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VQA	Task

What	is	the	mustache	
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bananasAI	System

5



Applications	of	VQA
• An	aid	to	visually-impaired

Is	it	safe	to	cross	the	street	now?
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Applications	of	VQA
• Surveillance

What	kind	of	car	did	the	man	in	red	shirt	leave	in?
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Applications	of	VQA
• Interacting	with	personal	assistants

Is	my	laptop	in	my	bedroom	upstairs?
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Outline

Overview	of	VQA
[ICCV’15,	IJCV’16,	AI	Mag‘16]		

Problem	with	existing	setup	+	models
[EMNLP’16]

Overcoming	priors
• A	new	evaluation	protocol	[CVPR’18]
• A	novel	architecture	[CVPR’18]
• A	novel	objective	function	[NIPS’18]

Beyond	VQA
[Work	in	progress]
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VQA	Dataset
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VQA	Dataset

About 
objects
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VQA	Dataset

Counting
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VQA	Dataset

Fine-grained
recognition
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VQA	Dataset

Common 
sense 14



VQA
• Multimodal	inputs	– Image	and	Question
• Details	of	the	image
• Common	sense	+	knowledge	base
• Task-driven
• Holy-grail	of	automatic	image	understanding
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>0.25	million	images

>0.76	million	questions

~10	million	answers

VQA	Dataset	Stats
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Please visit www.visualqa.org for more details.
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Interest	in	VQA
(http://www.visualqa.org/)

13k page views/month
during VQA Challenge 2018
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Other	VQA	Datasets
• Visual	Turing	Test	[Geman	et	al.,	PNAS	2014]
• DAQUAR	[Malinowski	&	Fritz,	NIPS	2014]
• COCO-QA	[Ren	et	al.,	NIPS	2015]
• FM-IQA	[Gao	et	al.,	NIPS	2015]
• Visual7W	[Zhu	et	al.,	CVPR	2016]
• Visual	Genome	[Krishna	et	al.,	IJCV	2016]
• CLEVR	[Johnson	et	al.,	CVPR	2017]
• VQA	v2.0	[Goyal	et	al.,	CVPR	2017]
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SOTA	in	VQA	over	the	years
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Outline

Overview	of	VQA
[ICCV’15,	IJCV’16,	AI	Mag‘16]		

Problem	with	existing	setup	+	models
[EMNLP’16]

Overcoming	priors
• A	new	evaluation	protocol	[CVPR’18]
• A	novel	architecture	[CVPR’18]
• A	novel	objective	function	[NIPS’18]

Beyond	VQA
[Work	in	progress]
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VQA	models	lack	compositionality
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Compositionality
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Test	Sample Nearest	Neighbor	Training	Samples

Q:	What	color	
are	the	

safety	cones?	

GT	Ans:	green

Predicted	Ans:	orange	
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Test	Sample Nearest	Neighbor	Training	Samples

Q:	What	color	
are	the	

safety	cones?	

GT	Ans:	green

Predicted	Ans:	orange	

Q:	What	color	
are	the	
cones?	

GT	Ans:	orange

Q:	What	color	
is	the	
cone?	

GT	Ans:	orange

Q:	What	color	
are	

the	cones?

GT	Ans:	orange

25



VQA	models	are	driven	by	
language	priors	in	training	data

VQA	models	lack	compositionality
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GT	Ans:	yes

Q:	Are	A:	military
Q:	Are	they	A:	yes

Q:	Are	they	playing	A:	yes
Q: Are	they playing	a	A:	yes

Q: Are	they	playing a	game?	A:	yes
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VQA	models	are	driven	by	
language	priors	in	training	data

VQA	models	lack	compositionality

VQA	models	lack	sufficient	image	grounding
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Looking	at	the	Image
Q: What does the red sign say?             
Predicted Ans: stop

Correct Response Incorrect Responses
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Outline

Overview	of	VQA
[ICCV’15,	IJCV’16,	AI	Mag‘16]		

Problem	with	existing	setup	+	models
[EMNLP’16]

Overcoming	priors
• A	new	evaluation	protocol	[CVPR’18]
• A	novel	architecture	[CVPR’18]
• A	novel	objective	function	[NIPS’18]

Beyond	VQA
[Work	in	progress]

30



Training 
Prior

0
20
40
60
80

100

ki
tc

he
n

liv
in

g 
ro

om
be

dr
oo

m
of

fic
e

di
ni

ng
 ro

om
ot

he
r

Q-type: What 
room is

Problem	with	existing	setup	+	models
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Q: What room is this? Training 
Prior

Train

A: Kitchen
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Q: What room is this? Training 
Prior

Train Test

A: Kitchen

Q: What room is this?

