema. Though this might not always be
true, we believe it is a sufficiently good estimate of data correlation
at the schema level. Functional dependencies in relational databases
are an analogous concept.

Theorem 1 If Assumptions 1 and 2 hold, for any query Q = {E|A1 2 a1 A\
Az 3 ax N...NAx > ax}and one of its relaxed queries Q' = {EJA] > a3 A
Aé Sax/\.. /\A]/< > ayl, P(Q|Q,) =P(A; |A1 )P(A2|Aé) P(AMAL)

Theorem 1 decomposes the correlation between two queries into
the correlations (i.e. P(A|A’)) between the attributes or relationships
in a malleable schema. This makes the actual computation of query
correlations much easier. In the next section, we introduce our method
to discover and estimate the correlations between the attributes or re-
lationships in a malleable schema.

4.3 DISCOVERING CORRELATIONS IN A MALLEABLE SCHEMA

As stated earlier, to achieve query relaxation we need to find and
quantify the correlated attributes and relationships in a malleable
schema. With the above query relaxation model, the task becomes
estimating the conditional probability P(A|A’) (i.e. P(A 5 x|A’ 3 x))
for any pair of attributes or relationships.

A brute force approach to estimate P(A|A’) is to examine the data
instances where A and A’ co-occur. For example, if we find that the
terms in the attribute first_name also appear in the attribute name on
all entities, we can estimate that P(namelfirst_name)= 1. Similarly, if
only half of the terms in the name appear in first_name, we have
P(first_namelname)= 0.5. However, in real cases, it is very unlikely
that correlated attributes always co-occur on a common entity. For in-
stance, if a person has been registered using attributes first_name and
sur_name, usually it will not be registered for the attribute name any-
more, because this is redundant. As a result, there will not be enough
samples to make such statistical estimates. We propose to use the du-
plicates in the data sources instead. These duplicates are entities that
are described by different attributes but refer to the same real-world
instance, and are very common in multi-application systems such as
PIM or EIM. Once being detected, they can serve as good samples for
estimating the correlations in a malleable schema.

Therefore, discovering correlations in a malleable schema consists
of two steps:

1. detecting duplicates in data;

2. using the duplicates to quantify the correlations in malleable
schema.
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title | subject | author | writer | pub-date | rec-date
E1 | XML Daniel Jan 1999
E2 XML Daniel Dec 2003
E3 | DB Ullman Jul 1994
E4 DB Ullman Nov 2001
ES | Al Stuart Nov 2001
E6 Logic Stuart Nov 2001

Table 4.1: Duplicates under Malleable Schema

Please note that the semantics of schema correlation is slightly dif-
ferent from that of schema match in classic data integration tasks.
Schema match measures the likelihood that two attributes refer to
the same real-world concept, while schema correlation measures how
much the contents of two attributes overlap. As an example, title and
abstract are very different concepts, but they are correlated in contents.
Nevertheless, schema match can capture schema correlation to some
extent, so that it could be a back-up solution when we do not have
sufficient duplicates. We do not address it in this chapter, though it
can be an interesting problem for future research.

4.3.1  Duplicate Detection with Malleable Schema

The task of duplicate detection has been extensively studied in data
integration and data cleaning [41]. However, most techniques assume
a rigid schema and cannot be directly applied to malleable schemas.
Especially when entities are described by different schema elements,
detection results usually become very imprecise. Therefore, duplicate
detection with malleable schemas should integrate with the process
of discovering schema correlations. On one hand, knowing the corre-
lations, we can more accurately detect the duplicates. On the other
hand, the detected duplicates are quality evidences to infer the cor-
related attributes or relationships in the schema. We will therefore
rely on a new algorithm that allows duplicate detection and discover-
ing schema correlations to reinforce each other thus generating more
precise results.

4.3.1.1  An Example

Table 4.1 shows an example of malleable schema data. It contains 6
entities that are described by 6 attributes. An inspection of the data
gives us the impression that title vs subject, author vs writer and pub-
date vs rec-date seem to be 3 pairs of correlated attributes, and E1 vs
E2, E3 vs E4 and E5 vs E6 seem to be 3 pairs of duplicated entities. If
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we use the 3 pairs of duplicates to test the 3 attribute correlations, we
discover that pub-date vs. rec-date are actually not correlated (one is
publication date and the other is receiving date), because their values
are different in most of the duplicates (i.e. E1 vs. E2 and E3 vs. E4).
After eliminating this attribute correlation, we will further discover
that E5 and E6 are no longer likely duplicates, because they are sim-
ilar in only one pair of correlated attributes (author vs writer), which
is not sufficiently convincing. In the end, we can conclude that only
title vs subject and author vs writer are truly correlated, and E1 vs E2
and E3 vs E4 are authentic duplicates.

The above process can be summarized into the following algorithm:

1. Duplicate detection: based on current schema correlations, find
all possible duplicates.

2. Correlation detection: based on current duplicates, reassess the
schema correlations.

3. If the schema correlations did not change in step 2, stop the
process. Otherwise, go to step 1.

Our algorithm performs duplicate detection and correlation detec-
tion iteratively until the resulting schema correlations and duplicates
do not change anymore. Finally, the detected duplicates are much
more precise than those detected without considering schema corre-
lations. As a side effect, schema correlations will be disclosed, too.
The following sections present our detailed algorithms to detect du-
plicates and schema correlations.

4.3.1.2 The DSCD Algorithm

Our algorithm for duplicate and schema correlation discovery (DSCD)
is based on the observations above. When presenting the algorithm,
we first ignore the relationships between entities and consider only
attribute correlations.

Let cq,c2,...,cn be the pairs of attributes that are likely to be cor-
related, where each c; consists of two attributes represented by c; =
(Ay,Al). Let dy, dy, ..., dm be the possible duplicate pairs, where each
dj consists of two entities represented by d; = (Ej,Ej). C is a n-
dimensional vector, where each element C(i) is a weight indicating
our belief of that c; is a true correlation. D is a m-dimensional vector
where each D(i) indicates our belief of that d; is a true duplicate. S is
a n x m matrix called evidence matrix. Each element S(i,j) measures
the similarity between the attribute A; on entity E; and the attribute
A{ on entity E/, namely S(i,j) = Sim(Ei.Aj,E{.Aj’). Obviously, if the
attributes in c; are truly correlated and the entities in d; are true
duplicates, this similarity should be high, and vice versa.

Given the belief of the schema correlations and the evidence ma-
trix S we can deduce our belief in the duplicates. In particular, if the
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correlated attributes on two entities are more similar, we are more
confident that the two entities are duplicates. This can be represented

by
n
Zc )% S(i, k)
k=1

which can be written into matrix form
D=CxS

Analogously, we can deduce C from D and S, too. In particular,
if two attributes are more similar on the duplicates, we are more
confident that the two duplicates are really correlated. This can be
represented by

ZD )% S(k, 1)

which could be written into matrix form
C=DxS"T

Our DSCD algorithm performs the two deduction processes itera-
tively until our belief of schema correlations and our belief of dupli-
cates are consistent with each other. As a result, each schema corre-
lation and duplicate is given a weight indicating its likelihood to be
true. The detailed algorithm is:

1. Co =1(05,05,..,05)and i1 =1;
2. Di = Ci_1 X S;
3. C{=D; xST;

4. If Ci # Ci_1, 1 = 1+ 1 and go to step 2; otherwise, end the
process and output C; and D;.

Since we have no proof about valid schema correlations in the be-
ginning, we assign them equal belief, which can be any real value
greater than 0 (we use 0.5 here). With the algorithm going on, our
beliefs of the schema correlations and duplicates will be repeatedly
verified by the evidence matrix S and thus become increasingly clear.
Combining he equations in Steps 2 and 3, we have

Ci=Cox (SxST)!

Dy =CoxSx(STx8) !

Interestingly, the resulting equations are exactly the same as those
of the Kleinberg HITS algorithm [72], which is used to compute page
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(ET,E2) 1 07 o©
(E3,E4) 1 07 o
(E5E6) o o077 1

Table 4.2: Matrix of Table 4.1

ranks in Web searches. Kleinberg shows that according to standard
results of linear algebra, C; is going to converge to the principal
eigenvector of S x ST, and D; is going to converge to the principal
eigenvector of ST x S. This ensures that also the above algorithm will
terminate.

Applying this algorithm to the example in Table 4.1, we have ¢y =
(title,subject), c2 = (author,writer), c3 = (pub-date, rec-date), and d; =
(E1,E2), dy = (E3,E4), d3 = (E5,E6). The evidence matrix S can be
instantiated to the one in Table 4.2. (Ej.author = Ejwriter will have
smaller similarity values because they are more probable to coincide
than E;.title = Ei.subject and E;.pub-date = E;.rec-date. This is explained
in Section 4.3.1.3.) The outcomes (after normalization) will be C =
(1.0,0.89,0.28) and D = (1.0,1.0,0.56). As expected, c1 and c; are
more likely to be true than c3, and d; and d, are more likely to be
true than ds.

4.3.1.3 The Similarity Measure

To instantiate an evidence matrix S, it is important to know how to
measure the similarity between two attributes on two entities, namely
Sim(Ej.Ay, E]-’ A{). In the IR area, there exist a number of methods to
measure the similarity between two bag of terms, such as the cosine
similarity between TFXIDF vectors. However, we do not think those
measures are adequate for application in our case, as they cannot cap-
ture the relationship between the compared attributes. For example,
they cannot capture that first_name is actually a part of name. In or-
der to preserve the relationship information, we consider the order
of schema correlations and thus distinguish between (A, A{) and
(A{,Ay). We also consider the order of similarities and distinguish
between Sim(E; .Ai,E)f.Ai’) and Sim(Ej/.Ai’,Ej.Ai). Hence, we use the
following similarity measure:
B [E1.A71NELAS]

Sim(E1 .A1,E2.A2) = |E2 Az| X H(A],Az)

The first factor measures the percentage of terms in E;.A; that are
also in Ej.A7. This factor alone does not constitute a good measure,
as it is significantly depending on the alphabet sizes of attributes A
and A;. For example, if A7 and A; can only contain two particular
terms (e.g. true and false), the measure will be very likely to be high
(> 50% if A1 and A, are independent). Therefore, we normalize it
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by the second factor, the joint entropy of A7 and A;, which measures
the amount of information of knowing the values of A; and A;. This
entropy can be statistically estimated using sample values of the A;
and A, attributes.

4.3.1.4 Extension to Relationship Correlations

So far, our approach only deals with attribute correlations. To involve
relationship correlations, we only need to know how to measure the
similarity between two separate relationships on two entities, namely
Sim(Ej.Ry, Ej’ .R{). As attributes are binary relations between entities
and values, we consider two attributes as being similar, if they contain
similar values. In contrast, relationships are binary relations between
entities (sub-entities) and entities (ob-entities), so we say that two re-
lationships are similar if they are associated to similar ob-entities. To
assess whether two ob-entities are similar, we measure the similar-
ity between the attributes on the two ob-entities. This results in the
following measure:
B [E1.R1 NEL.Ry|

Sim(E1.R1,E2.R2) = W X H(R1,R2)

where
E1.Ry = {X|X € E{.AAE{ S E1.R1}

Es.Ry = {X|X € Eé.A/\Eé € E2.Ry}

It aggregates the terms in all attributes on the ob-entities, and uses
them to represent the terms of the relationship, such that the similar-
ity between relationships can be computed in the same way as that
between attributes. In practice, we can selectively use the attributes
that are most representative of the ob-entities.

