Concurrent Execution Semantics and Sequential
Simulation Algorithms for the Metropolis Meta-Model

Felice Balarin, Luciano Lavagno!, Claudio Passerone?,
Alberto Sangiovanni-Vincentell#, Yosinori Watanabe*, Guang Yang*

! Cadence Berkeley Labs, 2001 Addison St. 3rd Floor, Berkeley CA 94704, USA,
2 Politecnico di Torino, C. Duca degli Abruzzi 24, 10129 Torino, ITALY,
* University of California, Berkeley CA 94720, USA
* University of Massachusetts, Amherst MA 01002, USA

ABSTRACT

This paper presents the simulation techniques that are available in
Metrepolis, an inter-disciplinary research project that develops a
design methodology, supported by a comprehensive design envi-
ronment and tool set. for embedded systems. System behavior is
non-deterministic in general, especially in the beginning of the de-
sign process, when several key decision, such as the mapping on
an implementation platform, have not yet been made, and thus the
traces obtainable by simulation are not unique even under the same
input sequence. One may want Lo visil as many traces as possi-
ble for regression tests at the final stage of designs, or may just
need one valid trace for a quick validation of the design at an early
stage. Our techniques can adapt to these different objectives easily.
They are also platform-independent in that simulation using differ-
ent languages, such as SystemC 2.0, Java, and C4-+ with a thread
library, are possible. This feature is important for co-simulation
between designs captured in Metropolis and those that have been
already designed in other languages.

1. INTRODUCTION

The ability to capture non-deterrninism is crucial in embedded sys-
tem specifications. One source of non-determinism is concurrency
resolution. System architecture usually involves several compo-
nents that operate concurrently, and effective exploitation of the
concurrency is a key io realizing an cfficient implementation. Sys-
tern behavior is also often modeled with concurrency, but this con-
currency does not usually match with the concurrency of the archi-
tecture. Therefore, how to transform the concurrency of the behav-
ior to the one in the architecture is an important design problem.
The concurrency resolution is one aspect of this probiem, where an
acceptable sequence of events is obtained from a concurrent set of
event sequences. Such a sequence is not unique in general, and of-
ten remains non-deterministic until information such as scheduling
algorithms, execution speed, or arrival time of external events be-

Permission 10 make digital or hard copies of all or part of this work for
personal or ¢lassroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or 1o redistribute to lists;
requires prior specific permission and/or a fee.

CODES'02, May 6-8, 2002, Estes Park, Colorado, USA.

Copyright 2002 ACM 1-58113-542-4/02/0005...$5.00.

comes available . This non-determinism defines the solution space
that can be explored for finding implementations, and serves as the
basis for making critical design decisions such as scheduling poli-
cies. Non-determinism is sometimes unavoidable in specifications.
For example. depending upor which inputs arrive first, one may
want 1o take different actions. This non-determinism for example
arises in digital filters with dynamuic updates of coefficients. Non-
determinism is also useful to mode] abstracted behavior of certain
components, such as the environment. Since details of the behavior
are not specified, the description becomes simpler while the behav-
ior becomes non-deterministic.

Merta-model is a language with 2 rigorous execution semantics and
specification mechanisms, with which this kind of non-determinism
can be specified easily [2). It is used as the internal means to rep-
resent designs in the Metropolis design environment. it is designed
so that various computation and communication Semantics can be
specified using common building blocks, and serves as input for
simulation as well as for synthesis and verification methods. Es-
sentially, the meta-model specifies netlists of communicating pro-
cesses, each executing a sequential program. Each process pro-
gresses at its own speed, so at any point of time any number of
processes can take their next “step”, if they are not blocked execut-
ing a special synchronization construct cafled await. Which subset
of processes lake a “step™” at any given point in time is subject to a
non-deterministic choice,

Non-determimism poses unique verification problems. Tradition-
ally, systems are verified by simulating their response 10 a given
set of stimuli. However, with non-determinism, there may be many
valid responses, and it is impossibie to know which one will be ex-
hibited by the final implementation. It is thus pot clear what the
value of simulation is in this setting, or even what should be the
result of a simulation run. One may be tempted to resort 1o for-
mal verification methods 1o reason about all possible responses at
once, but current formal verification tools are far from being able
to completely verify today’s systems. Therefore, simulation still
plays, and will continue to play. an irnportant practical role when
exploring the design space and verifying the overall system behav-
ior. In this paper, we propose an approach thar clarifies the role
of simulation in the presence of non-determinism. It is based on

1While under certain assumnplions concurrent events at outputs can
be uniquely resclved for given inputs regardless of scheduling, it
is argued that the assumptions hold in only limited cases in recent
applications [4].

