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What is metaphor?
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How does metaphor work?

Association between two concepts
(Gentner, 1983; Lakoff and Johnson, 1980)

POLITICALSYSTEM︸ ︷︷ ︸
target

is a MECHANISM︸ ︷︷ ︸
source

“rebuilding the campaign machinery”
“Time to mend our foreign policy ”
“20 Steps towards a working democracy ”
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Today’s talk

1 Metaphor identification method
(Rei, Bulat, Kiela & Shutova, EMNLP 2017)

2 Using NLP techniques to study
metaphor processing in the brain

(Gamez-Gjokic, Maillard, Bulat & Shutova,
forthcoming)

Predicting Human Brain Activity
Associated with the Meanings
of Nouns
Tom M. Mitchell,1* Svetlana V. Shinkareva,2 Andrew Carlson,1 Kai-Min Chang,3,4
Vicente L. Malave,5 Robert A. Mason,3 Marcel Adam Just3

The question of how the human brain represents conceptual knowledge has been debated in
many scientific fields. Brain imaging studies have shown that different spatial patterns of neural
activation are associated with thinking about different semantic categories of pictures and
words (for example, tools, buildings, and animals). We present a computational model that predicts
the functional magnetic resonance imaging (fMRI) neural activation associated with words for which
fMRI data are not yet available. This model is trained with a combination of data from a trillion-word
text corpus and observed fMRI data associated with viewing several dozen concrete nouns. Once
trained, the model predicts fMRI activation for thousands of other concrete nouns in the text corpus,
with highly significant accuracies over the 60 nouns for which we currently have fMRI data.

The question of how the human brain rep-
resents and organizes conceptual knowledge
has been studied bymany scientific commu-

nities. Neuroscientists using brain imaging studies
(1–9) have shown that distinct spatial patterns of
fMRI activity are associated with viewing pictures
of certain semantic categories, including tools, build-
ings, and animals. Linguists have characterized dif-
ferent semantic roles associated with individual
verbs, aswell as the types of nouns that can fill those
semantic roles [e.g., VerbNet (10) and WordNet
(11, 12)]. Computational linguists have analyzed
the statistics of very large text corpora and have
demonstrated that a word’s meaning is captured to
some extent by the distribution of words and phrases
with which it commonly co-occurs (13–17). Psy-
chologists have studied word meaning through
feature-norming studies (18) in which participants
are asked to list the features they associate with var-
ious words, revealing a consistent set of core fea-
tures across individuals and suggesting a possible
grouping of features by sensory-motor modalities.
Researchers studying semantic effects of brain dam-
age have found deficits that are specific to given
semantic categories (such as animals) (19–21).

This variety of experimental results has led to
competing theories of how the brain encodesmean-
ings of words and knowledge of objects, including
theories that meanings are encoded in sensory-
motor cortical areas (22, 23) and theories that they
are instead organized by semantic categories such
as living and nonliving objects (18, 24). Although
these competing theories sometimes lead to differ-

ent predictions (e.g., of which naming disabilities
will co-occur in brain-damaged patients), they are
primarily descriptive theories that make no attempt
to predict the specific brain activation that will be
produced when a human subject reads a particular
word or views a drawing of a particular object.

We present a computational model that makes
directly testable predictions of the fMRI activity as-
sociated with thinking about arbitrary concrete
nouns, including many nouns for which no fMRI
data are currently available. The theory underlying
this computational model is that the neural basis of
the semantic representation of concrete nouns is
related to the distributional properties of thosewords
in a broadly based corpus of the language. We de-
scribe experiments training competing computation-
al models based on different assumptions regarding
the underlying features that are used in the brain
for encoding of meaning of concrete objects. We
present experimental evidence showing that the best

of these models predicts fMRI neural activity well
enough that it can successfully match words it has
not yet encountered to their previously unseen fMRI
images, with accuracies far above those expected
by chance. These results establish a direct, predic-
tive relationship between the statistics of word
co-occurrence in text and the neural activation
associated with thinking about word meanings.