4.3.2  Quantifying Schema Correlations

The DSCD algorithm generates a weight for each duplicate candi-
date and for each schema correlation candidate. While the weights of
schema correlations indicate our belief in their correctness, they are
not yet the conditional probabilities P(A|A’) we need to use in query
relaxation. Those probabilities can only be estimated by studying the
individual duplicates. We choose a set of duplicates that are most
likely to be correct, and use them as samples to assess the conditional
probability between two attributes or relationships.

When choosing sample duplicates, we need to find an appropriate
trade-off between quantity and quality. If we take too many dupli-
cates, we might include a lot of false duplicates. If we take too few,
the sample size is too small to give unbiased estimates. The method
to find good threshold will be presented in the experimental section.
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With the sample duplicates, we use the maximum likelihood method
to estimate the conditional probability between two attributes. It re-
sults in

Z ‘Ei.AﬁEj.A/l
(F—i/E]’) ‘Ej.A"

P(AIAY) =

where each (Ej, E;) is a pair of duplicates. We use a similar equation
to estimate the conditional probability between two relationships:

Z |Ei.RNTE;.R/|
(Ei.Ey) [E;.R’[

PRIRY) = ——1& 5]

where E;.RNT E;.R’ denotes the common ob-entities between E;.R and
E;.R" and the duplicated ob-entities in E;.RUE;.R" with weights larger
than T. We estimate P(A|A’) only when the DSCD algorithm gives a
significant weight to the correlation between A and A’, because only
correlated attributes or relationships will be used in query relaxation.

4.3.3 Implementation Issues

When performing the DSCD algorithm to detect duplicates and schema
correlations, we need first to obtain the candidates for duplicates and
the candidates for schema correlations. Given n entities, there exist
n? possible pairs of duplicates. Given m attributes, there exist m?
possible attribute correlations. If we take all of them as candidates for
duplicate and schema correlation, run times become infeasible. There-
fore it is necessary to prune some candidates that are very improb-
able to be correct. For pruning duplicate candidates, we can trans-
form each entity to a text fragment by concatenating all its attributes
and employ IR techniques (such as cosine similarity) to pre-select
those pairs of entities that are similar enough to be real duplicates.
As shown later on in experiments, the DSCD algorithm works suffi-
ciently well with a limited number of duplicates. Thus we do not need
to feed all possible duplicates to it. When assessing the conditional
probabilities, we can use the schema correlations vector C to find
more duplicates. To prune the candidates of correlated attributes or
relationships, we can resort to various schema matching techniques,
which utilize schema description and data types to eliminate the pairs
of attributes or relationships that are impossible to be correlated.

Thus, our procedure of identifying and quantifying correlations in
malleable schema consists of 3 steps.

1. Preparation: Find all pairs of attributes that are possibly corre-
lated; select some duplicate candidates.

2. Verification: Perform the DSCD algorithm to find the authentic
duplicates and schema correlations.
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Figure 4.2: Query Example — Qg

3. Quantification: Use the schema correlations vector C to identify
more duplicates and use the duplicates to quantify the schema
correlations.

Several methods could be used to further optimize the performance
of the DSCD algorithm, such as applying a sigmoid function to vec-
tors C and D to amplify the reinforcement effect. We omit the details
in this chapter.

4.4 QUERY PROCESSING

With the correlations in a malleable schema, we can properly relax
a user query and rank results according to their probability of rele-
vance.

4.4.1  Query Relaxation Planning

We assume that the entity-relationship data are stored in relational
database. In contrast to ordinary queries in relational database, a
query using malleable schema will be relaxed to multiple queries
that are executed on different columns or tables. The major perfor-
mance consideration is to find a plan that executes as less queries
as possible to retrieve sufficient relevant results. The optimal plan
is to execute relaxed queries in a sequence based on the expected
precisions of their result sets. For example, figure 4.2 shows a query
Qo = {E1|E1.A 5 x AEL.R 5 E2/AE2.B > y}, which searches for an
entity E1 which has attribute A > x and relationship R to an entity
E2 with B 5 y. Attribute A is correlated to attributes A1, A2, with
probabilities P(A|A1) = 95%, P(A|A2) = 85%. Attribute B is corre-
lated to B1, with probability P(A|AT) = 90%. Relationship R is corre-
lated to R1 with probability P(R|R1) = 60%. With these correlations,
Qo can be relaxed to queries like Q7 = {E1[ET.A1 > x AEL.RT >
E2ANE2B >y}, Q2 = {E1[E1.A2 5 xAEIL.R 5 E2AE2B1 > y} and
so on. Based on the query relaxation model in Section 4.3, we have
P(QolQ1) = P(AIAT)P(RIRT) = 95% x 60% = 57%, and P(Qol|Q2) =
P(A|A2)P(B|B1) = 85% x 90% = 76.5%. It means that the results of
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Q2 are more precise than the results of Q1, so that we should return
the results of Q; prior to the results of Q.

If a query contains n attributes and relationships, and each of them
is correlated to m other attributes or relationships, then the query re-
laxation will end up with m™ relaxed queries. Sometimes, it is infea-
sible to evaluate all queries. In practice, we try to evaluate the relaxed
queries in the order of their precisions until we obtain more than k
results or the user is satisfied and stops the processing. To achieve
this, we exploit the relationship between the relaxed queries.
Parent-child relation between relaxed queries: Given a query Q =
{EJA7 2 a1 ANA2 > ax A ... /NAx D ax} Let A;,Aiz,..., A‘f denote the
set of attributes/relationships that are correlated to A;, and Vu < v :
P(A{|AY) > P(A{|AY). We say that AJ*" is the child of A] w.r.t. Q. (A!
is the child of A;.) Let Q1 and Q2 be two relaxed queries of Q. We say
that Q1 is a parent of Q2 iff we can turn Q1 into Q2 by substituting
an attribute/relationship in Q1 with its child attribute/relationship.

For example, given Qo in Figure 4.2, Q4 = {E1|[ET.A1 2 x AET.R >
E2/\E2.B > y} is a child of Qp, and Qs = {E1[ET.A2 5 x AEL.R 3
E2AE2B 3y} and Qe ={ET[ET.A1 5 x AEL.R1 5 E2AE2.B > y} are
children of Q4. If we use edges to connect each relaxed query of Qo
to its child queries, we end up with the partial order graph in Figure

4.3
A,B,R

T

Al,B,R A,BI,R A, B, Rl

NN

A2,B,R Al,B1,R Al, B, R1 A, B1,R1

N7/

A2,B1,R A2,B,R1 Al,B1,R1

Tl

A2,B1,R1

Figure 4.3: Query Relaxation Graph

Proposition 1 Given a query Q and two relaxed queries Q1 and Q2, if Q1
is a parent of Q2 then P(Q|Q1) > P(Q|Q2).

Proposition 1 indicates that a relaxed query always yields better
precision than its child queries, so that it should always be evalu-
ated prior to its child queries. Thus, query relaxation using malleable
schemas can be performed through the algorithm in Figure 4.4. The
algorithm guarantees that the returned top k results are from those
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1)  func query(Q, k)

2) initialize Processed list;

3) initialize Ready list;

4) initialize Result list;

5) add Q to Ready;

6) while Ready is not empty and |Result| < k, do
7) pick Qi from Ready with largest P(Q|Q;);
8) add the results of exec(Qji) to Result;

9) add Q; to Processed;

10) foreach Q; that is a child of Qj, do

11) if Qj's parents are all in Processed
12) add Qj to Ready;

13) end do;

14) end do;

15) return Result;

16) end func

Figure 4.4: Query Relaxation Algorithm

1) //Cache is emptied at the start of query()

2)  func exec(Q)

3) foreach selection o in Q, do

4) if o’s results are not in Cache

5) execute o;

6) store o’s results to Cache;

7) end do

8) search in Cache for the temp results that
need the least joins to complete Q;

9) execute the joins;

10) store the results of the joins to Cache;

11) return the final results;

12) end func

Figure 4.5: Query Execution Algorithm

queries that yield the best precision. It also minimizes the number of
relaxed queries to be evaluated. In [8], the authors proposed a sim-
ilar algorithm for relaxing queries over multiple relaxation paths in
ontologies.

4.4.2  Query Execution

With normal relational indexes, each relaxed query can be executed
efficiently. However, further optimization can be achieved by caching
temporary results of each relaxed query in order that they can be
reused by subsequent relaxed queries.

The execution of a relaxed query comprises a number of selection
operations and a number of join operations. For example, query Q' =
{E[E.A > xAEB 3 yAE.C 3 z} can be implemented in the following
way:

[UAax(E)] > [GBBy(E)] > [UC9z(E)]
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As another example, the Qg in Figure 4.2 can be implemented in the
following:

[oAsx(ET)] b1 R5E2 [0B5y(E2)]

The temporary results of the selections and joins can be cached and
reused. For example, if the above query Q’ can be relaxed to Q] =
{E[E.AT 5 xAEB 3 y AE.C 2 z}, then the results of [op5y(E)]
[0¢52(E)] can be reused by Q. Therefore, our algorithm of query
execution maintains a cache to store the temporary selection and join
results. Figure 4.5 presents a greedy algorithm for query execution.

4.5 EXPERIMENTS

This section presents our experimental results, which demonstrate
that our query relaxation scheme is able to accurately detect correla-
tions in malleable schemas and effectively perform query relaxation
in a fully automatic way. Section 4.5.1 introduces the datasets we used
in our experiments. Section 4.5.2 presents the study on detecting du-
plicates and schema correlations. Section 4.5.3 shows the effectiveness
of query relaxation. And Section 4.5.4 demonstrates the efficiency of
the query relaxation scheme.

4.5.1 Datasets and Experiment Setup

Being a new concept, malleable schemas have not yet been adopted in
real world applications. Hence, it is difficult to find adequate datasets
using authentic malleable schemas. In order to conduct our experi-
ments, we constructed a dataset by combining real world data from
different sources.

Our dataset is a combination of information about movies provided
by www.imdb.com and DVD/video items crawled from www.amazon.
com. Though both sources describe similar data they organize and de-
scribe their data in different ways. The IMDB dataset contains infor-
mation on 850,000 movies and TV series, which were joined into a sin-
gle table containing 32 attributes. The Amazon.com dataset contains
information on 115,000 DVDs and VHS videos, which were joined
into a table containing 28 attributes. The attributes used to describe
the movies and DVDs are very different, but of course closely corre-
lated, so that it adequately simulates the scenarios that use malleable
schemas. As there is a big overlap between movies and DVDs, the
dataset offers sufficient duplicates for evaluating our query relaxation
scheme.

We implemented our system in Java 5. We conducted all the exper-
iments on a PC with a 2.7GHz CPU and 1GB RAM. The DBMS we
used is MySQL 4.1.11.


www.imdb.com
www.amazon.com
www.amazon.com

4.5 EXPERIMENTS

Amazon IMDB confidence | P(A[l)

1 Title title 0.701 0.619

2 Actors actors 0.655 0.587

3 Directors directors 0.642 0.753

4 | Languages languages 0.382 0.711

5 | Edit~Review keywords 0.132 0.086

6 Directors producers 0.102 0.072

7 Title akatitles 0.090 0.097

8 | ReleaseDate year 0.081 0.098

9 Directors writers 0.080 0.173

10 Actors misc 0.072 0.047
11 | Edit~Review plots 0.067 0.076
12 Actors writers 0.061 0.098
13 Directors proddesigners 0.059 0.002
14 Directors cinematographers 0.054 0.023
15 Title movielinks 0.049 0.050
16 | Edit~Review taglines 0.046 0.056
17 Actors producers 0.046 0.072
18 Actors directors 0.043 0.094
19 | Audi~Rating certificates 0.042 0.136
20 Actors composers 0.042 0.056

Table 4.3: (Amazon, IMDB) Correlations

4.5.2 Performance in Detecting Duplicates and Schema Correlations

4.5.2.1 The First Run

Following the 3 steps introduced in Section 4.3.3, we ran our sys-
tem to automatically detect and quantify the correlations between
the IMDB schema and the Amazon schema.