13

(i) formal execution semantics of the meta-model that precisely de-
fines acceptable behaviors, and (ii) a generic simulation algorithm
that allows exhibiting one of the acceptable behaviors for a given
input stimulus. Which behavior is selected, depends on the mi-
nor modification of the aigorithm. The choice may be driven by
different objectives at various levels of abstraction or at various de-
sign stages. In the beginning, one may use simulation oniy to see
some sequence of events which is legal with respect to the execu-
tion semnanttics. This is convenient to quickly validate behavior just
specified or to find trivial mistakes. Thus, at this stage, one may
opt for the modification of the algorithm that optimizes simulation
time. At a later stage of the design, cne may want (o simulate as
many legal sequences as possible in order to evaluate the design
more thoroughly. approaching the coverage breadth that would be
ensured by formal verification techniques; this is often necessary
for regression tests. Al this stage, one may opt for maxirnally ran-
domized modification which can exhibit the most behaviors. Also.
an imeractive version may be appropriate while defining a schedul-
ing policy to be implemented. In this case, one may want to see all
the events that can take place at a particular point during a simula-
tion and then to choose interactively one event 1o see the effect of
such a scheduling policy. .

Conceprually, the proposed algorithm aiternates two phases, where
processes run in one phase and the manager runs in the other phase.
The manager controls the simulation flow. It keeps track of all the
events that can legally take place at a given point of the execution,
and can use various functions to determine an order of the events.
For example, one valid order may be obtained by using a random-
ized function, which may be useful to hit corner cases. Allerna-
tively, all these events may be displayed to the user so that he can
interactively choose one of them at a time in order to evaluate vat-
ious scheduling policies. Once a scheduling policy is determined,
it can be-easily specified in the meta-mode! using a special object
called scheduler, which is then taken into account in the simulation
algorithm to resolve the non-determinism.

The underfying mechanism also makes the simulation algorithm
applicable in different plarforms. One type of platforms is a con-
figuration of simulation engines. If one chooses a multi-processor
simulation platform in order to utilize the concurrent execution as
much as possible, the events can be distributed over the processors
50 that they run concurrently until the next synchronization point is
reached by some processor. If on the other hand a single processor
is used for the simulation, the concurrent events are fully serial-
ized and the algorithm trigs to minimize the number of alternations
between the two phases. ;

The other type of platforms is languages used for simulation. {n our
approach, instead of generating machine code directly from meta-
model descriptions, we translate the meta-model to an executable
language, which is combined- with the simulation algorithm also
implemented in the 'same language. The actual simulaticn is then
carried out In terms of the resulting language. This feature is im-
portant to co-simulate desigas captured in the meta-model together
with existing designs that have been already specified in other Jan-
guages. We have tested this approach in SystemC 2.0 [9, 10),
lava[1], and C-++ with a thread library.

1.1 Related Work

There are many environments in which systems are described as
networks of concurrent processes executing sequential code, in-
cluding SpecC [5], SystemC [9], and Prolemy {3]. Many of these,

attempl to resolve the concurrency uniquely, largely eliminating
non-determinism (at least from this source). This approach has
some clear advantage for high-level modeling, as simulation re-
sults are required to be identical across different simulator runs and
even different simulator implementations. However, the approach
has some disadvantages when it comes to implementation. Resolv-
ing the concurrency in exactly the same way as in the simulator is
often prohibitively expensive and unnecessary in the implementa-
tion. So in practice behaviors of the implementations are close 1o,
but rarely identical to behaviors of high-level models. This means
that implementations cannot be automatically verified. A signifi-
cant designer’s effort is needed to analyze implementation behav-
iors or compare them with behaviors of high-level models to check
that the differences between the two are still acceptable.

In our approach, in contrast, the acceptable differences are pre-
cisely defined by formal execution semantics. It is not hard to ex-
tract from this definition simulation monitors which may check au-
tomatically that bebaviors of the detailed implementation are also
possible behaviors of the high-level models.

