Structure and Interpretation of Neural Codes

Jacob Andreas

Translating Neuralese

Jacob Andreas, Anca Drăgan and Dan Klein

Learning to Communicate

Learning to Communicate

Neuralese

Translating neuralese

Translating neuralese

 Interoperate with autonomous systems

- Diagnose errors
- Learn from solutions

Natural language & neuralese

Statistical machine translation

Semantic machine translation

Implementation details

Natural language & neuralese

Statistical machine translation

Semantic machine translation

Implementation details

Natural language & neuralese

Statistical machine translation

Semantic machine translation

Implementation details

Natural language & neuralese

Statistical machine translation

Semantic machine translation

Implementation details

Natural language & neuralese

Statistical machine translation

Semantic machine translation

Implementation details

Natural language & neuralese

Statistical machine translation

Semantic machine translation

Implementation details

A statistical MT problem

[e.g. Koehn 10]

A statistical MT problem

How do we induce a translation model?

A statistical MT problem

$$\max_{a} p(\mathbf{0} | \mathbf{a}) p(\mathbf{a})$$

$$\approx \max_{a} \sum_{b} p(\mathbf{0} | \mathbf{a}) p(\mathbf{a} | \mathbf{a}) p(\mathbf{a} | \mathbf{a}) p(\mathbf{a} | \mathbf{a})$$

$$\zeta(s) = \frac{1}{\Gamma(s)} \int_0^\infty \frac{1}{e^x - 1} x^s \frac{\mathrm{d}x}{x}$$

$$\zeta(s) = \frac{1}{\Gamma(s)} \int_0^\infty \frac{1}{e^x - 1} x^s \frac{\mathrm{d}x}{x}$$

$$\sum p(0)$$
, | Inot sure) $p(not sure)$

Stat MT criterion doesn't capture meaning

Natural language & neuralese

X Statistical machine translation

Semantic machine translation

Implementation details

The meaning of an utterance is given by its truth conditions

The meaning of an utterance is given by its truth conditions

The meaning of an utterance is given by its truth conditions

(loc (goal blue) north)

The meaning of an utterance is given by its truth conditions

the distribution over states in which it is uttered

I'm going north

[Beltagy et al. 14]

0.001

The meaning of an utterance is given by its truth conditions

the distribution over states in which it is uttered

the **belief** it induces in listeners

0.4

0.2

0.001

Representing meaning

The meaning of an utterance is given by

the distribution over states in which it is uttered

or equivalently, the **belief** it induces in listeners

Representing meaning

The meaning of an utterance is given by

the distribution over states in which it is uttered

or equivalently, the **belief** it induces in listeners

This distribution is well-defined even if the "utterance" is a vector rather than a sequence of tokens.

Interlingua!

$$KL(\beta(0)|\beta(a))$$

$$KL(\beta(\emptyset))|\beta(a))$$

$$KL(\beta(\Theta))II\beta(\Theta))$$

$$KL(\beta(\Theta)||\beta(\Phi))$$

Computing representations

$$\operatorname{argmin}_{a} \operatorname{KL}(\beta(\mathfrak{G}) | \beta(\mathfrak{G}))$$

Computing representations: sparsity

$$\operatorname{argmin}_{a}$$
 KL($\beta(\mathfrak{G})$) | $\beta(\mathfrak{G})$)

agent policy

actions & messages

agent policy

agent model

 $\operatorname{argmin}_{a}$ KL($\beta(\mathfrak{G})$) | $\beta(\mathfrak{G})$)

human policy

human model

$$\operatorname{argmin}_{a} \operatorname{KL}(\beta(\mathfrak{G}) | \beta(\mathfrak{G}))$$

0.10	0.08
0.05	0.01
0.13	0.22

Computing KL

Computing KL

$$KL(p | I | q) = \mathbf{E}_p \frac{p(\mathbf{x})}{q(\mathbf{x})}$$

Computing KL: sampling

$$KL(p | | q) = \sum_{i} p(\mathbf{x}_{i}) \log \frac{p(\mathbf{x}_{i})}{q(\mathbf{x}_{i})}$$

Finding translations

$$\operatorname{argmin}_{a}$$
 KL($\beta(a)$) | $\beta(a)$)

Finding translations: brute force

$$\operatorname{argmin}_{a} \operatorname{KL}(\beta(\mathfrak{G}) | \beta(\mathfrak{G}))$$

```
going north \longrightarrow 0.5

crossing the intersection \longrightarrow 2.3

l'm done \longrightarrow 0.2

after you \longrightarrow 9.7
```


Finding translations: brute force

$$\operatorname{argmin}_{a}$$
 KL($\beta(a)$) | $\beta(a)$)

```
going north \longrightarrow 0.5

crossing the intersection \longrightarrow 2.3

I'm done \longrightarrow 0.2

after you \longrightarrow 9.7
```


Finding translations

$$KL(\beta(0)|\beta(a))$$

Outline

Natural language & neuralese

Statistical machine translation

Semantic machine translation

Implementation details

Evaluation

Referring expression games

Evaluation: translator-in-the-loop

Evaluation: translator-in-the-loop

Experiment: image references

Experiment: image references

large bird, black wings, black crown

small brown, light brown, dark brown

Experiment: driving game

How to translate

at goal done left to top

you first following going down

going in intersection proceed going

Conclusions so far

- Classical notions of "meaning" apply even to un-language-like things (e.g. RNN states)
- These meanings can be compactly represented without logical forms if we have access to world states
- Communicating policies "say" interpretable things!