A: Bathroom

Prediction
Kitchen0
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Q: What room is this? Training 
Prior
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A: Kitchen
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Problem	with	existing	setup	+	models

• IID	splits	à similar	priors	in	train	and	test
• Memorization	of	priors	does	not	hurt	as	much
• Problematic	for	benchmarking	progress
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Meet	VQA-CP!
• New	splits	of	the	VQA	v1	and	VQA	v2	datasets	
• Visual	Question	Answering	under	Changing	Priors	(VQA-CP	v1/v2)
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VQA-CP Train Split VQA-CP Test Split
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VQA-CP Train Split VQA-CP Test Split
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Performance	of	VQA	models	on	VQA-CP

(Antol et	al.	ICCV15)

(Andreas	et	al.	CVPR16)

(Yang	et	al.	CVPR16)

(Fukui	et	al.	EMNLP16)

-31%

-25%

-29%

-27%

39



Outline

Overview	of	VQA
[ICCV’15,	IJCV’16,	AI	Mag‘16]		

Problem	with	existing	setup	+	models
[EMNLP’16]

Overcoming	priors
• A	new	evaluation	protocol	[CVPR’18]
• A	novel	architecture	[CVPR’18]
• A	novel	objective	function	[NIPS’18]

Beyond	VQA
[Work	in	progress]
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Grounded	Visual	Question	Answering	(GVQA)	Model

• Inductive	biases	in	model	architecture	to	prevent	
relying	on	priors

• Designed	to	disentangle:
– What	can	be	said? Q:	What	room	is	this?
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Grounded	Visual	Question	Answering	(GVQA)	Model
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Grounded	Visual	Question	Answering	(GVQA)	Model

• Inductive	biases	in	model	architecture	to	prevent	
relying	on	priors

• Designed	to	disentangle:
– What	can	be	said?
– What	should	be	recognized?

Q:	What	room is	this?
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Grounded	Visual	Question	Answering	(GVQA)	Model

• Inductive	biases	in	model	architecture	to	prevent	
relying	on	priors

• Designed	to	disentangle:
– What	can	be	said?
– What	should	be	recognized?

Q:	What	room is	this?
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VGG

GVQA
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• Disentangles	visual	recognition	from	answer-type	prediction
• Explicitly	enforces	visual	grounding
• No	direct	pathway	from	question	to	final	answer

GVQA
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Results

(Yang	et	al.	CVPR16)

(Yang	et	al.	CVPR16)

(Ours)

(Ours)

+12%

+6%
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Q: What room is this? Training 
Prior

Train Test

A: Kitchen

Q: What room is this?

A: Bathroom

Prediction
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GVQA’s	output

Q: What color are the bananas?

non yes/no

Q-classifier

color

ACP 

bananas 

food

green
many

VCC

green

Answer
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GVQA’s	output

Q: What is the most 
prominent ingredient?

non yes/no

Q-classifier

vegetable

ACP 

Correct Ans: pasta

carrots 

plate

pasta
green

VCC

carrots

Answer
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Outline

Overview	of	VQA
[ICCV’15,	IJCV’16,	AI	Mag‘16]		

Problem	with	existing	setup	+	models
[EMNLP’16]

Overcoming	priors
• A	new	evaluation	protocol	[CVPR’18]
• A	novel	architecture	[CVPR’18]
• A	novel	objective	function	[NIPS’18]

Beyond	VQA
[Work	in	progress]

Sainandan Ramakrishnan
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Overcoming	Priors	with
Adversarial	Regularization

• A	simple	drop-in	regularizer
• Question	embeddings should	not	encode	the	information	

about	the	exact	answer
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w.r.t green
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63

(Yang	et	al.	CVPR16)



+2%
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(Yang	et	al.	CVPR16)



+1%
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(Yang	et	al.	CVPR16)



+8%
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(Yang	et	al.	CVPR16)



+2%
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(Yang	et	al.	CVPR16)



+1.5%
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(Yang	et	al.	CVPR16)

(Anderson	et	al.	CVPR18)



Outline

Overview	of	VQA
[ICCV’15,	IJCV’16,	AI	Mag‘16]		

Problem	with	existing	setup	+	models
[EMNLP’16]

Overcoming	priors
• A	new	evaluation	protocol	[CVPR’18]
• A	novel	architecture	[CVPR’18]
• A	novel	objective	function	[NIPS’18]

Beyond	VQA
[Work	in	progress]
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SHRDLU
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Task

There is a yellow cube. add object, cube, 
yellow, small, at (8,14)

Renderer

Agent
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Task
add object, cube, 

yellow, large, at (12,17)

add object, cube, 
yellow, small, at (22,12)

There is a yellow cube. add object, cube, 
yellow, small, at (8,14)Agent
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Technical	challenges	of	interest	to	us

Reward	
Learning

Rich	
Action	
Space

Diverse	
Outputs
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Domains
• MNIST	Digit	Painting
• 3D	Scene	Construction
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Domain	1:	MNIST	Digit	Painting
(Task)
Draw	9.