Approaches in Specmen [11] and Verisoft [6] are similar to ours in
that they define precisely a set of non-deterministic choices for the
system behavior. However, both of this approaches are burdened
with significant overhead. In case of Specmen. the overhead is due
to the fact that the set of choices is defined by constrajnts, and find-
ing a legal choice requires solving a set of constraints, which may
be expensive. In conirast, in our approach (ard also in Verisoft), the
set of legal choices follows immediately from the progress of con-
current process. However, unlike Verisoft, we make no attempts to
exhaustively search the space of legal choices, eliminating thus the
bookkeeping overhead. Our approach takes the best of both worlds:
use of non-determinism to precisely define design space available
to implementation, and use of efficient conventional simutation for
verification.

The rest of this paper is organized as follows. Section 2 describes
key aspects of the meta-mode! and its underlying execution seman-
tics. Section 3 introduces the simulation algorithm and shows how
various objectives can be achieved. In Section 4, we describe issues
addressed in implementing the algorithm in the three executable
languages above. Finally. Section 5 conciudes the paper.

2. EXECUTION SEMANTICS

In the meta-model a system is specified as a network of processes.
Each process is a sequential program, and cornmunicates with other
processes through media. The semantic domain we use to interpret
executions of meta-mode] netlists is a set of sequences of observ-
able events. An observable event is the beginning-or the ending of
an observabie acrion, and observable actions are calls of funcrigns
implemented in media objects. While the behavior is defined by
observable actions only, we also use other actions to help us define
the semantics. This extended set of actions include all the state-
ments of the program.

With each action ¢ we associate two evenrs. a¥ indicating the start
of an execution of a, and ¢~ indicating the end. Foreach process P
we define the set of events that contains ™ and ™ for each action
a of P, and a special symbol nop, indicating that no events are
occuring in P. Event vectors are vectors that contain an event for
each process in the system. They completely characterize activilies
in the system at any given pointin time.

14

The execution of netlists evolves through a sequence of stares. A
state of the program consists of two parts. The first is the state of the
memory which consists of assignments to state variables. The sec-
ond part of the state corresponds intuitively to the program counter.
‘We represent this part of the state with states of action auromara
defined over the alphabet of event vectors. We associate an action
automaton with each action. The state of an action aulomasion in-
dicates whether the corresponding statement or expression is being
executed or not. By combining all these states, we can precisely
determine the location pointed by the program counter. The tran-
sition relation of action automata enforces the proper sequence of
the beginning and ending of statement executions.

Even though action automata have a few non-standard features,
they can be readily understood based on standard automata defini-
tion. Therefore, we introduce action automata here only informally,
and refer the interested reader to [2] for the full formal definition.

The syntax and semantics of the meta-model is in great part similar
to standard sequential programming languages like C++ or Java.
Just like these languages the meta-model has the conditional state-
ment

if (expr) then szmz, else simiz .

‘We use an action automaton for this statement (shown in Figure 1)
to introduce action automata in general. The action automaton in
Figure | has the initial state that is not drawn (to reduce the clut-
ter). We assume that any transition without present (next) state is
coming from (leading to) the initial state. Transitions of action au-
tomata are labeled with expression of the form G/ E, where guard
G denotes a set of states, and F is 2 set of event-vectors. A tran-
sition can occur only if the current global state is in G. and the
current event vector is in &. For example, the transition labeled:

Vexpr 9’-‘ OIJH’TII?

is enabled if the current value of state variable V,zpr is not zero.
{(Vexpr is the memory location where the value of expression is
stored.) When the transition occurs, semry must begin. Note that we
use a symbol in the alphabet of a process to denote the set of event-
vectors such that the component of these vectors corresponding to
the process is equal to the symbol. For example, szmiy denotes
the set of all event-vectors whose component correspending to the
process taking the action is szmey .

If the transition is unguarded, i.e. if G contains ali global states,
then we write just E instead of 7/ E (e.g. transition labeled a™ in
Figure 1). Finaily, every state in Figure 1 has a self-loop, which we
ornit to further reduce the clutter, and put the label of the self-loop
directly on the state. It should now be clear, that according to Fig-
ure 1, after the conditional statement starts executing, the process
can take no other action until the conditional expression starts to ex-
ecute. When this is finished, one of the two statement is executed
next, based on the value of Vexpr.

One meta-model construct that is very distinci form sequential pro-
gramming languages is awail. The syntax of await is:

await{(gs; T1; S1)stmty - - - (gx; The; S)stmug } .

