Virtunoid: Breaking out of KVM

Nelson Elhage

DEFCON 19

August 8, 2011

«O> «F>r «=» «E» Q>

KVM

o The new hotness for Virtualization on Linux
o Official virtualization platform for Ubuntu and RHEL.

Nelson Elhage (DEFCON 19) Virtunoid: Breaking out of KVM August 8, 2011 2 /50

o
Who am |7

o Kernel engineer at Ksplice (now Oracle).

o Open-source security hacker in my spare time.

«O> «F>r «=» «E» Q>

Outline

@ KVM: Architecture overview
o Attack Surface

(@ CVE-2011-1751: The bug
@ virtunoid.c: The exploit
o %rip control
o Getting to shellcode
o Bypassing ASLR

(@ Conclusions and further research

(8 Demo

Nelson Elhage (DEFCON 19) Virtunoid: Breaking out of KVM

August 8, 2011

4 /50

L el oy
(@ KVM: Architecture overview
o Attack Surface

2) CVE-2011-1751: The bug

3) virtunoid.c: The exploit
%rip control

Getting to shellcode
Bypassing ASLR

5) Demo

«O>r 4Fr «=H» <= o

4) Conclusions and further research

R e oo
KVM: The components

o kvm.ko

0 gemu-kvm

«O> «F>r «=» «E» Q>

o kvm-intel.ko / kvm-amd.ko

KVM: Architecture overview

kvm. ko

o The core KVM kernel module

o Implements the virtual CPU and MMU (with the hardware's help).
o Emulates a few devices in-kernel for efficiency.

o Provides ioctls for communicating with the kernel module.

o Contains an emulator for a subset of x86 used in handling certain
traps (!)

Nelson Elhage (DEFCON 19) Virtunoid: Breaking out of KVM August 8, 2011 7 / 50

KVM: Architecture overview

kvm-intel.ko / kvm-amd.ko

o Provides support for Intel's VMX and AMD’s SVM virtualization
extensions.

o Relatively small compared to the rest of KVM (one .c file each)

Nelson Elhage (DEFCON 19) Virtunoid: Breaking out of KVM August 8, 2011

8 / 50

KVM: Architecture overview

gemu-kvm

Provides the most direct user interface to KVM.

©

Based on the classic gemu emulator.

©

Implements the bulk of the virtual devices a VM uses.

©

Implements a wide variety of types of devices.

©

(+]

An order of magnitude more code than the kernel module.

©

There is work in progress to replace this component, but it's a ways
out, if ever.

Nelson Elhage (DEFCON 19) Virtunoid: Breaking out of KVM August 8, 2011 9 / 50

KVM: Architecture overview Attack Surface

kvm. ko

o A tempting target — successful exploitation gets ring0 on the host
without further escalation.

o Much less code than gemu-kvm, and much of that is dedicated to
interfacing with gemu-kvm, not the guest directly.

o The x86 emulator is an interesting target.

o A number of bugs have been discovered allowing privesc within the
guest.

o A lot of tricky code that is not often exercised.

o Not the target of this talk, but | have some ideas for future work.

o Also, be on the lookout for privesc within either the host or guest.

Nelson Elhage (DEFCON 19) Virtunoid: Breaking out of KVM August 8, 2011 10 / 50

KVM: Architecture overview Attack Surface

kvm-intel.ko / kvm-amd.ko

o Not much direct attack surface.

o Largely straight-line code doing lots of low-level bit twiddling with the
hardware structures.

o Lots of subtlety, possibly some more complex attacks.

