The construction and evaluation of an on-column etched fused-silica porous junction for on-line c... more The construction and evaluation of an on-column etched fused-silica porous junction for on-line coupling of capillary isoelectric focusing (CIEF) with capillary zone electrophoresis (CZE) are described. Where two separation columns were integrated on a single piece of fused-silica capillary through the etched approximately 4 to 5-mm length porous junction along the capillary. The junction is easily prepared by etching a short section of the capillary wall with HF after removing the polyimide coating. The etched section becomes a porous glass membrane that allows only small ions related to the background electrolyte to pass through when high voltage is applied across the separation capillary. The primary advantages of this novel porous junction interface over previous designs (in which the interface is usually formed by fracturing the capillary followed by connecting the two capillaries with a section of microdialysis hollow fiber membrane) are no dead volume, simplicity, and ruggedness, which is particularly well suited for an on-line coupling capillary electrophoresis-based multiple dimensional separation system. The performance of the 2D CIEF-CZE system constructed by such an etched porous junction was evaluated by the analyses of protein mixtures.
The construction and evaluation of an on-column etched fused-silica porous junction for on-line c... more The construction and evaluation of an on-column etched fused-silica porous junction for on-line coupling of capillary isoelectric focusing (CIEF) with capillary zone electrophoresis (CZE) are described. Where two separation columns were integrated on a single piece of fused-silica capillary through the etched approximately 4 to 5-mm length porous junction along the capillary. The junction is easily prepared by etching a short section of the capillary wall with HF after removing the polyimide coating. The etched section becomes a porous glass membrane that allows only small ions related to the background electrolyte to pass through when high voltage is applied across the separation capillary. The primary advantages of this novel porous junction interface over previous designs (in which the interface is usually formed by fracturing the capillary followed by connecting the two capillaries with a section of microdialysis hollow fiber membrane) are no dead volume, simplicity, and ruggedness, which is particularly well suited for an on-line coupling capillary electrophoresis-based multiple dimensional separation system. The performance of the 2D CIEF-CZE system constructed by such an etched porous junction was evaluated by the analyses of protein mixtures.
Uploads
Papers by Guijie Zhu