Approach. We use a trainable computational
model that predicts the neural activation for any
given stimulus word w using a two-step process,
illustrated in Fig. 1. Given an arbitrary stimulus
word w, the first step encodes the meaning of w as
a vector of intermediate semantic features computed
from the occurrences of stimulus word w within a
very large text corpus (25) that captures the typ-
ical use of words in English text. For example,
one intermediate semantic feature might be the
frequency with which w co-occurs with the verb
“hear.” The second step predicts the neural fMRI
activation at every voxel location in the brain, as a
weighted sum of neural activations contributed by
each of the intermediate semantic features. More
precisely, the predicted activation yv at voxel v in
the brain for word w is given by

yv ¼ ∑
n

i¼1
cvi fiðwÞ ð1Þ

where fi(w) is the value of the ith intermediate
semantic feature for word w, n is the number of
semantic features in the model, and cvi is a learned
scalar parameter that specifies the degree to which
the ith intermediate semantic feature activates voxel
v. This equation can be interpreted as predicting the
full fMRI image across all voxels for stimulus word
w as a weighted sum of images, one per semantic
feature fi. These semantic feature images, defined
by the learned cvi, constitute a basis set of compo-
nent images that model the brain activation asso-
ciated with different semantic components of the
input stimulus words.

1Machine Learning Department, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA 15213, USA.
2Department of Psychology, University of South Carolina,
Columbia, SC 29208, USA. 3Center for Cognitive Brain
Imaging, Carnegie Mellon University, Pittsburgh, PA 15213,
USA. 4Language Technologies Institute, School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA 15213,
USA. 5Cognitive Science Department, University of California,
San Diego, La Jolla, CA 92093, USA.

*To whom correspondence should be addressed. E-mail:
Tom.Mitchell@cs.cmu.edu

Predictive model
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activity for 
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Intermediate
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Fig. 1. Form of the model for predicting fMRI activation for arbitrary noun stimuli. fMRI activation
is predicted in a two-step process. The first step encodes the meaning of the input stimulus word in
terms of intermediate semantic features whose values are extracted from a large corpus of text
exhibiting typical word use. The second step predicts the fMRI image as a linear combination of the
fMRI signatures associated with each of these intermediate semantic features.
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Metaphor identification: Existing approaches

Linguistic resources:

Semantic roles
(Gedigian et al., 2006)

Concreteness
(Turney et al., 2011)

Imageability
(Strzalkowski et al., 2013)

WordNet supersenses
(Tsvetkov et al., 2014)

Data-driven methods &
cognitive features:

Clustering with sparse
distributional features
(Shutova et al., 2010)

Visual vectors
(Shutova et al., 2016)

Attribute-based vectors
(Bulat et al., 2017)
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A neural architecture for metaphor processing

Grasping the Finer Point: A Supervised Similarity
Network for Metaphor Detection.
Rei, Bulat, Kiela & Shutova, EMNLP 2017.

Supervised classification setting

Identifying metaphorical uses of verbs and adjectives

Mohammad et al. (2016)
Verb noun Class
boost economy met.
boost voltage lit.

Tsvetkov et al. (2014)
Adj. noun Class
cloudy future met.
cloudy sky lit.
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Approach

INPUT: skip-gram word embeddings

100-dimensional
trained on Wikipedia

OUTPUT: a metaphoricity score between 0 and 1

Key intuitions:

1 model domain interaction via gating

2 specialise word representations

3 quantify metaphoricity via a
weighted similarity function

                    mend
             policy
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Word representation gating

g = σ(Wgx1)

x̃2 = x2 � g

Wg — a weight matrix
σ — sigmoid activation function
� — element-wise multiplication.

Word Representation Gating
Example: “healthy balance”
The source domain properties of the adjective "healthy” are projected onto 
the target domain noun “balance”, resulting in the interaction of the two 
domains in the interpretation of the metaphor.

Gating the noun vector, based on the adjective vector.

Some properties of the source domain are projected onto the target
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Specialisation

z1 = tanh(Wz1x1)

z2 = tanh(Wz2 x̃2)

Vector Space Mapping
The original method uses basic pre-trained skip-gram vectors.
Let’s add a transformation that maps them into a space that is specific for 
metaphor detection.
Importantly, we will use separate mappings for adjectives and nouns.

The weight matrices are optimised during training, while the pre-trained 
embeddings are kept fixed.
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Weighted similarity

If the input vectors x1 and x2 are normalised to unit length, the cosine
similarity between them is equal to their dot product:

cos(x1, x2) ∝
∑

i

x1,ix2,i

We can formulate this as a small neural network:

Cosine Similarity
If the input vectors x1 and x2 are normalised to unit length, the cosine 
similarity between them is equal to their dot product:

Matrix of ones

Single neuron output

We can formulate that as a small neural network:
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Weighted similarity

We can instead create a version where vector m is passed through
another layer, with weights that are optimised during training.

mi = z1,iz2,i

d = γ(Wdm)

Weighted Cosine
We can instead create a version where vector m is passed through 
another layer, with weights that are optimised during training.