Nelson Elhage (DEFCON 19) Virtunoid: Breaking out of KVM August 8, 2011 11 / 50

KVM: Architecture overview Attack Surface

gemu-kvm

©

A veritable goldmine of targets.
o Hundreds of thousands of lines of device emulation code.

o Emulated devices communicate directly with the guest via MMIO or
IO ports, lots of attack surface.
o Much of the code comes straight from gemu and is ancient.

o gemu-kvm is often sandboxed using SELinux or similar, meaning that
successful exploitation will often require a second privesc within the
host.

o (Fortunately, Linux never has any of those)

Nelson Elhage (DEFCON 19) Virtunoid: Breaking out of KVM August 8, 2011 12 / 50

- CVE20LLA75L: Thebug
1) KVM: Architecture overview
Attack Surface

@ CVE-2011-1751: The bug

3) virtunoid.c: The exploit
%rip control

Getting to shellcode
Bypassing ASLR

5) Demo

«Or» «Fr «E» «=)>» o

4) Conclusions and further research

CVE-2011-1751: The bug

RHSA-2011:0534-1

“It was found that the PIIX4 Power Management emulation layer in
gemu-kvm did not properly check for hot plug eligibility during device
removals. A privileged guest user could use this flaw to crash the guest or,
possibly, execute arbitrary code on the host. (CVE-2011-1751)"

Nelson Elhage (DEFCON 19) Virtunoid: Breaking out of KVM August 8, 2011 14 / 50

CVE-2011-1751: The bug

P11X4

o The PlIX4 was a southbridge chip used in many circa-2000 Intel
chipsets.

o The default southbridge emulated by gemu-kvm

o Includes ACPI support, a PCI-ISA bridge, an embedded MC146818
RTC, and much more.

Nelson Elhage (DEFCON 19) Virtunoid: Breaking out of KVM August 8, 2011 15 / 50

CVE-2011-1751: The bug

Device Hotplug

o The PIIX4 supports PCI hotplug, implemented by writing values to 10
port Oxae08.

o gemu-kvm emulates this by calling qdev_free(qdev) ;, which calls a
device's cleanup function and free()s it.

o Many devices weren't implemented with hotplug in mind!

Nelson Elhage (DEFCON 19) Virtunoid: Breaking out of KVM August 8, 2011 16 / 50

CVE-2011-1751: The bug

The PCI-ISA bridge

o In particular, it should not be possible to unplug the ISA bridge.

o Among other things, the emulated MC146818 RTC hangs off the ISA
bridge.

o KVM's emulated RTC is not designed to be unplugged; In particular,
it leaves around dangling QEMUTimer objects when unplugged.

Nelson Elhage (DEFCON 19) Virtunoid: Breaking out of KVM August 8, 2011 17 / 50

CVE-2011-1751: The bug

QEMUTimer
typedef void QEMUTimerCB(void *opaque);
struct QEMUTimer {
i-rll‘.c64,t expire_time; /+ in nanoseconds x*/
QEMUTimerCB *cb;

void *opaque;
struct QEMUTimer xnext;

b
typedef struct RTCState {

QEMUTimer *second_timer:

} RTCState;

Nelson Elhage (DEFCON 19) Virtunoid: Breaking out of KVM August 8, 2011 18 / 50

CVE-2011-1751: The bug

Use-after-free

©

Unplugging the virtual RTC free()s the RTCState

It doesn't free () or unregister either of the timers.

©

So we're left with dangling pointers from the QEMUTimers

©

On the next second, we'll call rtc_update_second(<freed
RTCState>)

(+]

Nelson Elhage (DEFCON 19) Virtunoid: Breaking out of KVM August 8, 2011 19 / 50

- CVE2011A75L: Thebug
Reproducer

#include <sys/io.h>

int main (void) {
iopl (3);
out|(2, 0X3€08);
return O;

«O> «F>r «=» «E» Hao

1) KVM: Architecture overview
Attack Surface

2) CVE-2011-1751: The bug

(@ virtunoid.c: The exploit
o %rip control
o Getting to shellcode
o Bypassing ASLR

4) Conclusions and further research

5) Demo

«O> «F>r «=» «E» = Q>

virtunoid.c: The exploit %rip control

High-level TODO

@ Inject a controlled QEMUTimer into gemu-kvm at a known address
@ Eject the emulated ISA bridge

@ Force an allocation into the freed RTCState, with second_timer
pointing at our dummy timer.

o When rtc_update_second next runs, our timer will get scheduled.

o One second later, boom.