PREPARATION  We pre-selected possible schema correlations by as-
suming that no correlation should exist between attributes of different
types. This left us with 59 candidates for attribute correlations. To pre-
select the duplicate candidates, we randomly picked up 1000 IMDB
entities, concatenated the attributes of each entity and compare them
with the Amazon entities using a TF-IDF cosine similarity. Then, we
selected the 100 most similar pairs as duplicate candidates. To acceler-
ate the process, we only used the most important and representative
attributes which satisfied the following general criteria:

1. typed as text;

2. limited length (< 100Bytes);
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IMDB Amazon confidence | P(I|A)

1 title Title 1.000 0.923
2 actors Actors 0.794 0.720
3 directors Directors 0.666 0.792
4 akatitles Title 0.380 0.303
5 languages Languages 0.348 0.621
6 distributors Publisher 0.264 0.335
7 distributors Manufacturer 0.264 0.335
8 distributors Label 0.264 0.335
9 distributors Studio 0.264 0.335
10 movielinks Title 0.262 0.296
11 producers Directors 0.152 0.186
12 writers Directors 0.104 0.259
13 year ReleaseDate 0.081 0.098
14 technical AspectRatio 0.073 0.108
15 actors Creators 0.067 0.063
16 actors Directors 0.066 0.135
17 proddesigners Directors 0.059 0.003
18 certificates Audi~Rating 0.058 0.220
19 | cinematographers Directors 0.058 0.029
20 plots Edit~Review 0.036 0.052

Table 4.4: IMDB, Amazon) Correlations
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3. high selectivity (> 0.05);
4. frequently used (more than 30% are not null).

Besides the 100 duplicate candidates, we also included 100 non-dupli-
cate candidates (random pairs) as baseline.

VERIFICATION We ran our DSCD algorithm on the pre-selected
schema correlations and duplicates/non-duplicate candidates. The al-
gorithm computed a confidence value for each schema correlation in-
dicating the extent of belief that the match is correct. We ranked all
correlations based on the confidences, and list the top 20 correlations
for both directions in Tables 4.3 and 4.4 respectively. Please note that
the confidence assigned to correlation (Amazon.attribute, IMDB.attri-
bute) is different from that assigned to (IMDB. attribute, Amazon.attri-
bute). The former shows how much the system believes that an Ama-
zon attribute contains an IMDB attribute, and the latter the other way
around.

We can see from Tables 4.3 and 4.4 that (Title, title), (Actors, actors),
(Directors, directors) and (Languages, languages) are the most obvious
correlations. This is consistent with the results of a manual inspec-
tion where we can actually find those attributes to be semantically
equivalent. It is interesting to see that the algorithm also recognizes
the direction of correlations. For example, it gave more confidence to
(IMDB.title, Amazon.Title) than to (Amazon.Title, IMDB.title), as most
IMDB titles contain the release years of movies while the Amazon
titles do not. Apart from the most obvious correlations, our system
found other interesting correlations as well. For example, the directors
in Amazon is correlated to the writers and the producers in IMDB, as
it is very common that the director of a movie also acts as writer and
as one of the producers. Moreover, there exist correlations between
the EditorialReview in Amazon and the keywords, plots, and taglines
in IMDB, because these attributes are all related to summaries of
movies. A semantically meaningful query relaxation should thus be
performed on these best matching attributes.

Besides schema correlations, the algorithm verified the pre-selected
duplicate candidates too. Figure 4.6 shows the distribution of the con-
fidences the algorithm gave to the total of 200 duplicate candidates
and non-duplicate candidates. We can see that out of the 100 pre-
selected duplicate candidates only around 22 are likely to be true
(with confidence larger than 50%). We manually assessed the 22 pairs
of entities and found that they are indeed all real duplicates. We can
also see that the DSCD algorithm was able to distinguish the true du-
plicates and the false duplicates quite clearly, as the confidence values
assigned to true duplicates and those for false duplicates differ signif-
icantly.
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Figure 4.6: Confidence Distribution over Duplicates

QUANTIFICATION In this step we estimate the probabilities that
will be used for query relaxation, namely P(Amazon.attribute| IMDB.at-
tribute) and P(IMDB.attribute| Amazon. attribute). We used the K-Mean
algorithm to automatically cluster the duplicate candidates into true
duplicates and false duplicates based on their confidence values, and
set the median of the two clusters as a threshold for duplicate detec-
tion. Then, we used the schema correlations discovered previously to
find 200 more duplicates that have confidence larger than the thresh-
old, and finally applied the functions in Section 4.3.3 on these du-
plicates to calculate the requested probabilities. The results are pre-
sented in Tables 4.3 and 4.4. They show that although confidences
and probabilities are often similar, they are not completely consistent.
For example, the Languages vs. languages are given confidence 0.3, but
the corresponding probability is bigger than 0.6. Since both attributes
have limited possible values, it is very likely that they are similar on
real duplicates, even if they are not significantly correlated.

4.5.2.2  Result Quality of the DSCD Algorithm

After the first run, we conducted a set of experiments to evaluate the
result quality of the DSCD algorithm, namely how precisely it can
detect the schema correlations and duplicates. The precision of such
detection determines the overall performance of our query relaxation
scheme. To make such an evaluation, we used the the schema correla-
tions (and their confidence values) discovered by the algorithm to de-
tect additional duplicates in the database. The precision of the detec-
tion measures the accuracy of our algorithm in finding both schema
correlations and duplicates.

In order to obtain objective results, we divided the 100,000 Ama-
zon items into two sets, each containing 50,000 items. The first set
was used as a training set to perform the DSCD algorithm. Then the
discovered schema correlations were applied to the second set (test-
set) to measure the accuracy in detecting duplicates. In particular, we
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used the pre-selection criteria of the first run to find 8oo duplicate
candidates from the Amazon test set and the IMDB dataset. Then we
manually inspected the 800 pairs of items and picked out all pairs that
are real duplicates . This resulted in 153 real duplicates. After that,
we randomly selected 1000 pairs of entities from the Amazon test
set and the IMDB dataset and in another manual inspection picked
out all pairs that are not duplicates, which ended up with 919 non-
duplicates. Finally, the 153 real duplicates and the 919 non-duplicates
constituted the final test-set for our evaluation.

We used two metrics for our evaluation. The first metric was the
mean average precision (MAP), which has been widely used in IR. It
measures how accurately our system can order the pairs of entities in
the test-set according to their likelihood of actually being duplicates.
While this measure is widely applicable, it still does not clearly show
whether the system can find an appropriate threshold to clearly dis-
tinguish between real duplicates and non-duplicates. Therefore, we
also used classical precision and recall to measure how accurately our
system can make such distinction. After performing the DSCD algo-
rithm in the training set, we again used the K-Mean algorithm to clus-
ter the duplicate candidates into real duplicates and non-duplicates
based on their confidence values, where we used K = 2 and set the
initial centroids to the max and min confidences respectively. After-
wards we used the central point of the two clusters as the threshold
to distinguish between true duplicates and false duplicates in the test-
set.
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Figure 4.7: Sensitivity to Pre-selected Duplicates

In the first set of experiments, we used the same criteria as in the
first run to pre-select a certain number of duplicate candidates (vary-
ing from o to 50) from the Amazon training set and the IMDB dataset,
and mixed them with 150 random non-duplicate candidates. We ap-
plied the DSCD algorithm on these duplicate and non-duplicate can-
didates, and then used the output schema correlations to detect the
duplicates in the test-set. Figure 4.7 shows the performance of the du-
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plicate detection. When there was no duplicate candidates, the DSCD
algorithm was only able to detect correlations like Language vs. lan-
guage and ReleaseDate vs. year which contain attributes with small
value ranges. Hence, it was not really able to find any duplicates
with these correlations. Though it shows a MAP of 75%, the precision
is only 30%, which is very bad given that there are many actual du-
plicates in the test-set. However, the accuracy of the DSCD algorithm
increases very fast as the number of duplicate candidates grows. As
shown in Figure 4.7, with 25 duplicate candidates, the MAP grows
close to 1 and the precision and recall grows close to 80%. With
50 duplicate candidates, the precision and recall are already 97%,
which means that our algorithm can almost perfectly detect all du-
plicates. According to the results of the first run, around 20% of the
pre-selected duplicate candidates are true duplicates. This indicates
that the DSCD algorithm can indeed accurately detect correlations
between the Amazon and IMDB schemas with a small number of
duplicates.
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Figure 4.8: Sensitivity to True Duplicates

In the second set of experiments, we intended to study the effects
of true duplicates to the results of the DSCD algorithm. We used the
same criteria as in the first run to pre-select a certain number of du-
plicate candidates, and manually changed the number of the true du-
plicates inside, such that the number of true duplicates ranged from
o to 8 and the total number of duplicate candidates remain at 50. We
ran the DSCD algorithm on the 50 duplicate candidates and another
150 non-duplicate candidates, and again used the results to detect du-
plicates in the test-set. The performance of the detection is shown in
Figure 4.8. As we can see from the results, the true duplicates play
an important role in the DSCD algorithm. When there were no true
duplicates in the 50 pre-selected duplicate candidates, the outcome of
the DSCD algorithm was hardly able to detect duplicates in the test-
set (a precision of 0.3). When the number of true duplicates increased
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to 8, even though they were still few, the precision quickly increased
close to 1.
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Figure 4.9: Sensitivity to False Duplicates

The performance of the algorithm is also influenced by the false
evidence in the pre-selected duplicate candidates. In the last set of ex-
periments, we limited number of true duplicates in the pre-selected
duplicate candidates to 8, and manually increased the duplicates can-
didates which were not true but had high pre-selection scores. As
shown in Figure 4.9, both MAP and precision-recall in the final dupli-
cate detection start to drop when the number of the false duplicates
increases to a certain point (between 92 and 142). This means that
when there are too many false duplicates, they will dominate the ef-
fect of true duplicates and lead the system to believe a set of wrong
schema correlations. This actually happens to our human belief sys-
tem too. Fortunately, our algorithm is still very tolerant to the false
evidences. As we can see from Figure 4.9, only when there are more
than 92 false duplicates (10 times more than the true duplicates), it
started to take effects. In practice, false duplicates can also be rela-
tively decreased by raising the criteria of pre-selection.

4.5.2.3 Schema Correlation Quantification

We also conducted a set of experiments to study how accurately our
system can quantify the schema correlations. We used the schema cor-
relations and the threshold obtained by the DSCD algorithm to find
duplicates from 50 pre-selected candidates from the Amazon training
set and the IMDB dataset. Then, we used the functions in Section 4.3.3
to estimate the probabilities based on those duplicates. We varied the
number of duplicate candidates and repeated the process for several
times. Figure 4.10 shows the correlation-coefficients between the es-
timated probabilities and the probabilities we obtained from the 153
real duplicates in the test-set. As expected, when there are more du-
plicate candidate, our system can more precisely identify duplicates
and thus obtain better estimation of the probabilities.
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Figure 4.10: Accuracy in Correlation Quantification

4.5.3 Effectiveness of Query Relaxation

To test our query relaxation scheme, we used the correlations discov-
ered in the first run and issued a set of queries posed to the original
Amazon scheme to be relaxed to attributes of the IMDB database. We
observed how the queries were relaxed and results were retrieved.