Matrix of trainable 
weights

Longer vector
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Supervised similarity network

The final network architecture, using:

Word representation gating

Specialisation

Vector combination based on weighted cosine

Supervised Similarity Network
The final network architecture, using:
1. Word gating
2. Representation mapping
3. Vector combination based on weighted cosine
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Results: Adjectives

Acc P R F1

Tsvetkov et al. (2014) - - - 85
Shutova et al. (2016)

linguistic - 73 80 76
multimodal - 67 96 79

Bulat et al. (2017) - 85 71 77

FFN skip-gram 77.6 86.6 65.4 74.4
SSN skip-gram 82.2 91.1 71.6 80.1
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Results: Verbs

Acc P R F1

Shutova et al. (2016)
linguistic - 67 76 71
multimodal - 65 87 75

FFN skip-gram 71.2 70.4 71.8 70.5
SSN skip-gram 74.8 73.6 76.1 74.2
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Qualitative analysis
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Applications in social science (and beyond)

Metaphor as a predictor of influence / popularity of politicians

Vinod, Dan and I

Facebook dataset

The number of metaphors used can serve as a predictor of the
number of shares, likes etc.

Looking at the identity of the metaphors next

16 / 32
Metaphor identification in text and brain imaging data

N



Decoding literal and metaphorical sentences in the brain

Can we use semantic models to better
understand metaphor processing in the brain?
Gamez-Djokic, Maillard, Bulat and Shutova.

Predicting Human Brain Activity
Associated with the Meanings
of Nouns
Tom M. Mitchell,1* Svetlana V. Shinkareva,2 Andrew Carlson,1 Kai-Min Chang,3,4
Vicente L. Malave,5 Robert A. Mason,3 Marcel Adam Just3

The question of how the human brain represents conceptual knowledge has been debated in
many scientific fields. Brain imaging studies have shown that different spatial patterns of neural
activation are associated with thinking about different semantic categories of pictures and
words (for example, tools, buildings, and animals). We present a computational model that predicts
the functional magnetic resonance imaging (fMRI) neural activation associated with words for which
fMRI data are not yet available. This model is trained with a combination of data from a trillion-word
text corpus and observed fMRI data associated with viewing several dozen concrete nouns. Once
trained, the model predicts fMRI activation for thousands of other concrete nouns in the text corpus,
with highly significant accuracies over the 60 nouns for which we currently have fMRI data.

The question of how the human brain rep-
resents and organizes conceptual knowledge
has been studied bymany scientific commu-

nities. Neuroscientists using brain imaging studies
(1–9) have shown that distinct spatial patterns of
fMRI activity are associated with viewing pictures
of certain semantic categories, including tools, build-
ings, and animals. Linguists have characterized dif-
ferent semantic roles associated with individual
verbs, aswell as the types of nouns that can fill those
semantic roles [e.g., VerbNet (10) and WordNet
(11, 12)]. Computational linguists have analyzed
the statistics of very large text corpora and have
demonstrated that a word’s meaning is captured to
some extent by the distribution of words and phrases
with which it commonly co-occurs (13–17). Psy-
chologists have studied word meaning through
feature-norming studies (18) in which participants
are asked to list the features they associate with var-
ious words, revealing a consistent set of core fea-
tures across individuals and suggesting a possible
grouping of features by sensory-motor modalities.
Researchers studying semantic effects of brain dam-
age have found deficits that are specific to given
semantic categories (such as animals) (19–21).

This variety of experimental results has led to
competing theories of how the brain encodesmean-
ings of words and knowledge of objects, including
theories that meanings are encoded in sensory-
motor cortical areas (22, 23) and theories that they
are instead organized by semantic categories such
as living and nonliving objects (18, 24). Although
these competing theories sometimes lead to differ-

ent predictions (e.g., of which naming disabilities
will co-occur in brain-damaged patients), they are
primarily descriptive theories that make no attempt
to predict the specific brain activation that will be
produced when a human subject reads a particular
word or views a drawing of a particular object.