Statements appearing inside an await, like stmuy, . . . | stz above,
are called critical sections. When an await statement is reached.
one of the critical sections stmt; is executed, but only if it is en-
abled. Whether stmt; 1s enabled depends on the guard g;, test list

T:, and ser lis1 §;. The guard g; is an expression that must be satis-
fied for strmi; 10 be enabled. Lists T; and S; specify sets of actions
denoted by [Ti] and [S;] respectively. Details on syntax of test
and set lists, and how to determine [T;] and [S;] from the syntax
are not relevant here (they can be found in [2]), except for the fact
that [T;] and [S;} can contain only critical sections and observable
actions. It is useful 1o imagine that a reservation flag is associated
with each action. A flag can be raised either impiicitly, by the ac-
tion being executed. or explicitly, by specifying the action in the set
list of some critical section. The statement stmz; is not enabled as
long as any of the flags in [T5] is raised, i.e. as long as any of the
actions in [T3] is being executed. Starting stmi; sets all the flags in
[5:}, disabling thus all actions that test any of these flags.

Formally, the semantics of the await statement is given by the ac-
tion automaton in Figure 2. The key to understanding the semantics
of await is understanding the label that marks the stant of a typical
critical section:

True{g:) N Active([Li])/simit N Srard{[Si]) -

The set of global states True{g;) contains all states s such that exe-
cuting g; starting from s may produce a value different from zero,
assuming that other processes take no actions during this execution,
Active{ A) denotes the set of states in which at least one of the ac-
tions in A is being executed. Thus, the #-th critical section can start
only if g; may evaluate to a value different from 0 in the current
state, and ne actions in [T}] is active. Star?(A) denotes the set of
event vectors that contain the beginning of at least one action in A.
1t follows that no action in [S;] can start executing at the same time
as semi;. Furthermore, the self-loop label in Figure 2 ensure that no
actions in [S;] can start executing uniil szmz; finishes its execution.

3. SIMULATION ALGORITHMS

In this section, we present a generic algorithm to simulate a meta-
model network. It assumes an underlying multi-threading capabil-
ity. so that a separate thread can be associated with each process,
Media objects are shared between threads. Overall, the simulation
consists of two steps. In the first step, we generate simulation code
from a meta-mode] description. This code is in the target language
(Java or C++), and includes calls to the simulation manager func-
tions, that we will introduce shortly. The generated code is then
compiled, linked with the simulation manager functions, and exe-
cuted, possibly using an appropriate debugger.

An important parameter of our algorithm is manager’s function
Yield(set .5). Yield takes as argument a set of threads S and selects
one or more of them to run. Choosing different selection criteria
will lead to different specific simulation algorithms. [n addition to
selection criteria, the algorithm may zlso be modified by choosing
a set of locations in the code where Yield is called. When present-
ing our algorithm, we specify only a minimum number of places
where Yield must be called. However, at locations where Yield
could be called, we specify such a call as a comment. Modifying
an algorithm is then as simple as un-commenting these calls.

At the beginning of a design process, it may be appropriate to use
a simulator with as few calls to Yield as possible, and to choose a
simple Yield that selects a single process. Both of these choices
reduce the overhead, resuiting in shorter simulation times. At the
later design stages, to check as many traces as possible. it makes
sense to have as many calls to Yield as possible, and to use a se-
lection criterion that is likely to cover a lot of possibilities. Such a
criterion may be based on a random choice. or possibly an a more

15

Care = {a*,a”, stmi], stmt], stmt7, stmi; }

+ + -
a cnpr — | t'pr
—'_) } —*

Vezpr#0fatme} atmiy
—— | Tarc | ——— B

nop nop |——3
Vezpr=0/stmt} stmity
_
Figure 1: Action automaton A[a] in case a is if (expr) then semey else stmta.
Care = {a”*,a",stmt}, stmi],..., stmt}, stmt; }
Truc(g Y Active((La/atmtinStart((51D) | | stme]
rue(synActive(nD/stmt; O5tar{5Y), TerenStart(isal) | ——
ot nop nop a”

True(g,)ﬂAch’va([T*])/:imtfﬂszart([sh]] atmiy
— | TarenStart{[5,;]) | —

Figure 2: Automaton A[a} in case a is await{{g1; T1; S1)stmty; - - - (gn; Tk; Sic)stmee; }.

intelligent choice that tries to direct simulation to a previously un-
visited portion of the state space [7]. Even further on in the design
process, when decisions on the implementation platform and its
scheduling algorithm have been made, 1t makes sense to use & ver-
sion of Yield that models that specific scheduling algorithm. The
choice of Yield may be partially driven by the simulation platform
as well. For a single-processor platform, Yield that selects one
thread may be satisfactory, but choosing Yield that selects multi-
ple threads will make it much easier to take advantage of a multi-
processor platform.