Conclusions so far

- Classical notions of "meaning" apply even to non-language-like things (e.g. RNN states)
- These meanings can be compactly represented without logical forms if we have access to world states
- Communicating policies "say" interpretable things!

Conclusions so far

- Classical notions of "meaning" apply even to non-language-like things (e.g. RNN states)
- These meanings can be compactly represented without logical forms if we have access to world states
- Communicating policies "say" interpretable things!

Limitations

$$KL(p | | q) = \sum_{i} p(\mathbf{x}_{i}) \log \frac{p(\mathbf{x}_{i})}{q(\mathbf{x}_{i})}$$

but what about compositionality?

Analogs of linguistic structure in deep representations

Jacob Andreas and Dan Klein

"Flat" semantics

at goal done

you first following

going in intersection proceed going

[FitzGerald et al. 2013]

everything but squares

Translation criterion

$$q(0, a) = KL(\beta(0) | \beta(a))$$

0.10	0.08	
0.05	0.01	
0.13	0.22	

Translation criterion

$$q(\emptyset, \emptyset) = \mathbf{E}[\beta(\emptyset) = \beta(\emptyset)]$$

Experiments

"High-level" communicative behavior

"Low-level" message structure

Experiments

"High-level" communicative behavior

"Low-level" message structure

-0.1 1.3

0.5 - 0.4

0.2 1.6

everything but squares

-0.1 1.3

0.5 - 0.4

0.2 1.0

everything but squares

-0.1 1.3 0.5 -0.4

everything but squares

Theories of model behavior: random

Theories of model behavior: literal

-0.1 1.3 0.5 -0.4 0.2 1.0

Evaluation: high-level scene agreement

Evaluation: high-level object agreement

Experiments

"High-level" communicative behavior

"Low-level" message structure

Collecting translation data

all the red shapes

blue objects

everything but red

green squares

not green squares

Collecting translation data

 $\lambda x.red(x)$

 $\lambda x.blu(x)$

 $\lambda x.\neg red(x)$

 $\lambda x.grn(x) \wedge sqr(x)$

 $\lambda x.\neg(grn(x)\Lambda sqr(x))$

Collecting translation data

Extracting related pairs

```
\lambda x.red(x)
```

0.1 -0.3 0.5 1.1

 $\lambda x.grn(x) \wedge sqr(x)$

0.2 -0.2 0.5 -0.1

 $\lambda x.\neg red(x)$

1.4 -0.3 -0.5 0.8

 $\lambda x.\neg(grn(x)\wedge sqr(x))$

0.3 -1.3 -1.5 0.1

Extracting related pairs

Learning compositional operators

Evaluating learned operators

```
\lambda x.red(x)
```

$$\lambda x.grn(x) \wedge sqr(x)$$

$$\lambda x.f(x)$$

$$\lambda x.\neg red(x)$$

$$\lambda x.\neg(grn(x)\Lambda sqr(x))$$

Evaluating learned operators

 $\lambda x.red(x)$

0.1 -0.3 0.5 1.1

 $\lambda x.\neg red(x)$

1.4 -0.3 -0.5 0.8

 $\lambda x.grn(x) \wedge sqr(x)$

0.2 -0.2 0.5 -0.1

 $\lambda x.\neg(grn(x) \land sqr(x))$

0.3 -1.3 -1.5 0.1

 $\lambda x.f(x)$

0.2 -0.2 0.5 -0.1

-0.2 0.4 -0.3 0.0

Evaluating learned operators

 $\lambda x.red(x)$

0.1 -0.3 0.5 1.1

 $\lambda x.\neg red(x)$

1.4 -0.3 -0.5 0.8

 $\lambda x.grn(x) \wedge sqr(x)$

0.2 -0.2 0.5 -0.1

 $\lambda x.\neg(grn(x)\wedge sqr(x))$

0.3 -1.3 -1.5 0.1

 $\lambda x.f(x)$

0.2 -0.2 0.5 -0.1

555

-0.2 0.4 -0.3 0.0

Evaluation: scene agreement for negation

Visualizing negation

Input

Predicted

True

all the toys that are not red

all items that are not blue or green

all the toys that of the toys the toy the toy

every thing that is red

Evaluation: scene agreement for disjunction

Visualizing disjunction

Input

Predicted

True

- We can translate between neuralese and natural lang.
 by grounding in distributions over world states
- Under the right conditions, neuralese exhibits interpretable pragmatics & compositional structure
- Not just communication games—language might be a good general-purpose tool for interpreting deep reprs.

- We can translate between neuralese and natural lang.
 by grounding in distributions over world states
- Under the right conditions, neuralese exhibits interpretable pragmatics & compositional structure
- Not just communication games—language might be a good general-purpose tool for interpreting deep reprs.

- We can translate between neuralese and natural lang.
 by grounding in distributions over world states
- Under the right conditions, neuralese exhibits interpretable pragmatics & compositional structure
- Not just communication games—language might be a good general-purpose tool for interpreting deep reprs.

http://github.com/jacobandreas/{neuralese,rnn-syn}