We present a computational model that makes
directly testable predictions of the fMRI activity as-
sociated with thinking about arbitrary concrete
nouns, including many nouns for which no fMRI
data are currently available. The theory underlying
this computational model is that the neural basis of
the semantic representation of concrete nouns is
related to the distributional properties of thosewords
in a broadly based corpus of the language. We de-
scribe experiments training competing computation-
al models based on different assumptions regarding
the underlying features that are used in the brain
for encoding of meaning of concrete objects. We
present experimental evidence showing that the best

of these models predicts fMRI neural activity well
enough that it can successfully match words it has
not yet encountered to their previously unseen fMRI
images, with accuracies far above those expected
by chance. These results establish a direct, predic-
tive relationship between the statistics of word
co-occurrence in text and the neural activation
associated with thinking about word meanings.

Approach. We use a trainable computational
model that predicts the neural activation for any
given stimulus word w using a two-step process,
illustrated in Fig. 1. Given an arbitrary stimulus
word w, the first step encodes the meaning of w as
a vector of intermediate semantic features computed
from the occurrences of stimulus word w within a
very large text corpus (25) that captures the typ-
ical use of words in English text. For example,
one intermediate semantic feature might be the
frequency with which w co-occurs with the verb
“hear.” The second step predicts the neural fMRI
activation at every voxel location in the brain, as a
weighted sum of neural activations contributed by
each of the intermediate semantic features. More
precisely, the predicted activation yv at voxel v in
the brain for word w is given by

yv ¼ ∑
n

i¼1
cvi fiðwÞ ð1Þ

where fi(w) is the value of the ith intermediate
semantic feature for word w, n is the number of
semantic features in the model, and cvi is a learned
scalar parameter that specifies the degree to which
the ith intermediate semantic feature activates voxel
v. This equation can be interpreted as predicting the
full fMRI image across all voxels for stimulus word
w as a weighted sum of images, one per semantic
feature fi. These semantic feature images, defined
by the learned cvi, constitute a basis set of compo-
nent images that model the brain activation asso-
ciated with different semantic components of the
input stimulus words.

1Machine Learning Department, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA 15213, USA.
2Department of Psychology, University of South Carolina,
Columbia, SC 29208, USA. 3Center for Cognitive Brain
Imaging, Carnegie Mellon University, Pittsburgh, PA 15213,
USA. 4Language Technologies Institute, School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA 15213,
USA. 5Cognitive Science Department, University of California,
San Diego, La Jolla, CA 92093, USA.

*To whom correspondence should be addressed. E-mail:
Tom.Mitchell@cs.cmu.edu
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Fig. 1. Form of the model for predicting fMRI activation for arbitrary noun stimuli. fMRI activation
is predicted in a two-step process. The first step encodes the meaning of the input stimulus word in
terms of intermediate semantic features whose values are extracted from a large corpus of text
exhibiting typical word use. The second step predicts the fMRI image as a linear combination of the
fMRI signatures associated with each of these intermediate semantic features.
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Experiments with brain imaging data

Data: fMRI neural activation patterns associated with the
meaning of literal and metaphorical sentences
(Gamez-Djokic et al, forthcoming)

Verbs in their metaphorical and literal contexts

Task: decode patterns of brain activity

Using data-driven semantic models
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functional Magnetic Resonance Imaging (fMRI)

Voxel: a 3x3x6mm3

cube of brain tissue

Voxel value: intensity
of brain activity in that
voxel

fMRI image: vector of
voxel values
(represents brain
activation pattern)
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Our brain imaging dataset

15 participants

31 unique hand-action verbs

200 sentences

5 conditions

Condition Sentence
Affirmative Literal She’s grasping the cookie
Affirmative Metaphor She’s grasping the lecture
Negated Literal He’s not grasping the bill
Negated Metaphor He’s not grasping the problem
Affirmative Paraphrase She’s understanding the lecture
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Stimuli presentation

Disambiguation – object:

The physics lecture (2 seconds)

Interval:

(0.5 seconds)

Stimulus:

She is grasping the lecture (6 seconds)

Rest:

(8 seconds)
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Semantic models

1 Linguistic models

Word representations
Compositional models

2 Visually grounded models

word and phrase representations
learned from images

3 Multimodal models

combining linguistic and visual information

cat
furry

pet
run

w(t-2) w(t+1)
w(t)

w(t-1) w(t+2)

word embedding

cat
furry

pet
run

w(t-2) w(t+1)
w(t)

w(t-1) w(t+2)

word embedding
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Linguistic models

Individual words: VERB and OBJECT

GloVe word embeddings (Pennington et al. 2014)