Let us now introduce some notation used by the algorithm. We use
Proc to denote the set of processes in the system, Obs to denote the
set of all observable actions. and Crir to denote the set of all critical
sections. For each action ¢ € Obs U Crir we use a.proc € Procto
denote the process executing it. In addition, for each critical section
a € Crir we use a.rest C Obs U Crir to denote the set of actions
specified by the test list associated with @, and a.ser € OGbs U Crit
to denote the set of actions specified by the set list associated with
a. Finally, we use a.guard{) to denote the function which, when
called, evaluates the guard of a in the current state.

During the simulation, the manager maintains sets Ready C Proc
and Acrive € Obs U Crit and Blocked € Obs U Crit. An action is
in Active if it is currently being executed. An action is in Blocked
if the execution flow has reached it, but it cannot be executed yet
There are two kinds of reasons why an action may be block. The
first is that it cannot start until some other action finishes, due to set
list constraints. The other reason is that a guard of a critical section
may not be satisfied. A process is in Ready if none of its actions
is in Blocked, or the simulator cannot be sure that actions of the
process that are in Blocked are still blocked. This happens when
an action in Blocked no longer has to wait for any other actions to
finish. If that action is observable, than it is certainly no longer
blocked. However. if that action is a critical section, we still need
to re-evaluate its guard to check if it is blocked.

For the most parts, simulation code generation is a simple transfor-
mation requiring only minor changes to account for syntactical dif-
ferences between the meta-model and the target language. The two

16

BegObsAction(action a) {
Yield(UpdateReady());
if (Blocking{a) # @) {
Ready = Ready — {a.proc}:
Blocked = Blocked U {a}.
Yield(UpdateReady()):
Blocked = Blocked — {a};
}
6 Active = Active U {a};
#Yield(UpdateReady()):
}

EndAction(action @) {
Yield{UpdateReady());
1 Acive = Active -~ {a};
#Yield{UpdateReady()):

[I ST

set UpdateReady() {
1 Ready = ReadyU {a.proc| a € Blocked, Blocking(a) = 0};
2 return Ready;

}

Figure 3: Functions BegObsAction and EndAction.

exceptions are calls to observable actions, and await statements,
which we discuss in the following sections.

3.1 Executing observable actions
Consider a typical observable action f(...);, and let & € Obs be its
unique descriptor. Such a piece of code is replaced with:

BegObsAction(a);

)

EndAction(a);

where functions BegObsAction and EndAction are as defired in
Figure 3. The set Blocking(a) contains all active actions which
must finish before ¢ can start. If @ is an observable action than
Blocking{a) conlains all active critical sections whose set list spec-
ifies a. If @ is 2 critical section, then Blocking(a) contains all active

actions specified by its test list. Formally:

{& € Active N Critla € b.ser}
Active N a.test

ifa € Obs ,

Blocking(a) = { ifa e Crit .

In Figure 3, to start an observable action, we first check if it is
blocked. If that is the case, we update Ready and Blocked accord-
ingly, and yield the control. The control can return to this thread
only if the process gets back to Ready when some other process
executes UpdateReady. This property is an invariant of our algo-
rithm. It is certainly satisfied by the code in Figure 3, even if all
cails to Yield are un-commented. It is also preserved by other sim-
ulation manager’s functions that we will introduce later. It follows
from this property that Blocking{a) is empty after the execution
proceed beyond the cail to Yield. Thus, we remove a from Blocked,
put i in Active and continue with the call to the observable action.
When that call finishes we remove a from Active in EndAction.

In addition to calling Yield when an action is blocked, we can also
call it at the entrances and exits of BegObsAction and EndAction.
However, we assume that manager's functicns are executed atom-
ically, except for calis to Yield.> This is not a problem if Yield
selects a single thread, because there is always a singie thread ac-
tive between two Yield calls. If Yield selects more than one thread,
then care should be taken o avoid hazards while accessing Ready,
Active, and Blocked.