For example, we searched for the movie “Titanic (1997)” which was
very popular ten years ago. As there are a lot of movies whose title
contains “Titanic”, we used the director “James Cameron” as an ad-
ditional selection criterion, and the query managed to retrieve the
unique answer “Titanic (1997)” from the Amazon data. Then, we is-
sued the same query to the IMDB data. Using the schema correlations
detected in the first run, our system relaxed the query to a number
of relaxed queries and executed them in a sequence based on their
probabilities of getting correct results. Table 4.5 shows the relaxed
queries, as well as the corresponding results retrieved by them. We
can see that the Title and Directors in Amazon was first extended to
the title and directors in IMDB. Then, attribute directors was relaxed to
writer and producer, and attribute title to akatitle and movielinks. All the
relaxed queries actually retrieved the correct result “Titanic (1997)”.
Thus, even though if the attributes title and directors were missing in
IMDB, we can still find the movie by using the correlated attributes.
As expected, the query relaxation also introduced some incorrect re-
sults, such as “Ghosts of the Abyss” and “Last Mysteries of Titanic”,
which are relevant to “Titanic” and “Cameron” but not the exact an-
swer we wanted.

As another example, we looked for the famous Disney cartoon
“Mulan (1998)”, which was adapted from a Chinese legend. Assume
we had forgotten the title of the movie and only remembered that
it is a Disney work about a Chinese story. Thus, we had to search
by the EditorialReview attribute using keywords “Disney” and “Chi-
nese”. The result we got from Amazon was exactly the movie “Mu-
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’ Original Query in Amazon

results (Title)

Title > “Titanic”

Directors > “Cameron”

Titanic

Relax query in IMDB results (title)
title > “Titanic” Titanic
directors 3 “Cameron”

title 5 “Titanic” Titanic
writers 5 “Cameron”

akatitles > “Titanic” Titanic
directors > “Cameron” Ghosts of the Abyss
title > “Titanic” Titanic

producers > “Cameron”

Last Mysteries of Titanic

Titanic Explorer

movielinks > “Titanic” Titanic
director > “Cameron” Ghosts of the Abyss
akatitles > “Titanic” Titanic
writers > “Cameron”

movielinks > “Titanic” Titanic
writers 5 “Cameron”

akatitles > “Titanic” Titanic

producers > “Cameron”

Ghosts of the Abyss

Titanic Explorer

Table 4.5: Query Relaxation Case One

lan (1998)”. The process and results of performing the same query on
IMDB are shown in Table 4.6. We can see that the attribute EditorialRe-
view in Amazon was relaxed to the corresponding attributes keywords,
plots and taglines in IMDB and retrieved three results. Among the
results, we still found “Mulan (1998)”.

To further evaluate the effectiveness of query relaxation, we com-
pared it against keywords search. We selected the most frequently
used three attributes in Amazon, namely “Title”, “Actors” and “Di-
rectors”, and created query templates using arbitrary combinations of
these attributes. For example, {E|Title> x} and {E|Actors> x/\Director>
y} are two query templates. Thus, we ended up with 7 query tem-
plates. We used these 7 templates on the Amazon items in the 153
manually evaluated real duplicates to create queries. For each of these
Amazon queries, we conducted it on the IMDB data to see if it can
effectively retrieve the corresponding duplicate in IMDB. One way to
conduct the query is to use our query relaxation scheme. The other
way is to combine all the terms in the Amazon query to form a key-
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Original query in Amazon results (Title)

Edit~Review > “Chinese” Mulan

Edit~Review > “Disney”

Relax query in IMDB results (title)

keywords > “Chinese” American Dragon

keywords > “Disney”

keywords > “Chinese” Mulan
plots > “Disney”
plots > “Chinese” Aladdin
keywords > “Disney”

plots > “Chinese” null
plots > “Disney”

keywords > “Chinese” null
taglines > “Disney”

taglines > “Chinese” null

keywords > “Disney”

Table 4.6: Query Relaxation Case Two

words search query, and conduct it on all the attributes of the IMDB
table.

keyword 1
1r relax 1
keyword 2 e
0.8 relax 2
keyword 3 =
2 0.6 - relax 3
e
04
02 F
0

100

top-k

Figure 4.11: Chance of Finding Intended Item in Top-k Results

In our experiments, we used the 7 templates and the 153 Amazon
items to automatically generate 3000 queries. Each query was created
by filling every query attribute with 1 to 3 terms selected randomly
from the corresponding attribute of an Amazon item. We use “key-
word k” to denote the queries that are conducted as keywords search
and have k terms in each query attribute. We use “relax k” to denote
the queries being conducted as query relaxation. We compare the re-
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sults of query relaxation and keywords search in Figure 4.11 and Fig-
ure 4.12. Figure 4.11 shows the fractions of queries that can retrieve
the intended IMDB items within the top 1, top 10 and top-100 results
respectively. We can see that query relaxation outperforms keywords
search in each type of queries. Figure 4.12 compares the mean aver-
age precisions of query relaxation and keywords search with varying
number of terms in each query attribute. We can see that query relax-
ation clearly outperforms keywords search. As shown in both figures,
the precision of query results increases with the number of terms in
each query attribute. This is because increasing the number of terms
will increase the selectivity of queries, so as to reduce false positive
results.

MAP

02 r keywords —=—
relax ---e---

0 1 ]
1 2 3

number of terms in each attributes

Figure 4.12: Result Accuracy v.s. Number of Terms

We found that query relaxation does not always outperform key-
words search in every individual query. The main reason is that query
relaxation sometimes returns empty result, as it requires that each
term in the query should appear in some attributes. In contrast, key-
word search always returns non-empty results, as it is based on cosine
similarity. Therefore, we believe that the performance of query relax-
ation could be further improved by softening its conditions. This will
be investigated in future research.

4.5.4 Efficiency of Query Relaxation

We did some initial experiments to evaluate the efficiency of our
query relaxation scheme. We generated 500 Amazon queries using
the Amazon items. Each query contained 1 to 5 attributes. Similar
to previous experiments, we performed the 500 Amazon queries on
the IMDB data using both query relaxation and keywords search. We
limited the number of schema correlations that are used in query re-
laxation, by setting a threshold to their confidence. The thresholds
we used were 0.2, 0.1 and 0.05 respectively. Figure 4.13 shows the
running times of various types of queries. As expected, the running
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Figure 4.13: Query Running Time

time of query relaxation can be increased by either decreasing the
threshold or increasing the attributes in each query, because both will
increase the number of relaxed queries to be executed. In particular,
the running time grows exponentially with the number of attributes.
Nevertheless, the exhibited performance was overall acceptable. With
threshold equal to 0.1, query relaxation can already return very satis-
factory results, and most queries can be completed within 1 second.
When the threshold is equal to 0.05, all queries can be completed in 10
seconds. Moreover, as the relaxed queries are executed progressively,
users can see early results in a very short time.

4.6 RELATED WORK

Extensive research have been done on automatic schema matching
[97, 38, 79, 69]. As stated earlier, although their results could help
in discovering the correlated elements in a malleable schema, they do
not give semantically accurate quantifications of those correlations. To
the best of our knowledge, such quantification can only be achieved
by studying the co-occurrences of the correlated schema elements,
which are embodied by the duplicates in real data. In [12], the authors
presented the idea of using duplicates to discover schema matches.
However, they did not address methods of using duplicates to quan-
tify the schema matches so that they can be used in query. More-
over, they did not explore how to use discovered schema matches
to reinforce duplication detection. Another interesting work is GLUE
[39], a system that employs machine learning techniques to find map-
pings between different ontologies. Similar to our strategy, it uses
data instances to statistically assess the correlations between concepts.
However, its mechanism only applies to categorical information, and
cannot be used to quantify the correlations between attributes and
relationships in malleable schemas. In [36], the authors proposed to
use content similarity between attributes for automatically detecting



4.7 CONCLUSION

foreign key relationships. However, their approaches are not able to
differentiate attributes that are conceptually different but similar in
contents. Our approach does not suffer from this problem, as it uses
duplicates for detecting schema correlations.

Duplicate detection in databases [41] is mainly used in data clean-
ing. The existing techniques usually assume a common schema and
attempt to find tuples which are slightly different but refer to the
same real world entity. When data schemas are different, they nor-
mally require a data transformation step [78] to integrate the data
into a common schema before performing detection. In contrast, our
approach in this chapter takes advantage of the association between
duplicates and schema matches to discover both of them simultane-
ously.

Query relaxation was also an important research topic in coopera-
tive database systems [61, 30, 73], which are designed to automatically
relax user queries when the selection criteria are too restrictive to re-
trieve enough results. Such relaxation is usually based on user prefer-
ences and values, and it is seldom applied to schemas. Recently, these
techniques have been extended to relax XML queries [4, 75] using the
hierarchical structures of XML data. In [8], the authors proposed a
framework for relaxing user requests over ontologies. In contrast to
those proposals, our work is not concerned about user preferences
but the ambiguity in malleable schemas.

Recently there has been a lot of research on approximately query-
ing XML data [51, 25, 5, 95, 76]. These techniques mainly rely on the
tree structures (which does not exist in malleable schema) in XML.
To relax user queries, they gradually move the selection criteria from
leaves of the tree to the root. However, they normally ignore the pos-
sible correlations outside of the tree hierarchy. In this chapter, we
proposed a method to automatically discover the correlations within
a data schema and use them for query relaxation.

4.7 CONCLUSION

In this chapter, we presented a query relaxation scheme that enables
effective search using malleable schema. We introduced a probabilis-
tic model that allows us to perform query relaxation in a reasonably
simple way. We proposed the DSCD algorithm which utilizes the
duplicates in data to effectively detect and quantify the correlations
within a malleable schema. We discussed the key issues in process-
ing the query relaxation. We conducted extensive experimental study
using real dataset to evaluate the performance of our system. Much
investigation still needs to be done, in order for malleable schema
to be used by real world applications. The future research could be
focused on storage management, query interface and flexible mecha-
nism for updating malleable schemas.
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LINEAGE ANNOTATIONS TO TRACE AND REVISE
IDENTITIES OF EVOLVING ENTITIES

5.1 INTRODUCTION

In this dissertation we addressed so far two challenges arising when
dealing with digital entities on the web of today: schema discov-
ery addressed in Chapter 3 enables users to formulate queries, and
query relaxation addressed in Chapter 4 allows to effectively expand
queries and rank entities when the schema is vague, allowing to
adopt a malleable schema and pay-as-you-go information integration
approach [40]. As efforts are made by different actors on the web
to integrate information, it is desirable to be able to communicate it
to other information consumers. Using unique identifiers like URIs is
one way to communicate identity of entities in a way that is efficiently
machine processable: two entities, i.e., two object representations, can
be quickly recognized by a machine as representing the same object
by simple equality of their identifiers. However, in a highly decentral-
ized environment like the web, communication of an entity’s identity
with URIs suffers from duplicity: several distinct URIs are used to
refer to a same object, such that one of the two URIs should be used
instead of the other, which information need to be communicated to
other web actors. In this chapter we propose to annotate entities with
lineage information that allows to detect potential identity conflicts
and reduces communication needs to resolve them.