Nelson Elhage (DEFCON 19) Virtunoid: Breaking out of KVM August 8, 2011 22 / 50

virtunoid.c: The exploit %rip control

1. Injecting data

o The guest's RAM is backed by a simple mmap ()ed region inside the
gemu-kvm process.
o So we allocate an object in the guest, and compute

o hva = physmem_base + gpa
o gpa = (gva_to_gfn(gva) << PAGE_SHIFT)
+ page_offset(gva)

o For now, assume we can guess physmem_base (e.g. no ASLR)

hva host virtual address

gva guest virtual address

gpa guest physical address

gfn guest frame (physical page) number

Nelson Elhage (DEFCON 19) Virtunoid: Breaking out of KVM August 8, 2011 23 / 50

virtunoid.c: The exploit %rip control

gemu-kvm userspace network stack

o gemu-kvm contains a user-mode networking stack.

o Implements a DHCP server, DNS server, and a gateway NAT.

Nelson Elhage (DEFCON 19) Virtunoid: Breaking out of KVM August 8, 2011

24 / 50

virtunoid.c: The exploit %rip control

Userspace network stack packet delivery

o The user-mode stack normally handles packets synchronously.

o To prevent recursion, if a second packet is emitted while handling a
first packet, the second packet is queued, using malloc().

Nelson Elhage (DEFCON 19) Virtunoid: Breaking out of KVM August 8, 2011 25 / 50

o The virtual network gateway responds synchronously to ICMP ping.

«O> «F>r «=» «E» Q>

virtunoid.c: The exploit %rip control

Putting it together

@ Allocate a fake QEMUTimer
o Point =>cb at the desired %rip.

@ Calculate its address in the host.
@ Write 2 to 10 port 0xae08 to eject the ISA bridge.

@ ping the emulated gateway with ICMP packets containing pointers to
your allocated timer in the host.

Nelson Elhage (DEFCON 19) Virtunoid: Breaking out of KVM August 8, 2011 27 / 50

-~ virtunoidc: Theexploit Getting to shellcode
We've got %rip, now what?

«O>» <Fr «=»r» «E)» o

-~ virtunoidc: Theexploit Getting to shellcode
We've got %rip, now what?

o Get EIP = 0x41414141 and declare victory.

«O> «F>r «=» «E» Q>

virtunoid.c: The exploit Getting to shellcode

We've got %rip, now what?

o Get EIP = 0x41414141 and declare victory.
o Disable NX in my BIOS and call it good enough for a demo.

Nelson Elhage (DEFCON 19) Virtunoid: Breaking out of KVM August 8, 2011

28 / 50

virtunoid.c: The exploit Getting to shellcode

We've got %rip, now what?

o Get EIP = 0x41414141 and declare victory.
o Disable NX in my BIOS and call it good enough for a demo.
o Do a ROP pivot, ROP to victory.

Nelson Elhage (DEFCON 19) Virtunoid: Breaking out of KVM August 8, 2011

28 / 50

virtunoid.c: The exploit Getting to shellcode

We've got %rip, now what?

Get EIP = 0x41414141 and declare victory.
Disable NX in my BIOS and call it good enough for a demo.
Do a ROP pivot, ROP to victory.

© © o

©

Do something else clever.