VERBOBJECT: concatenation of verb and object embeddings

ADDITION: addition of verb and object embeddings

LSTM: learn representations for verb-object phrases

trained on the natural language inference task
taking Glove word embeddings as input
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Visual representations

1 retrieve images for a word or phrase using Google Search

2 transfer learning to extract image embeddings:

convolutional neural network trained on the ImageNet
classification task (Kiela and Bottou, 2014)

Training linguistic features (after Mikolov et al., 2013)

C1-C2-C3-C4-C5

Convolutional layers Fully-connected layers
6144-dim 

feature 

vector

 ImageNet 

synsets
African elephant

Wall clock

Imagenet labels

…

FC6 FC7 FC8

100-dim word projections

w(t) w(t+1) w(t+2)w(t-2)w(t-2)

C1-C2-C3-C4-C5 FC7FC6

100-dim word projections

Word

Select images 
from ImageNet or ESP

Aggregate 

6144-dim feature 

vectors

M
u
lt

im
o
d
a
l w

o
r
d
 v

e
c
t
o
r

forward pass
use penultimate layer (FC7) as image embedding
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Visual and multimodal models

Visual models:

Individual words: VERB and OBJECT

VERBOBJECT: concatenation of verb and object embeddings

ADDITION: addition of verb and object embeddings

PHRASE: visual representation for the whole phrase

Multimodal models:

Concatenation of the respective linguistic and visual models

with the exception of LSTM
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Decoding brain activity

Similarity-based decoding (Anderson et al., 2016)

Figure 1: Representing brain and semantic model vectors
in similarity space.

to build the image-based models largely returned a
selection of images systematically associated with
our most abstract nouns. For instance, ‘corruption’
returns suited figures covertly exchanging money;
‘law’, ‘justice’, ‘music’, ‘tonality’ return pictures
of gavels, weighing scales, musical notes and cir-
cles of fifths, respectively. For ‘jurisdiction’, the
image search returns maps and law-related objects.
However, there were also misleading cases such as
‘pitch’ where the image search, whilst returning po-
tentially useful pictures of sinusoidal graphs, was
heavily contaminated by images of football pitches.
This problem is not exclusive to images, and the cur-
rent text-based models are also not immune to the
multiple senses of polysemous words.

3.2 Text-based semantic models

For linguistic input, we use the continuous vec-
tor representations from the skip-gram model of
Mikolov et al. (2013). Specifically, we obtained
300-dimensional word embeddings by training a
skip-gram model using negative sampling on recent
Italian and English Wikipedia dumps (using Gensim
with preprocessing from word2vec’s demo script).
For English, representations were built for the En-
glish translations of the 70 stimuli provided by An-
derson et al. (2014). The English model was trained
for 1 iteration, whereas the Italian was trained for 5,
since the Italian Wikipedia dump was smaller (5.2
vs 1.3 billion words respectively).

Following previous work exploiting cross-lingual
textual resources (Richman and Schone, 2008; Shi
et al., 2010; Darwish, 2013), we also applied Ital-
ian and English text-based models in combination.
Model combination was achieved at the analysis
stage, by fusing decoding outputs of Italian and En-
glish models as described in Section 4.1.

4 Representational similarity-based
decoding of brain activity

We decoded word-level fMRI representations using
the semantic models following the procedure intro-
duced by Anderson et al. (2016). The process of
matching models to words is abstracted to represen-
tational similarity space: For both models and brain
data, words are semantically re-represented by their
similarities to other words by correlating all word
pairs within the native model or brain space, using
Pearson’s correlation (see Figure 1). The result is
two square matrices of word pair correlations: one
for the fMRI data, another for the model. In the
similarity space, each word is a vector of correla-
tions with all other words, thereby allowing model
and brain words (similarity vectors) to be directly
matched to each other.

In decoding, models were matched to fMRI data
as follows (see Figure 2). Two test words were cho-
sen. The 500 voxels estimated to have the most
stable signal were selected using the strategy de-
scribed in Section 2.2. Voxel selection was based
on the fMRI data of the other 68/70 words. Se-
lection on 68/70 rather than all 70 words was to
allay any concern that voxel selection could have

21
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Similarity-based decoding

systematically biased the fMRI correlation structure
(calculated next) to look like that of the semantic
model, and consequently biased decoding perfor-
mance. However, as similarity-based decoding does
not optimise a mapping between fMRI data and se-
mantic model, it is not prone to modelling and de-
coding fMRI noise as in classic cases of double dip-
ping (Kriegeskorte et al., 2009). Indeed, as we report
later in this section, there were no significant differ-
ences in decoding accuracy arising from tests using
voxel selection on 68/70 versus 70 words.