3.2 Executing critical sections
Consider a typical await statement:

await{{g:; T1; S1)simty - - - {gk; Te; Sk)stmix} ,

and let e1,...,ckx € Crir be descriptors of critical sections stmrn,
“v.. .Stml.. Such an await statement is replaced with the following
piece of code:

switch(ChooseCritSec({e1,-.. ,ca} D {
case c1: simiy;
EndAction(c1):
break;

case ¢ stmi;
EndAction(c):
break:
}

Our first attempt at specifying function ChooseCritSec is shown
in Figure 4. We first check if any of the critical sections is enabled
(line 4). If we find an enabled critical section, we activate and
return it. Otherwise, we add ali critical sections to Blocked, remove
the current process from Ready, and yield the control. When the
control returns, we re-check all critical sections, and if we find that
one is now enabled we remove all critical sections from Blocked
(they are no longer candidates for execution). Note that contrary
to other calls to Yield, we do not update Ready before yielding
the control in line 10. The reason is that we want to avoid end-
less looping where a process is found ready because Blocking(c) is
empty for some of its critical sections, but the guard of ¢ is false. To
ensure that this does not happen, we update Ready in line |, where
we know that some actual progress, which might have cause some
state change, have occurred.

*We will describe later frow one implementation relaxes somewhat
this requirement.

action ChooseCritSec(actionSet CriiSecs) {
1 UpdateReady();
/Yield(Ready);
white (1) {
foreach (¢ € CritSecs) {
if (Blocking(c} = 8 A e.guard() £ 0) {
Active = Active U {c}:
Blocked = Blocked ~ CritSecs:
& Yield(UpdateReady()):
7 return .

}

}

Ready = Ready — {p| V¢ € CriiSecs : p = e.proch
9 Biocked = Blocked U CritSecs;

10 Yield{Ready):

1}

Do W

e]

Figure 4: Simplified version of ChooseCritSec.

The algorithm in Figure 4 runs into troubles if guards of critical
sections contain calls to funciions that include await statement. In
general, evaluating a guard may have three cutcomes: returning
with a value zero, returning with a value different from 0, or block-
ing trying to execute an observable action or a critical section. More
precisely, due to the non-determinism, any combination of these
three outcomes might be possible. According to the definition, a
global state is in True{g;) if at least one of the possible outcomes
is returning with a value different from 0. Thus, a blocking out-
come is in this sense equivalent 10 returning with a value zero. To
address these concerns, we modify ChooseCritSec as shown in
Figure 5. The variable guardNestLevel tracks the depth of nesting
guards. At the top level {(guardNestLevel = Q) the algorithm in Fig-
ure 5 is the same as in Figure 4. At lower levels, instead of blocking
and yielding control, ChooseCritSec throws an exceprion which
is then caught at the level above, and treated the same as if the result
of e.guard() was zero. The function BegObsAction also needs to
be modified, so that at lower levels of nesting it throws an excep-
tion instead of blocking. The algorithm in Figure 3 will always
find a non-blocking outcome, if one exists. However, it can still
effectively under-estimate the set True if both zero and non-zero
non-blocking outcomes are possible. Fortunately. this is still con-
sistent with the execution sernantics. It is not hard to check that the
automaton in Figure 2 accepts all sequences generated by a similar
automaton in which sets True{g:) are replaced with their subsets.

4. SIMULATOR IMPLEMENTATIONS

In this section we briefly describe three simulator implementations
which can be seen as specializations of the algorithm presented in
Section 3. Ore of the implementations is built on top of multi-
threading capabilities of Java, one on top of SystemC, and one on
top of Pamela multi-threading library [8].

The syntax of the meta-model closely resembles that of fava, and
therefore the translation is often almost straightforward. The Java
based simulator antomatically translates a meta-model specifica-
tion into a set of Java classes and interfaces, which can be compiled
and run together with a simulation library containing the manager.
When a process reaches an interface function call or an await state-
ment, it makes a request to the manager, which is implemented in a
separate thread., and then waits for an acknowledge to proceed. The
manager collects all requests. chooses a non-conflicting subset and
sends an acknowledge 10 each of the corresponding threads, This

17 -

action ChooseCritSec(actionSet CritSecs) {
if (guardNestLevel = 0) UpdateReady();
iffguardNestLevel = 0) Yield(Ready);
while (1) {
guardNestLevel + +;
foreach (¢ € CritSecs) {
try §
if (Blocking(c) =@ A c.guard() # 0) {
Active = Active U {c}:
Blocked = Blocked — CritSecs,
guardNestLevel — —;
4 if tguardNestLeve! = 0) Yield{UpdateReady());
190 return c;

fo

OG0 =3 L W

11 } cateh (blocked)