Nelson Elhage (DEFCON 19) Virtunoid: Breaking out of KVM August 8, 2011 28 / 50

virtunoid.c: The exploit Getting to shellcode

Another look at QEMUTimer

struct QEMUTimer {
int64_t expire_time; /x in nanoseconds %/

struct QEMUTimer xnext;

H

Nelson Elhage (DEFCON 19) Virtunoid: Breaking out of KVM August 8, 2011

29 / 50

virtunoid.c: The exploit Getting to shellcode

gemu_run_timers

static void gemu_run_timers(QEMUClock *clock)
{

QEMUTimer xxptimer_head , =xts;

intb4_t current_time;

current_time = gemu_get_clock_ns(clock);
ptimer_head = &active_timers[clock—>type];

for(;;) {

ts = kxptimer_head;

if ('gemu_timer_expired_ns(ts, current_time))
break;

xptimer_head = ts—>next;

ts—>next = NULL;

ts—>cb(ts—>opaque);

Nelson Elhage (DEFCON 19) Virtunoid: Breaking out of KVM August 8, 2011 30 / 50

virtunoid.c: The exploit Getting to shellcode

Timer chains

second_timer

| —»fl
—>cb — |

->opaque —|—» X

—>next ~

->cb — |

—->opaque ——» Y
—>next —

£3
->cb //

->opaque |—* 2

—>next — |
T nULL

= £1(X); £2(Y); £3(2);

Nelson Elhage (DEFCON 19) Virtunoid: Breaking out of KVM August 8, 2011 31 /50

virtunoid.c: The exploit Getting to shellcode

More arguments

o amd64 calling convention: %rdi, %rsi, %rdx, ...

o Every version of gemu_run_timers |'ve checked leaves %rsi
untouched.

Nelson Elhage (DEFCON 19) Virtunoid: Breaking out of KVM August 8, 2011 32 /50

virtunoid.c: The exploit Getting to shellcode

More arguments

o set_rsi:
movl %rdi , %rsi
ret

o Let f1 = set_rsi

o £f2(Y, X)

Same trick doesn't work with %rdx.

©

Nelson Elhage (DEFCON 19) Virtunoid: Breaking out of KVM August 8, 2011 33 /50

-~ virunoidc: Theexploit Getting to shelicode
set_rsi
{

void cpu_outl(pio_addr_t addr,
}

uint32_t val)
ioport_write (2, addr, val);

«O> «F>r «=» «E» Q>

virtunoid.c: The exploit Getting to shellcode

Getting to mprotect

int mprotect(const void *addr, size_t len, int prot);
#define PROT_EXEC 0x4

static uint32_t ioport_readl_thunk(void *opaque, uint32_t addr)

IORange *xioport = opaque;
uint64_t data;

ioport —>ops—>read (ioport ,

addr — ioport—>base, 4, &data);
return data;

Nelson Elhage (DEFCON 19) Virtunoid: Breaking out of KVM August 8, 2011 35/ 50

virtunoid.c: The exploit Getting to shellcode

Putting it together

o Allocate a fake IORangeOps, with fake_ops->read = mprotect.

o Allocate a page-aligned IORange, with ->ops = fake_ops and
->base = -PAGE_SIZE.

o Copy shellcode immediately following the I0Range.

o Construct a timer chain that calls

o cpu_outl(0, *)
o ioport_readl_thunk(fake_ioport, 0)
o fake_joport + 1

Nelson Elhage (DEFCON 19) Virtunoid: Breaking out of KVM August 8, 2011 36 / 50

virtunoid.c: The exploit Getting to shellcode

Why not ROP?

o Continued execution is dead simple.
o Reduced dependence on details of compiled code.
o I'm not that good at ROP :)

Nelson Elhage (DEFCON 19) Virtunoid: Breaking out of KVM August 8, 2011

37 / 50

virtunoid.c: The exploit Bypassing ASLR

Addresses

o For a known gemu-kvm binary, we need two addresses.

o The base address of the gemu-kvm binary, to find code addresses.
o physmem_base, the address of the physical memory mapping inside
qemu-kvm.

Nelson Elhage (DEFCON 19) Virtunoid: Breaking out of KVM August 8, 2011 38 / 50

N P RO Bypossing ASLRUT
Option A

o Find an information leak.