A single representation of each word was built by
taking the voxel-wise mean of all five presentations
of the word for the 500 selected voxels. An fMRI
similarity matrix for all 70 words was then calcu-
lated. Similarity vectors for the two test words were
drawn from both the model and fMRI similarity ma-
trices. Entries corresponding to the two test words
in both model and fMRI similarity vectors were re-
moved because these values could reveal the correct
answer to decoding. The two model similarity vec-
tors were then compared to the two fMRI similar-
ity vectors by correlation, resulting in four corre-
lation values. These correlation values were trans-
formed using Fisher’s r to z (arctanh). If the sum
of z-transformed correlations between the correctly
matched pair exceeded the sum of correlations for
the incongruent pair, decoding was scored a success,
otherwise a failure. This process was then repeated
for all word pairs, with the mean accuracy of all test
iterations giving a final measure of success.

Fisher’s r to z transform (arctanh) is typically used
to test for differences between correlation coeffi-
cients. It transforms the correlation coefficient r to
a value z, where z has amplified values at the tails
of the correlation coefficient (r otherwise ranges be-
tween -1 and 1). This is to make the sampling distri-
bution of z normally distributed, with approximately
constant variance values across the population corre-
lation coefficient. In the similarity-decoding method
used here, z is evaluated in decoding because it is a
more principled metric to compare and combine (as
later undertaken in Section 4.1)

However, under most circumstances r to z is not
critical to the procedure. z noticeably differs from r
only when correlations exceed .5, and r to z changes
decoding behaviour in select circumstances. Specif-
ically r to z can influence how word labels are as-

Figure 2: Similarity-decoding algorithm (adapted from
Anderson et al. 2016).
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Similarity-based decoding

systematically biased the fMRI correlation structure
(calculated next) to look like that of the semantic
model, and consequently biased decoding perfor-
mance. However, as similarity-based decoding does
not optimise a mapping between fMRI data and se-
mantic model, it is not prone to modelling and de-
coding fMRI noise as in classic cases of double dip-
ping (Kriegeskorte et al., 2009). Indeed, as we report
later in this section, there were no significant differ-
ences in decoding accuracy arising from tests using
voxel selection on 68/70 versus 70 words.

A single representation of each word was built by
taking the voxel-wise mean of all five presentations
of the word for the 500 selected voxels. An fMRI
similarity matrix for all 70 words was then calcu-
lated. Similarity vectors for the two test words were
drawn from both the model and fMRI similarity ma-
trices. Entries corresponding to the two test words
in both model and fMRI similarity vectors were re-
moved because these values could reveal the correct
answer to decoding. The two model similarity vec-
tors were then compared to the two fMRI similar-
ity vectors by correlation, resulting in four corre-
lation values. These correlation values were trans-
formed using Fisher’s r to z (arctanh). If the sum
of z-transformed correlations between the correctly
matched pair exceeded the sum of correlations for
the incongruent pair, decoding was scored a success,
otherwise a failure. This process was then repeated
for all word pairs, with the mean accuracy of all test
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Results: Linguistic models

The models were evaluated in terms of decoding accuracy

Significance was determined via permutation testing

Literal Metaphor
OBJECT 0.51 0.67
VERB 0.71 0.54
VERBOBJECT 0.48 0.55
ADDITION 0.68 0.71
LSTM 0.6 0.62
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Results: Visual and multimodal models

Literal Metaphor
VISUAL OBJECT 0.58 0.44
VISUAL VERB 0.47 0.66
VISUAL VERBOBJECT 0.49 0.49
VISUAL ADDITION 0.47 0.68
VISUAL PHRASE 0.52 0.52

Literal Metaphor
MULTIMODAL OBJECT 0.62 0.58
MULTIMODAL VERB 0.52 0.67
MULTIMODAL VERBOBJECT 0.48 0.54
MULTIMODAL ADDITION 0.55 0.72
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What can we learn from this?

1 The verb embedding is successful in decoding brain activity in
the literal case

2 The object embedding and compositional models are more
successful in the metaphor case

This may suggest that humans pay more attention to
the object when interpreting metaphor (speculation)

3 Visual representations yield significant decoding accuracies in
the metaphor case, but not literal

This suggests that the visual information plays a role in
metaphor processing (speculation)
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