This work was first developed for another but related scenario
where communicating identity conflicts is necessary: the Entity Name
System (ENS) [15]. Deciding whether two entity descriptions refer to
the same entity is a difficult problem, and the ENS aims at providing
entity matching as a service: instead of deciding on their own whether
two entity descriptions refer to the same entity, web actors can give
a description of an entity as, for example, persons, locations or prod-
ucts to the ENS, which provides globally unique URIs for such real-
world entities. Even if the ENS is a centralized solution to the entity
matching problem, it does not solve to the problem of communicating
identity revisions. Because entity descriptions available to the ENS
for deciding whether two entity descriptions refer to the same real-
world entity (i.e., entity identity) are changing over time, the system
sometimes has to revise its past decisions: one real-world entity has
been given two different URIs * (e.g., http://dbpedia.org/resource/

It is possible to find such duplicates by using a semantic search engine such as, for
example, http://sindice.com/search
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Tim_Berners-Lee and http://data.seman-ticweb.org/person/tim-
berners-lee) or two entities have been attributed the same URI. For
example, http://dbpedia.org/page/Paris could be the URI assigned
to the city in France but, in DBpedia, it currently “disambiguates”
(that is, refers) to 57 different entities. This could happen when not
enough information is available when assigning a URI to an entity.
When other entities called Paris are discovered new URIs should be
assigned and the information be propagated. Thus, to be sure to be
up-to-date with respect to the ENS state, distributed clients would
need to constantly request for the latest identifier of the entities they
are processing, since it could be that the ENS identified two iden-
tifiers to refer to the same object or one identifier to refer to two
distinct object. This obviously does not scale well and is in addition
very costly in terms of communication and computation. In this chap-
ter we propose to annotate identifiers with additional lineage infor-
mation allowing the clients to detect some of the identifier conflicts,
solve them locally in some cases and only contact the ENS in the other
cases. Our main research question in this chapter is how to propagate
entity decision revisions to the clients, which make use of the URIs
provided by the ENS.

Providing a solution to the problem of propagating entity decision
revisions is a crucial aspect of Semantic Web when the goal is to
enable the Web of Entities. When software applications exchange in-
formation about entities it is essential to uniquely resolve the entities
so that all the agents in the Web refer to the same real world entity us-
ing the same name, that is, the same URI. As entities can change over
time, URI can be used multiple times by different sources to refer to
the same entity, it is important to provide a framework for handling
such identity revisions.

In this chapter:

* We describe a model for entity identifiers evolution on the Web
(Section 5.2).

* We propose different labeling schemes allowing to dramatically
reduce the number of identifier update requests to the Entity
Name Service the client needs to perform, while preserving a
reasonable uniqueness quality for its identifiers (Section 5.4).

* We perform extensive experiments measuring the quality of
identifier uniqueness. The experiments, using both artificial and
real revision history from Wikipedia, also measure the drop in
identifier update requests when using the proposed labeling
schemes (Section 5.5).

¢ We present related work in Section 5.6.

¢ We conclude the chapter and describe possible future work in
Section 5.7.
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5.2 APPLICATION SETTING AND SCENARIOS
5.2.1 Motivation

It is known that “the Semantic Web can become an open and scal-
able space for publishing knowledge (in the form of RDF data) only
if there will be a reliable (and trustworthy) support for the reuse of
URIs” [16]. The ENS is providing such an infrastructure to the Seman-
tic Web users.

It is also clear that in the current Web there is a proliferation of
different URIs for the same real world entity. It is then necessary to
provide a way of notifying the Semantic Web users of changes in the
URIs. For example, a person such as Tim B. Lee has many different
URIs assigned by different sources: it is desirable for applications
and/or people on the Web referring to him to use the same identifier.

In this chapter we present methods for the propagation of iden-
tity decision revisions taken by the ENS. In the following section we
describe the context of identity decision revisions and introduce dif-
ferent approaches for propagating such information to the interested
clients.

5.2.2 The Entity Name System.

The main goal of the ENS is to enable the Web of Entities. This is
accomplished by supporting the use of globally unique identifiers
(URISs) for entities. It is important to clarify that the information about
entities (i.e., attribute names and values) stored in the ENS serves
solely the purpose of distinguishing entities between themselves. The
ENS is defined in [15] as: “a service which stores and makes available
for reuse URIs for any type of entity in a fully decentralized and
open knowledge publication space.” The main functionalities of the
ENS are: search for the identifier of an entity, generation of entity
identifiers, matching entities present in the repository with external
ones, and ranking entities by similarity to a given one. Notice that the
question of how the ENS actually disambiguates entity identities is
out of scope of this chapter and will therefore not be discussed here.

5.2.3 Setting

We now describe by way of an example the possible operations that
can be applied to an entity. A knowledge-base system, at some point
in time, might have a wrong representation of an entity: for example,
initially, a system has the knowledge that a person is called John
Doe, but, after having acquired more evidence, the system knows that
another entity representation, with name John J. Doe, refers actually
to the same entity. In this case the two entity representations as well
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as their identifiers need to be merged. Also, the entity itself can change
over time (e.g. semantic evolution, evolution of documents [11]): for
example, the attribute affiliation of a person can change over time. For
these reasons, we need to define the possible changes that the entity
identifiers might undergo. The following operations can be applied
on an entity:

CREATION When an entity is first encountered, a new ID is gener-
ated.

sPLIT When the system discovers that the same entity representation
describes two different real world entities, two new IDs have
to be created. For example, the system knows that a person is
called “Andrea Rossi” but, at some point, it discovers that there
are actually a man and a woman with the same name, in the
dataset.

MERGE When two entities are matched, and recognized to be the
same, they are merged, and the same has to be done to their
IDs.

In the following we present a real word example where the propaga-
tion of Identity Decision Revision (IDR) is important.

5.2.3.1  Wikipedia history.

We can see Wikipedia as a living information repository about entities.
Therefore, it is possible to use it as a scenario of IDR propagation.
Entities in Wikipedia have their own pages which can grow over time.
It is also true that creation, split, and merge operations appear in
this collection. New pages are created, articles about similar concepts
are merged together, and articles which grow too much are usually
split in two (or more) different ones. It is then easy to see the need
that other pages linking to a merged/split page have of knowing
about this decision. Links have to be changed and in Wikipedia one
approach is to use the disambiguation pages: pages about a general
concept leading to all the alternative uses of that term.

5.2.4 Models for Propagating Identity Decision Revisions

When we want to propagate the information of IDRs there are two
main possibilities of doing it: by pushing or by pulling such informa-
tion.

In the push model the ENS server notifies all the clients of an IDR.
In this scenario the ENS must be aware of all the clients using a given
URL. It is easy to see that this solution is not feasible for all clients on
the Semantic Web?. It is impossible for the ENS to keep track of which

The users on the Web are estimated to be 1.5 billions in 2008. Source: http://www.
internetworldstats.com/stats.htm
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client uses which ID. More, in this case there would certainly be a
problem of network traffic overload: a lot of communication would
be needed for propagating IDRs.

In the pull model a client has to ask the ENS about changes for
a given ID. In this case it is a duty of the client to decide when it
is time to request for an update of the ID. That is, the client has to
understand when an ID is obsolete. For example, if the client receives
an e-mail which contains the ID of an entity, it has to discover that it
is a newer version of an ID it already has (e.g., as a result of a split
operation on the ENS). In this case it is necessary to query the ENS
for an up-to-date version the ID.

It is clear that the trade-off between the two models is set by how
often the IDs change. If there are few IDRs, then the push approach
is more efficient as all the effort is centralized.

5.3 CONCEPT DEFINITIONS FOR IDENTITY REVISION MANAGE-
MENT

In this section we define the concepts and relative notation which are
needed for describing the approaches presented in Section 5.4.

In this chapter we assume that the ENS, named in the following as
server, is one central machine only. It will be future work to consider
the effects of a distributed ENS platform on the identity management.

Additionally, several applications using entity identifiers are present
and are asynchronously submitting entity resolution requests to the
server. These can be end-user application like, e.g., e-mail clients or
batch processes as web crawlers. We refer to applications that submit
requests to the server as clients. The server will respond to requests
using the knowledge available in the server’s central repository: a con-
tainer of all the up-to-date entities and identifiers. When more than
one ID is up-to-date for a given deprecated ID, the ENS has to use en-
tity matching 3 techniques to disambiguate between those candidates.
Moreover, each client has its own local repository containing only the
identifiers known by the client, that is, all the entities encountered up
to now.

Clients are exchanging information about entities and their IDs as
well. This means that clients are encountering new IDs as they receive
new information from other clients.

As presented in Section 5.2.3, split and merge operations are pos-
sible on entity identifiers. We define as Identity Revision Graph the
directed acyclic graph representing the history of one or more entity
identifiers. Using the part of such a graph that it knows, a client can
detect deprecated identifiers with no need of sending a request to the
server.

3 Also known as record linkage, or deduplication.
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5.4 LIMITING THE NUMBER OF UPDATE REQUESTS

A quick computation shows that if 50,000 clients request updates to
the server for 3,000 IDs only once a day, it represents more than 1,500
requests per second, which is already significant, and it would be
interesting to be able to limit this number of request. We propose to
do so by trying to update only the IDs which most need to, with the
idea that, as long as one ID in a client’s local repository of entities
refer to only one entity in this repository, it does not need an update
since local uniqueness would be preserved. This is true whether the
ID in question has been deprecated (split or merged) on the ENS
server.

In the following, we first present the Prime Numbers Labeling
Scheme for Directed Acyclic Graphs (PLSD) proposed by Wu et al.
in [112] which we use in Section 5.4.2 to show how to reduce the
number of update requests by annotating IDs. Then in Section 5.4.4
we present how we can add a label to further reduce the number
of update requests by allowing clients update certain labels without
even contacting the server. In Section 5.4.3 we present a technique
equivalent to the lineage preserving ID labeling introduced in Sec-
tion 5.4.2 but simpler. And finally, for completion, we present the
baseline used later in the experiments, and how it compares to the
lineage preserving labeling schemes.

5.4.1 PLSD: Prime Numbers Labeling Scheme for Directed Acyclic Graphs

Wu et al.[112] proposed a labeling scheme for transitive closure com-
putation on DAGs. Computing a transitive closure in a graph is used
for identifying all ancestors (or descendants) of a given node in the
graph. We describe hereafter the Lite version of Prime Numbers La-
beling Scheme for DAGs (PLSD) proposed by Wu et al.

5.4.1.1 Prime number factorisation.

PLSD is based on the well-known fundamental theorem of arithmetic
(or unique prime factorisation theorem), from number theory, which
states that any natural number greater than 1 can be written as unique
product of prime numbers. The idea of PLSD is then to assign a
unique prime number ID to each vertex in the DAG, and label each
vertex with the product of its ancestors” prime number IDs. Thus,
given a vertex label, by performing a prime number decomposition,
we can retrieve the IDs of all its ancestors. More formally this gives:

Definition 15 Let G = (V, E) be a DAG, with V a set of vertex and E a
set of edges. We define the bijective function p : V. — IN such that p(v) is
prime, forv € V.
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Definition 16 Let G = (V,E) be a DAG. We define the label of a vertex
v € Vas L(v) = (c[v]) where

el = p(v) - Hv,eparents(v) chv'], in — degree(v) > 0
1, in — degree(v) =0

with parents(v) being the set of vertex parents of v'.