«O> «F>r «=» «E» Q>

N P RO Bypossing ASLRUT
Option B

o Assume non-PIE, and be clever.

«O> «F>r «=» «E» Q>

virtunoid.c: The exploit Bypassing ASLR

fw_cfg

Emulated IO ports 0x510 (address) and 0x511 (data)

Used to communicate various tables to the gemu BIOS (€820 map,
ACPI tables, etc)

Also provides support for exporting writable tables to the BIOS.

o However, fw_cfg_write doesn't check if the target table is supposed
to be writable!

©

©

©

Nelson Elhage (DEFCON 19) Virtunoid: Breaking out of KVM August 8, 2011 41 / 50

virtunoid.c: The exploit Bypassing ASLR

Static data

o Several fw_cfg areas are backed by statically-allocated buffers.

o Net result: nearly 500 writable bytes inside static variables.

Nelson Elhage (DEFCON 19) Virtunoid: Breaking out of KVM August 8, 2011 42 / 50

virtunoid.c: The exploit Bypassing ASLR

read4 your way to victory

o mprotect needs a page-aligned address, so these aren’t suitable for
our shellcode.

o But, we can construct fake timer chains in this space to build a
read4 () primitive.

o Follow pointers from static variables to find physmem_base

o Proceed as before.

Nelson Elhage (DEFCON 19) Virtunoid: Breaking out of KVM August 8, 2011 43 / 50

virtunoid.c: The exploit Bypassing ASLR

Repeated timer chaining

(]

Previously, we ended timer chains with ->next = NULL.

©

Instead, end them with a timer that calls rtc_update_second.

o The timer we control will be scheduled once a second, and we can
change ->cb at any time.

o Now we can execute a read4, update structures based on the result,
and then hijack the list again.

Nelson Elhage (DEFCON 19) Virtunoid: Breaking out of KVM August 8, 2011 44 / 50

Conclusions and further research

Conclusions

o VM breakouts aren't magic.
o Hypervisors are just as vulnerable as anything else.

o Device drivers are the weak spot.

Nelson Elhage (DEFCON 19) Virtunoid: Breaking out of KVM August 8, 2011

45 / 50

Conclusions and further research

Comparing with some past breakouts

2008 “Adventures with a certain Xen vulnerability”, Xen, Invisible Things
Lab

2009 “Cloudburst”, Immunity, VMware

2011 “Software attacks against Intel VT-d technology”, Invisible Things
Lab, Xen

Nelson Elhage (DEFCON 19) Virtunoid: Breaking out of KVM August 8, 2011 46 / 50

Conclusions and further research

Possible hardening directions

©

Sandbox gemu-kvm (work underway well before this talk).

(]

Build gemu-kvm as PIE.

©

Lazily mmap/mprotect guest RAM?

©

XOR-encode key function pointers?

©

More auditing and fuzzing of gemu-kvm.

Nelson Elhage (DEFCON 19) Virtunoid: Breaking out of KVM August 8, 2011 47 / 50

Conclusions and further research

Future research directions

o Fuzzing/auditing kvm.ko (That x86 emulator sketches me)
o Fingerprinting gemu-kvm versions

o Searching for infoleaks (Rosenbugs?)

Nelson Elhage (DEFCON 19) Virtunoid: Breaking out of KVM August 8, 2011

48 / 50

N
It's demo time

«Or «Fr o« >» «E» .

- Demo.
Questions?

0 nelhage@nelhage.com

0 @nelhage

«O> «F>r «=» «E» Q>

o http://blog.nelhage.com

nelhage@nelhage.com
http://blog.nelhage.com

	KVM: Architecture overview
	Attack Surface

	CVE-2011-1751: The bug
	virtunoid.c: The exploit
	%rip control
	Getting to shellcode
	Bypassing ASLR

	Conclusions and further research
	Demo

