Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

In de algebra is de sylvestermatrix van twee polynomen in een variabele een matrix geconstrueerd met de coëfficiënten van deze polynomen. De matrix is genoemd naar James Joseph Sylvester en vindt z'n bestaansrecht in de resultante van de beide polynomen, gedefinieerd als de determinant van de sylvestermatrix.

Constructie

bewerken

Stel men heeft twee polynomen in  ,   van graad   en   van graad  :

 
 

De sylvestermatrix van   en   is de  -matrix waarvan de eerste   rijen worden gevuld met de coëfficiënten van   en de volgende   rijen met de coëfficiënten van  , en wel zo, dat

  • de eerste rij uit de coëfficiënten bestaat van  , beginnend bij die van de hoogste macht van  , gevolgd door nullen.
  • De tweede rij is de eerste rij een plaats naar rechts opgeschoven, het eerste element is nul.
  • De volgende   rijen worden op dezelfde manier opgebouwd, totdat   in de rechter kolom staat.
  • De  -e rij bestaat uit de coëfficiënten van  , gevolgd door nullen.
  • De volgende rijen ontstaan op dezelfde manier als voor  .

De structuur van een sylvestermatrix wordt aan de hand van een voorbeeld getoond. Zij

 
 

dus   en  .

De sylvestermatrix is:

 

De algemene vorm is:

 

Merk op dat op de eerste   plaatsen van de diagonaal  staat en dat op de   volgende plaatsen op de diagonaal   staat.

Resultante

bewerken

De resultante van twee polynomen is gedefinieerd als de determinant van de sylvestermatrix van de twee polynomen. Deze resultante is alleen dan gelijk aan nul, als de twee polynomen een gemeenschappelijk nulpunt hebben.

Websites

bewerken