Now, given a vertex v and its label c[v], the fundamental theorem
of arithmetic assures that there exists a unique prime factorisation of
c[v] such that

cv=pv-  J[  peO™ (5.1)

v/€ancestors(v)

where ancestors(v) is the set of all the ancestors of v, for some
m,, € IN; which gives us v’s ancestors’ IDs. An example is shown
in Figure 5.1.

(9% 34 = Be6)
(32 % 34 = 204)(B E) (F)(23 x 34 = 782)

(5 % 204 = 1020)(D) G)(11 % 204 x 646 x T82 = 1133605968)

N Y

g =

(7 % 1020 x 1133605068 = 8093946611520) (13 % 1133605968 = 14736877584)

Figure 5.1: PLSD-Lite on a DAG (from [112])

5.4.1.2 Optimization.

As we can see in Figure 5.1, the ancestor labels c[v] are growing ex-
ponentially due to the m,,’s from Equation 5.1 which are in general
greater than 1. This requires a storage space such that it is not much
more space-efficient than simply storing the ancestors’” IDs as a list
for each vertex. To avoid this, Wu et al.[112] proposed to force the
m,’s to be 1. This can be done by modifying the computation of c[v]
described in Definition 16 as follows:

lem (c[vil,... clvi]) if in — degree(v) > 0
ch] =pHv)- and v},...,v} € parents(v)
1 if in — degree(v) =0
(5.2)
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where lcm(ay, ay, ..., an) is the least common multiple of the natural
numbers ay, ay, ..., an, with the special definition of lem(a) = a. Fig-
ure 5.2 shows how the DAG depicted in Figure 5.1 is labeled using
ancestor labels as defined in Equation 5.2.

I~

(A)22x1=2)
C)(17,17 x lem(2) = 34)
(19,19/xAcm 134 646)
(3,3 x lem(2,34) = 102)(B) E 23 23 x lem(34) = 782)
(5,5 % lem(102) = 510 I\DN{(H 11 x lem(102, 646, 782) = 490314)
< \
H @
(7,7 % lem(510,490314) = 17160990) (13,13 x lem(490314) = 6374082)

Figure 5.2: PLSD-Lite on a DAG using least common multiple (modified
from [112])

Wu et al. also present a topological sort before labeling a DAG,
and define a PLSD-Full labeling scheme for the computation of a
vertex’s parents, but we omit their description here since they are not
useful or applicable in our situation. The version we presented above
is referred to as PLSD-Lite. See their paper[112] for more details.

5.4.2 Lineage Preserving ID Labeling (LPID)

Wau et al. proposed in [112] a labeling scheme for transitive closure
computation on Directed Acyclic Graphs (DAGs). Computing a tran-
sitive closure in a graph is used for identifying all ancestors (or de-
scendants) of a given node in the graph. We describe hereafter the
Lite version of Prime Numbers Labeling Scheme for DAGs (PLSD)
proposed by Wu et al.

Considering the entity IDs evolution as a DAG, we can use the
PLSD labeling scheme described in [112] to locally detect if an ID has
been deprecated. As in Figure 5.3a, if an ID A is deprecated by an-
other ID B, then there exists a directed edge A — B. As a consequence
the merge and split operations mentioned in Section 5.2.3 are modeled
as illustrated in Figure 5.3b and 5.3c respectively.

We annotate each node of the DAG such built with a pair of natural
numbers: the self-label, and the ancestors-label. The self-label is a
unique prime number (i.e., from all the self-labels, a self-label appears
once and only once), and the ancestors-label of a vertex is the product
of its self-label with the least common multiple of the ancestors-labels
of its ancestors (i.e., its in-component). Formally this gives:
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2,2) (3, 3xlem(2) = 6)
° (5, 5xlem(3,2) = 30) 2,2)

2,2) (3,2xlem(3)=6) (g

(.3) G, 5xlcm(20)

(a) A is deprecated (b) A and B are merged (c) A is split into B and C.
by B. into C.

Figure 5.3: Lineage annotation with respect to the deprecate, merge and split
operations.

Definition 17 Let G = (I, D) be a DAG with 1 a set of vertices represent-
ing IDs, and D a set of edges representing deprecation. We identify a vertex
iel by a Pﬂif’ (isetf,lancestors) With igelf, lancestors € N, where

i) isers is a prime number such that there exists a bijection between 1
and the set Iseir = {jserrlj € I}

.. . oz ] . ]
i) lancestors = iself - lCM(Qgugs .-, Quoye) With a’, ..., a™ the an-
cestors (in-component) of i

We call i = (iself, lancestors) the Lineage Preserving ID (LPID), ise1s the
self-label of i, and iqncestors its ancestors-label. []

Lemma 2 shows that, given two LPIDs as defined in Definition 17,
the fact that the self-label of one LPID divides the ancestors-label of
the other LPID implies that the former is deprecated.

Lemma 2 Let i = (iself/ iancestors) andj = (jself/jancestors) be two
LPIDs. jancestors/isets € IN implies that i is deprecated. []

We can now formalize in Algorithms 2, 3 and 4 the three operations
defined in Section 5.2.3: create, merge and split respectively.

Algorithm 2 create

1: function cREATE(]) > I the set of attributed LPIDs of the form

i= (iself/ iances‘cors )

2: create the LPID j = (1,1) with 1 the lowest prime such that
L {rlr =1ise1r,i € I}

3: addjto I

4 return j

Definition 18 Let R be the set of possible entity representations. A PLSD
URI i, = (p(r),c(r)) is defined to be a pair of two natural numbers p(r)
and c(r). p : R = N is a bijection such that p(r) is a prime number Vr € R,
and c(r) is defined as

1 if r = create()
c(r) =p(r)-¢ lem(c(my),...,c(mn)) ifr =merge(my,..., myp)
c(s) ifr € split(s,n) withn € N
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Algorithm 3 merge
1: function MERGE(M) > M C I, with I the set of attributed LPIDs of
the form i = (iself/ 1"ancestors)
2 create the LPID j = (1,1-lem(mq,...,my)) to the lowest
prime | such that 1 € {r[r =ise1f,i € [} with {my,..., mpy} =M
3t addjtol
4 return j

Algorithm 4 split

1: function spLiT(j,n) > j € [, n > 1 € IN, with I the set of attributed
LPIDs of the form i = (isetf, lancestors)

2: create empty set S

fork =1ton do

3:

4 create the LPID sy = (1, 1-igncestors) to the lowest prime
L such that 1 € {r|r = ige1r,1 € I}

5: add si to I

6: add s to S

7 return S

with create, merge and split the possible operations resulting in a new
entity representation.

For using the proposed PLSD-Lite version presented in Section 5.4.1,
we must make sure that the considered directed graph is actually
acyclic. The acyclic nature of the graph naturally follows from Al-
gorithm 3 line 2, and Algorithm 4 line 4 where incoming edges are
added only to newly created vertices which did not belong to the set
of vertices I before the respective operation is executed. This implies
that, using the create, merge and split operations, a deprecatedp,
edge d = (i,j) can only be created if i € I and j ¢ I, ie. Vi € I no
new incoming edge can ever be created. Thus, the graph G = (I, D)
is acyclic.

5.4.3 List Labeling

The LPID labeling uses an integer to encodes the ancestors’ self-labels
in an integer, product of those self-labels. This has the advantage to
require only one division to find out whether an ID is an ancestor
of another ID. On the other hand, it has the disadvantage to require
the use of prime numbers as self-labels, which is costly to generate
when the number of IDs is high. The obvious alternative is to use any
natural number as a self-label, and store the ancestors simply in a list,
separated by commas for example.
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The difference with Definition 17, is that self-labels are ordinary
natural numbers, and not restricted to prime numbers. And the defi-
nition of the ancestors-label is changed to a set of self-labels:

Definition 19 Let G = (I, D) be a DAG with 1 a set of vertices represent-
ing IDs, and D a set of edges representing deprecation. We label a vertex
i€ 1byapair (iseif, lancestors) With iserr € INT and where

i) isevs is such that there exists a bijection between 1 and the set Ise1¢ =
{jselfh € I}

i) lancestors = {a;elf,. .+, QL) s set of the self-labels of al,...,am,

the ancestors (in-component) of i

We call i = (isetf, lancestors) the List Lineage Preserving ID Labeling
(LPID), ise1s the self-label of i, and iqncestors its ancestors-label.

Since this labeling is equivalent to the LPID labeling, Lemma 2 can
be slightly modified for list labeling:

Lemma 3 Leti = (iself/iancestors) Ll?’ldj = (jself/jancestors) be two
List Labelings. isetf € jancestors implies that i is deprecated.

The list labeling being equivalent to the LPID labeling in terms of
selection of the identifiers to ask the ENS server for an update, the
only difference between the two labelings is the storage space and
and the selection performance.

5.4.4 Merge Epochs Labeling

The LPID and List Labelings allow to limit identifier update requests
to some identifiers being in conflict. Once the identifiers to be up-
dated have been selected, the client has no other choice to contact the
ENS server to do so. This is because the client does not know whether
there was a split or not between an identifier and its descendant. Con-
sider Figure 5.4b. The client has in its repository only identifier A, and
he receives identifier C. Since A has been split, the client has to ask
the ENS server whether to replace A with B or with C. However, if
the IDR graph is the one in Figure 5.4a and if the client knew that
A has been merged with another identifier into C, it could replace A
with C directly, without contacting the ENS server. In this section, we
introduce an additional label, the merge-label, allowing the client to
know whether a split occurred between any identifier and any of its
descendant.

As with the ancestors-label, recording which of the ancestors of an
identifier can be replaced by it without asking the ENS server can
be done using the lcm of the prime number self-labels of the ances-
tors, or simply the list of the ancestors. Thus, the Definition 17 can
be completed to include the merge-label as follows: the label for an
identifier 1 is changed to (iseif, lancestors, imerge), and the following
definitions are added:

107



108 PROPAGATION OF ENTITY IDENTITY REVISIONS

Oy @l

(a) A split is between A (b) A merge is between (c) C has been depre-
and C A and C cated

Figure 5.4: IDR graphs. In a the client can replace A with C without contact-
ing the ENS server. In b, however, the client has to ask the ENS
server to find out whether to replace A with B or C. And in ¢
if the client uses the merge-label to replace A with C, it would
use C which is deprecated. Whereas if the client contacted the
ENS server, it would now use E which is the most up-to-date
identifier for the entity considered.

iii) imerge = lcm(mle”,...,m;le”) with m* e (m!,..., m%} = M,
the ancestors of i that are such that all identifiers between 1 (ex-
cluded) and m* (included) have been merged with other identi-
fiers.

Definition 20 Let G = (I, D) be a DAG with I a set of vertices represent-
ing IDs, and D a set of edges representing deprecation. We identify a vertex

iel by a fT’iPle (iself/ iancestors/ imerge) with iself/ iancestors/ i11‘Lerge €
N, where

i) iself is a prime number such that there exists a bijection between 1
and the set Iseir = {jserrlj € I}

.o . . 'l . ‘I
i1) lancestors = iself - LCM(Qgoypre-., Qrere) With a', ..., a™ the an-
cestors (in-component) of i

iii) imerge = lcm(m;elf,...,m‘;e”) with m*¥ € {m!,..., m%} = M,

the ancestors of i that are such that all identifiers between i (excluded)
and mX* (included) have been merged with other identifiers.