}
12 guardMNesiLevel — —;
13 il (guardNestLevel = 0) {
14 Ready = Ready — {p| V¢ € CritSecs : p = e.proc}:
15 Blocked = Blocked U CritSecs;
16 Yield(Ready),
} else {
17 throw blocked;

33}

Figure 5: Complete version of ChooseCritSec.

implementation generalizes the algorithm in Section 3, by allowing
multiple actions 1o be activated simultanecusly. To achieve this,
the simulation manager synchronizes all process trying to activate
an action (in line 6 in Figure 3 or line 7 in Figure 5). Then the
manager checks if there are any ser (ist conflicts among the chosen
action. {Two actions g and b chosen to be activated are in a set list
conflict if @ € b.set, implying that they cannot begin at the same
time.) If confticts exists, they are resolved non-deterministically.

The SystemC based simulator broadly follows the cutline of the
Java based simulator, but because the underlying execution engine
is more efficient. the simulation times are significantly reduced.

We have developed yet another simulator implementation, using
C+-+ with Pamela run-time library [8] as an underlying platform.
This implementation, closely follows the algorithim fromn section 3,
with the minimum number of calls to Yield. Contrary to the other
two approaches, there is no separate thread for the simulation man-
ager, and Yield selects only one process. This makes this imple-
mentations less appropriate for multi-processor execution, but it
minimizes the number of context switches and eliminates the need
1o check for set list conflicts when activating an action. It is there-
fore more efficient on single-processor platforms, and suitable for
quick validation of designs.

Initial experiments with the three implementations support the ex-
peciation that our approach has minimal overhead, in the sense that
simulation times for models generated by the three simulators are
comparable to simulation time when systems are modeled directly
in the target environment (Java, SystemC, or C++).

5. CONCLUSIONS

In this paper, we have proposed simulation techniques employed in
Metropolis. They are designed in a generic way, so that different
simulation objectives arising in various design stages can be served
easily. They can be also targeted to either a multi-processor sim-

ulation platform or te a single-processor simulator. Further, sim-
ulation can be conducted in different languages, so as to realize
co-simulation designs captured in Metropolis and those already de-
signed in other languages. The approach has been implemented
and tested in SystemC 2.0, Java, and C++ with a thread library re-
spectively.

6. REFERENCES

[1] K. Amold and J. Gosling. The Java programming language.
Addison Wesley, 1996.

[2] Felice Balarin, Luciano Lavagno, Claudio Passerone,
Alberto Sangiovanni-Vincentelli, Marce Sgroi, and Yosinori
Watanabe. Modeling and designing heterogeneous systems.
Technical Report 2002/01, Cadence Berkeley Laboratories,
January 2002.

[3] J. Buck, S. Ha, E.A. Lee, and D.G. Masserschmitt. Ptolemy:
a framework for sirnulating and prototyping heterogeneous
systems. /nternational Journal of Computer Simulation,
special issue on Simulation Software Development, January
1990.

[4] E.A. de Kock, G. Essink, P. van der Wolf, J.-Y. Brunel, W.M.
Kruijtzer, P. Lieverse, and K.A. Vissers. YAPI: Application
Modeling for Signal Processing Systems. In 37th ACM/IEEE
Design Automation Conference, June 2000.

[5] D. Gajski, R. Zhu, I. Domer, A. Gerstlauver, and S. Zhao.
SpecC: Specification Langunage and Methodology. Kluwer
Academic Press, 2000.

[6

—

Patrice Godefroid. Model checking for programming
languages using VeriSoft. In Proceedings of the 24th ACM
Symposium on Principles of Programming Languages, Paris,
pages 174-186, January 1997.

[7] C. Norris Ip. Simulation coverage enhancement using test
stimulus transformation. JEEE/ACM International
Conference on Computer Aided Design, pages 127-133,
November 2000.

I8

—_—

M. Nijweide. The Pamela compiler. Technical Report
1-68340-28(1996)08, Delft University of Technology,
August 1996,

[9] Open SystemC Initiative. Funcrional Specification for
SvstemC 2.0. September 2001. avaliable at www.systemc.org.

[10] Open SystemC Initiative. SystemC Version 2.0 Beta-2 User’s
Guide, 2001. avaliable at www.systemc.org.

[11] Spec-based verification.

hup=//www.versity. com/resources/whitepaper/technical paperhtml.

18

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