Paint	five.
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Domain	1:	MNIST	Digit	Painting
(Dataset)

• Instructions	paired	with	MNIST	images	(60K	images)
• Instruction	template	-- <Action>	<Class	Label>

• <Action>	=	“Draw”	|	“Put”	|	“Paint”	|	“Add”	|	“Create”
• <Class	Label>	=	numerical	(“0”)	/	word	form	(“zero”)

76



Domain	1:	MNIST	Digit	Painting
(Environment	and	Action	Space)

• Environment:	libmypaint – painting	library

Fig.	credit:	Ganin et	al.,	ICML1877



Domain	1:	MNIST	Digit	Painting
(Environment	and	Action	Space)

• Action	Space:
• end	point	of	the	brush	(on	32	x	32	grid),	
• control	point	of	the	brush	(on	32	x	32	grid),	
• pressure	applied	to	the	brush	(10	levels),	
• brush	size	(4	levels),
• binary	flag	-- draw	stroke	/	skip

• Size	of	the	action	space	-- 83,886,080	
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Domain	2:	3D	Scene	Construction
(Task)

There	is	a	green	cylinder.

There	is	a	large	sphere.
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Domain	2:	3D	Scene	Construction	
(Dataset)

• Instructions	paired	with	3D	scene	images	(16,159	images)
• Instruction	template:	“There	is	a”	<Attribute>	<Shape>

• Attribute:	any	color	(8),	any	size	(large,	small)
• Shape:	any	shape	(sphere,	cube,	cylinder)

• Total	possible	unique	instructions	=	(8+2)*(3)	=	30
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Domain	2:	3D	Scene	Construction	
(Environment	and	Action	Space)

• Environment:	3D	Editor
• Action	Space:

• location	of	the	object	(on	32	x	32	grid),	
• object	shape	(3	shapes),	
• object	size	(2	sizes),	
• object	color	(8	colors),	
• flag	-- add	object	/	modify	object	/	skip

• Size	of	the	action	space	-- 147,456	
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Overview	of	the	approach

Policy Network
(Generator)

Environment
(Renderer)Instruction

Program
Final

Image

Instruction

Example 
Goal Image

Reward

DiscriminatorIntermediate Image

Extending Ganin et	al.,	ICML18



Overview	of	the	approach

Policy Network
(Generator)

Environment
(Renderer)Instruction

Program
Final

Image

Instruction

Example 
Goal Image

Reward

DiscriminatorIntermediate Image

• Reward	learning:	discriminator	is	learning	consistency	between	
instruction	and	image

• Diversity:	Action	sampling	from	non-peaky	distribution
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Overview	of	the	approach

Policy Network
(Generator)

Environment
(Renderer)Instruction

Program
Final

Image

Instruction

Example 
Goal Image

Reward

DiscriminatorIntermediate Image
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Overview	of	the	approach

Policy Network
(Generator)

Environment
(Renderer)Instruction

Program

Intermediate Image

Policy Network
(Generator)

Environment
(Renderer)Instruction

Program

Empty Canvas

Intermediate Image
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Policy	Network

t-1 t

CNN 1x1

+

LSTM

CNN

CNN

+ + + +

LSTM

There is a red sphere.

MLP 

Previous action

Decoder

Last State

Renderer

at-1

Decoder	from	Ganin et	al.,	ICML18



Overview	of	the	approach

Policy Network
(Generator)

Environment
(Renderer)Instruction

Program
Final

Image

Instruction

Example 
Goal Image

Reward

DiscriminatorIntermediate Image
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Discriminator
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Domain	1:	MNIST	Digit	Painting

Create zero

L2 Discriminator

Put 1

Paint two

Draw 3

Add four

Draw 5

Paint six

Put 7

Create eight

Add 9
89



Domain	1:	MNIST	Digit	Painting

Create zero

L2 Discriminator

Put 1

Paint two

Draw 3

Add four

Draw 5

Paint six

Put 7

Create eight

Add 9
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Domain	2:	3D	Scene	Construction
(Discriminator)

There	is	a	small	sphere.

There	is	a	large	cylinder.

There	is	a	yellow	cube.
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Outline

Overview	of	VQA
[ICCV’15,	IJCV’16,	AI	Mag‘16]		

Problem	with	existing	setup	+	models
[EMNLP’16]

Overcoming	priors
• A	novel	split	[CVPR’18]
• A	novel	architecture	[CVPR’18]
• A	novel	objective	function	[NIPS’18]

Beyond	VQA
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Thanks	Rama!
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Thanks!

Questions?