We call i = (isetf, lancestors, imerge) the List Lineage Preserving ID
Merge Labeling (LPID Merge), isc1+ the self-label of 1, igncestors its ancestors-
label, and i erge its merge-label.

The List Labeling defined in Definition 19 can be similarly extended
with a merge list:

Definition 21 Let G = (I, D) be a DAG with I a set of vertices represent-
ing IDs, and D a set of edges representing deprecation. We label a vertex
i€ Lbyapair (iseif, lancestors, imerge) With igerr € N' and where

i) isevs is such that there exists a bijection between 1 and the set Ise1¢ =
{isereli € I}

1) lancestors = alelf’ oo, Qi IS set of al,...,am™, the ancestors (in-
component) of i
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iii) imerge ={ml i¢ ..., M ¢} is set of self-labels of identifiers m* €
{(m?',...,m3} = M, the ancestors of i that are such that all identifiers
between i (excluded) and m* (included) have been merged with other
identifiers.

We call i = (iseir, lancestors, imerge) the List Merge Labeling, ise1s the
self-label of i, iancestors its ancestors-label, and imerge its merge-label.

Lemma 2 and 3 still hold for LPID Merge and List Merge labelings,
and in addition:

Lemma 4 Let i = (iself/ iancestorSI imerge) andj = (jself/jancestors,
jmerge) be two LPID Merge Labelings. iseir/jmerge/inIN implies that i
can be replaced with j without risking to attribute an identifier to an entity
which this identifier doesn't refer to.

Lemma 5 Let i = (isetr, lancestors, imerge) and j = (jself,jancestors,
jmerge) be two List Merge Labelings. iseis € jmerge implies that i can be
replaced with j without risking to attribute an identifier to an entity which
this identifier doesn't refer to.

5.4.4.1 Drawbacks.

As already mentioned, the merge labeling presents the advantage to
allow the client, in some cases, to replace an identifier with its de-
scendant without contacting the ENS server. This comes at the price
of two things: 1) the additional merge-label require more space to
store the labeling of an identifier, and 2) the client might use depre-
cated identifiers, where if it contacted the ENS server, it would use
the most up-to-date identifier. See Figure 5.4c for an illustration of
the second point.

5.4.5 Baseline: No Labeling

As far as we know, since the ENS is a relatively new concept, the
problem considered in this chapter has not been approached before.
For this reason, the baseline method which we use for comparing the
above-presented techniques is the most straight forward one; that is,
no labeling at all. In this case, when the client receives a description
on an entity referred to by an identifier unknown to the client, the
only way to make sure the new identifier does not conflict with an-
other identifier in its repository is to simply ask the ENS server for
each and every ID in its local repository.

This obviously would generate a lot of update requests to the ENS
server, but it also has advantages over the labeling techniques we
proposed. The first advantage is that a bigger part of the identifiers
used by the client are up-to-date, since it more often asks for identifier
updates. This implies that less identifiers in its repository refer to two
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or more entities in the world, and that less entities in its repository
have more than one identifier. The second advantage is that since no
labeling at all is used, the space requirement is less than when using
lineage labeling.

5.5 EXPERIMENTS

We conducted experiments aiming at comparing the different pro-
posed labeling approaches to the baseline where no labeling is used.
We compared the different approaches with respect to two main char-
acteristics: network traffic and quality of the identifiers.

The network traffic is measured in terms of number of update re-
quests a client addresses to the ENS server, and the size of the label-
ing metadata. The quality of the identifiers answers the question: how
unique are the identifiers? Ideally the identifiers are globally unique,
i.e. for each entity there exists exactly one identifier, and each identi-
fier identifies exactly one entity. To measure this we used at the client
level: the number of deprecated identifiers, the repository size, the
number of entities per identifier, and the number of identifiers per
entity.

5.5.1 Scenario

In our experiments, we considered the situation where a client re-
ceives semantic annotations describing different kinds of entities. As
the client encounters new identifiers, it first selects the identifiers in
its repository which need update, according to the considered label-
ing scheme. The labeling scheme is one of the ones presented in Sec-
tion 5.4: LPID, LPID Merge, List, List Merge, or the baseline without
labeling. In each case it does its best to request update for all identi-
fiers the scheme detects as deprecated. In the baseline case, since it
does not have any information on which identifiers are outdated or
not, it requests updates for all identifiers in its repository, plus the
newly received identifiers. Once no more identifier is detected as out-
dated by the considered labeling scheme, it waits for a new arrival of
identifiers, and repeats the process.

Before requesting for identifier updates, the merge labeling schemes
perform the local replacements when applicable. Once the ENS re-
ceives an update request for identifier 1, it returns one random* leaf
identifier of the IDR graph which is a descendant of i. However, for
each identifier i to update, the returned up-to-date identifier is the
same independently of the labeling scheme evaluated; this is impor-
tant for the results to be comparable. The sets of identifiers added

In practice the ENS performs a matching operation, but since this is not the focus of
this chapter, we chose the identifier randomly, for the sake of simplicity.
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to the client are the same and in the same order for all evaluated
labeling schemes as well.

5.5.2  Evaluation

In the remainder of this section we will use the following abbrevia-
tions for referring to the labeling schemes:

LPID Lineage Preserving IDentifier labeling (see Definition 17, Sec-
tion 5.4.2)

LPIDMERGE Lineage preserving identifier labeling with Merge la-
beling (Definition 20, Section 5.4.4)

List List identifier lineage labeling (Definition 19, Section 5.4.3)

LisTMERGE Listidentifier lineage labeling with Merge Labeling (Def-
inition 21, Section 5.4.4)

Crassic Baseline without labeling (Section 5.4.5)

5.5.2.1 Measuring Uniqueness.

When identifiers are unique, it means there is a bijection between the
set of identifiers and the set of entities. Informally this means there
is exactly one identifier for each entity, and only one entity referred
by each identifier. As we see unicity depends on the set of identifiers
and the set of entities. We will talk about local uniqueness when con-
sidering the set of entities in a client’s local repository and the set
of identifiers related to those entities. And we will talk about global
uniqueness when considering the set of entities in ENS server’s repos-
itory and the set of identifiers related to those entities.

We will focus in this chapter on global uniqueness. The reason is
that we started to consider the problem of how to transmit identity
decision revisions from the ENS server to the client, taking the point
of view of the server, that is, global. We will then assume that each
identifier in the client’s repository refers to exactly one entity in the
same repository, and devise a measure for how globally unique the
identifiers in the client’s repository are. This means we want to know
how many entities in the world an identifier used in the client’s repos-
itory refers to; and how many distinct identifiers there is in the client’s
repository for one entities in that repository. Those are the measures
we will use in those experiments to compare the impact on unique-
ness quality of the evaluated labeling schemes. We call them number
of entities per ID and number of IDs per entity.

5.5.2.2 Measuring Network Traffic and ENS Server Workload.

Identifier update requests makes use of two resources of concern in
our scenario: 1) network bandwidth, and 2) ENS server workload.
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Each update request from a client needs to be sent over the network,
including the identifiers to update, and, if required, the description
of the entities whose identifier is to be updated. For each identifier
update request the ENS server receives, if there is more than one leaf
descendant, the server has to perform an entity matching process to
find out which is the present up-to-date identifier for the requested
entity.

In this chapter we are not concerned with the details of the process
the ENS server follows to return the up-to-date identifier. However
we know that both network bandwidth consumption and ENS server
workload are functions on the number of identifiers whose update is
requested. This is what we will call in the remainder number of update
requests. Note that, in practice, all identifiers needed to be updated
might be sent to the server in one bulk update request. In this chapter
we assume that one update request concerns one identifier only.

In addition, impacting on the network bandwidth consumption,
the size of the lineage labeling metadata will be reported.

5.5.2.3 Measuring Performance.

As already mentioned, the reason why we introduced the identifier
lineage labeling is to allow to reduce the number of request updates,
while keeping a reasonable uniqueness quality. This is mainly a per-
formance concern, and is therefore a central measure in this chapter.

We report two durations. The first is the time it takes the client,
using a given labeling scheme, to select which identifiers it needs to
ask the ENS server for update. We call this the selection time, which
is null for the baseline, since all identifiers are always updated. To be
able to compare performance between the baseline and the labeling
schemes, we thus need to consider also the total time it takes a client
to update it’s identifiers. This comprises the selection time, plus the
transmission time (of the requests), plus the possible entity matching
time of the ENS server, plus the transmission time back. We approx-
imated the whole to be the selection time, plus some time constant
per identifier update request. We chose arbitrarily 200 ms for this time
constant, which is not an uncommon round trip time for an intercon-
tinental internet connection. It makes it a low constant for our case,
considered that it also includes the time the server needs to process
the request. We call it total matching time.

5.5.2.4 Comparing the Labeling Schemes.

Since most of the above proposed measures will yield different values
for the different labeling schemes (and the baseline), we need some
measure common to all of them to be able to compare them. For this
we chose the the number of new identifiers added to the client.
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Figure 5.5: Number of Entities per Identifier for each of the Datasets

5.5.3 Datasets

We experimented with 3 different IDR graphs. The two first based on
the revisions history of the Dutch and the Simple English Wikipedia
datasets, and the third one artificially generated. As introduced in
Section 5.2.3, an IDR graph is defined by a sequence of three events:
identifier creations, merges and splits.

Here is how we interpreted the Wikipedia revision history in terms
of those three actions. When a Wikipedia page is created, it obviously
corresponds to an identifier creation. The first revision of a Wikipedia
page where a redirect appears is considered as a merge between the
two identifiers corresponding to the Wikipedia page and its redirect
target page. And the first revision of a page where a disambiguation
tag appears is interpreted as a split for this page’s identifier to the
ones corresponding to its targets.

The artificial IDR graph was generated with the following proba-
bility distributions. At each iteration, we first choose what action to
perform3: creation (p = 0.77), split (p = 0.08) and merge (p = 0.15). If
split or merge was picked, the identifier(s) to which the action applies
are picked at random (uniform distribution); and the number of iden-

5 Probabilities are estimated using statistics from Wikipedia articles operations.
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tifiers into which the identifier is split, or the number of identifiers to
merge follow a Zipf distribution with 0 = 2, a maximum of 5, and a
minimum of 2.

5.5.4 Experiment Results

We present in this section the results of our experiments. When sig-
nificant difference is mentioned, this has been confirmed with a one-
way ANOVA® with 5% of significance. For most of the graphs we
present the results for each of for IDR graphs: artificially generated,
simple English Wikipedia, and Dutch Wikipedia. For each we added
to the client 100 times 500 (= 50,000) identifiers, and since the Dutch
Wikipedia is the only having enough entities to allow it, we also tried
200 times 500 (= 100,000) identifiers for this IDR graph. Which gives
us 4 different simulation for each scheme, which we note ’artificial’,
"simplewiki’, 'nlwiki100” and 'nlwikizo0” respectively.

5.5.4.1 Identifiers Uniqueness.
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Figure 5.6: Number of Identifiers per Entity

6 Roughly, one-way ANalysis Of VAriance (ANOVA) is similar to the T-Test, but for

more than two series of observations. See [85] for more details.



5.5 EXPERIMENTS

We show in Figure 5.5 the average number of entities per identifier
at different steps (number of identifiers received by the client) in the
simulation for each of the datasets. The value for the classic scheme is
one, as expected. For all datasets, the difference between using or not
the merge-label happens to be non significant; which is a good sign
since this means that the merge labels allow to decrease the number
of update requests while keeping a uniqueness quality similar as if
no merge labels were used. The difference between the classic and
the labeling schemes is visibly significant.
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“““““ simplewiki

niwiki100

# Request updates

# IDs received 4
x10

(a) Classic
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Figure 5.7: Number of ID update requests per iteration of 500 IDs added to
the client.

In Figure 5.6 we present the average number of identifiers per entity
for each iteration step. Whereas for the classic scheme we have the
expected values of one, it is significantly different from the others, but
merge-labeling makes a significant difference only for the IDR graphs
of Simple English and Dutch Wikipedia on 100,000 identifiers.

We note that the number of entities per identifier tends to decrease
over time, which is a good sign in the sense that it converges to the
ideal case of one entity existing on the ENS server per identifier in
the client’s repository. However the number of identifiers per entity
tends to augment over time, and this more rapidly while using merge-
labels as not using them. This is problematic, even though it is eas-
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ier to detect duplicate entities in the client’s repository than reverse
an accidental merge of two distinct entities because they erroneously
shared a same identifier. Note however that, even if the differences
are significant, the values are still quite low, which indicates that the
problem would occur rarely.

5.5.4.2 Network Traffic and ENS Server Workload.

We present in Figure 5.7 the number of identifiers the client is request-
ing the ENS server for update for all the labeling schemes. Note that
the number of update requests are the same for the LPID and List
schemes, both with Merge epochs or not. Because the values for the
baseline are so huge compared to the labeling schemes, we present
the plots per scheme instead of per dataset as for the other measures.
In addition to the obvious significant explosion of updates of the clas-
sic scheme compared to using lineage labeling—approximately 50 to
500 more than with lineage labeling—the one-way ANOVA revealed
that using merge-labels or not does not change significantly the num-
ber of update requests, even though the merge labels allow to de-
crease the number of update requests by a factor 2 approximately.

7
x10

10 f| = classic

Cumulative labelling size [bits]

# IDs defined 5

Figure 5.8: Size of the labeling as the number of IDs grows on the Artificial
IDR graph.

Figure 5.8 present the cumulative size of the lineage labeling for
all the identifier schemes on the artificial IDR graph. For example,
the total size needed to store the lineage labeling for one million IDs
using the LPIDMerge scheme is 13 MB (109,124,363 bits). Since the
baseline is not using any labeling, its size is zero for all datasets. Ad-
ditionally, we notice that the list labeling scheme uses less space than
the LPID one, and naturally, adding merge-labels augments the size
of the labeling. All differences are statistically significant, and similar
for other IDR graphs.

More interestingly, the size of the lineage labeling schemes aug-
ments almost exponentially. In our case the biggest labeling is of 4,500
bits for one identifier in the artificial IDR graph, which has a bit more
than one million identifiers. This is still reasonable, but this size al-
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ways increases over time, and this will be even more pronounced as
new identifiers will be created and new split and merge operations
will occur.

5.5.4.3 Performance.

Figure 5.9a shows the selection time. The main observation we can
make regarding those figures, is that LPID selects the identifiers to be
updated significantly faster than LPIDMerge, and the two List label-
ings. The classic is trivially different from the others since it is null,
and all other labeling perform similarly. This analysis is confirmed by
one-way ANOVA.
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fiers added to the client.

Figure 5.9: Performance measurements

In Figure 5.9b, we see the total matching times, i.e. the total time
needed to update a clients repository, in average, for one identifier to
update. It shows clearly that the classic scheme is much slower. This
is mainly due to the very high number of identifier update requests it
generates. Also, there is not a significant difference between the other
schemes. This is confirmed by a one-way ANOVA.

5.6 RELATED WORK

Quite some work have been done in the area of data provenance
[101, 34] and lineage retrieval [14]. However, today new challenges
are present: with the growing size of the Semantic Web and with the
spreading of semantic-aware user applications managing identity, the
Web has to face the problem of scalability and efficiency. In this chap-
ter we analyze how to optimize identity management on the Web.
[101], for example, cites the following applications of data lineage:
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DATA QUALITY: Lineage can be used to estimate data qual-
ity and data reliability based on the source data and
transformations [70]. It can also provide proof state-
ments on data derivation [35].

AUDIT TRAIL: Provenance can be used to trace the audit
trail of data [83], determine resource usage [64], and
detect errors in data generation [52].

REPLICATION RECIPES: Detailed provenance information
can allow repetition of data derivation [in scientific
research], help maintain its currency [83], and be a
recipe for replication [49].

ATTRIBUTION: Pedigree can establish the copyright and
ownership of data, enable its citation [70], and deter-
mine liability in case of erroneous data.

Our work would fit best in the Data Quality category, however,
both the application and techniques used are quite different from
our approach. [35] defines a notion of information provenance called
"knowledge provenance" and proposes a system to provide to the end-
users information about how a question answering system arrived at
its answers. [70], a SIGMOD workshop report, outlines the impor-
tance of data provenance in life science research allow the update
of derived information when the base information changes, but does
not proposes concrete solution. [34] formally defines and propose al-
gorithms for the data lineage problem in general data warehouses:
“tracing warehouse data items back to the original source items from
which they were derived.” Again, this is quite different from our ap-
proach: it proposes a general data lineage solution, however, we are
addressing a particular problem that we solve with a specific partial
data lineage information.

[105] presents “a fully decentralized model of collaborative data shar-
ing, in which participants publish their data on an ad hoc basis and si-
multaneously reconcile updates with those published by others.” Each
participant thus maintain their own state of the information. To allow
participants to perform this reconciliation, all transactions modifying
an entity are communicated to each participants, thus also communi-
cating lineage. However, identifiers are assumed to be stable, so that,
unlike the scenario considered in this chapter, the identifiers are never
merged nor split. The object and usage of the lineage is therefore sig-
nificantly different than the one we are considering in our work.

5.7 CONCLUSIONS AND FURTHER WORK

We proposed to use identifier lineage labeling, and experiments con-
firmed that they allow to reduce the number of identifier update
requests to the ENS server, while keeping an acceptable quality of
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uniqueness at the level of client’s local repository. We also proposed
merge-labels to further reduce the number of update requests by al-
lowing the clients to replace an identifier by one of its descendants
when this does not decrease the local uniqueness quality of the iden-
tifiers on the client’s repository, which was also confirmed by the ex-
periments. In the future we need to address the exponential growth of
the identifier labeling. To reduce the size of the labeling, we intend to
investigate the use bloom filters [13] to summarize list of IDs. As well,
avoiding to duplicate an ID in the merge-label and in the ancestors-
label should also allow to reduce the size of merge-labeling, without
solving the problem of exponential growth. The use of time-to-live
(TTLs) associated to IDs indicating to the client when to request an
update seems to be a promising approach as well.
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In this dissertation we presented three works addressing challenges
presented by highly heterogeneous semi-structured web data. We pre-
sented SQUASCHED, a hierarchical schema discovery technique based
on the information theoretic Minimum Description Length principle
and spectral graph clustering. We presented our DSCD algorithm
which leverages the inter-dependency between duplicate entity de-
scriptions and duplicate attributes in order to facilitate query formu-
lation and processing in such heterogeneous environments. And fi-
nally, we presented the Lineage Preserving Identifier (LPID) labeling
scheme which helps to detect and resolve conflicts due to evolving
entities, allowing pay-as-you-go information integration decisions to
be propagated and identifiers to be updated only if necessary.
A natural continuation of this work includes studying:

¢ How to disambiguate attributes and values, and therefore also
entities. Deduplication, also known as record linkage or data
matching, is a well-known and studied problem in information
integration. The problem of information disambiguation, however,
is more recent and constitute the dual problem of deduplication.
It occurs naturally and frequently in information produced by
and for humans, due to their capacity at considering context
while interpreting information representations; and here lies,
we believe, the key to information disambiguation.

* How to leverage values of the attributes for schema discovery in-
formation disambiguation. The value of an attribute being part
of the representation of an object’s property as introduced in
Definition 3 of Chapter 2, it is natural that it is a valuable fea-
ture for information integration and disambiguation, as well as
for schema discovery.

* How to leverage information deduplication and disambigua-
tion to improve schema discovery and vice versa. Knowing which
instances of an attribute represent properties of which kind of
objects (disambiguation), and which instances of different at-
tributes represent similar properties of similar objects (dedupli-
cation) is obviously valuable for better schema discovery. Con-
versely, knowing what kinds of objects are described with the
instances of a given attribute is useful for discerning ambiguous
meanings of the attributes (disambiguation), or spotting differ-
ent attributes with similar meaning (deduplication). We believe

121



122 CONCLUSIONS & FUTURE WORKS

this inter-dependency can be leveraged to profit to the solution
of both problems.

In addition to the three core publications related in detail in this
dissertation, I also contributed significantly to the two following re-
lated publications, among others:

[82] Zoltan Miklés, Nicolas Bonvin, Paolo Bouquet, Michele Catasta,
Daniele Cordioli, Peter Fankhauser, Julien Gaugaz, Ekaterini
Ioannou, Hristo Koshutanski, Antonio Marfa, Claudia Niederée,
Themis Palpanas, and Heiko Stoermer. From Web Data to En-
tities and Back. CAiSE, pages 302—316, June 2010. URL http:
//dl.acm.org/citation.cfm?id=1883784.1883817

[37] Gianluca Demartini, Julien Gaugaz, and Wolfgang Nejdl. A
Vector Space Model for Ranking Entities and Its Application
to Expert Search. ECIR, 5478:189—201, 2009. doi: 10.1007/978-
3-642-00958-7. URL http://www.springerlink.com/content/
X2w826v168677434/

[82] describes the system developed in the OKKAM IP European
project (FP7-ICT-2007-215032) mentioned in Chapter 5. I significantly
contributed in this project by the design and implementation of the
Generic Matching Module described in Section 3.4 of the publication,
representing one important software contribution of my institute to
the project. The Generic Matching Module is the precision-optimized
entity search component of the Entity Name System (ENS) developed
in the OKKAM project and also mentioned in Chapter 5.

I also contributed in [37] which models experts or other entities
as linear combinations of the textual documents relating those en-
tities, such that the entities are in the same term vector space as
the documents, allowing to naturally include various features in the
model, such as authoritativeness or time-related decay of the docu-
ments and/or the entities.

Beside those contributions to research articles, I also contributed
significantly in the project proposal for the LivingKnowledge IP Euro-
pean project (FP7-ICT-2007-3-231126) about “Facts, Opinions and Bias
in Time”, and the proposal for Prof. Nejdl’s ERC project Alexandria
(ERC-339233) about not only storing Web Archives, but also indexing,
retrieving and exploring them efficiently and meaningfully.

I also had the pleasure to assist Prof. Nejdl in the teaching of three
courses: Artificial Intelligence I and II, and later also Web Science. In
the Artificial Intelligence I course I taught the basics of Prolog pro-
gramming as part of the practical sessions of the course, as well as
supported the students for the preparation of the examinations, and
assisted Prof. Nejdl in the redaction and correction of the latter. In
“Web Science”, an advanced course for Master students, I assisted
Prof. Nejdl in the organization of the introductory lectures to the re-
search topics studied in the course, and organized and supported the


http://dl.acm.org/citation.cfm?id=1883784.1883817
http://dl.acm.org/citation.cfm?id=1883784.1883817
http://www.springerlink.com/content/x2w826v168677434/
http://www.springerlink.com/content/x2w826v168677434/
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students in the preparation of the presentation of state-of-the-art pa-
pers in one of the offered research topics.
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