What It Takes to Control Societal Bias in Natural Language Processing

Kai-Wei Chang UCLA

References: http://kwchang.net

A father and son get in a car crash and are rushed to the hospital.

The father dies.

The boy is taken to the operating room and the surgeon says,

"I can't operate on this boy, because he's my son."

Can you explain why?

https://www.youtube.com/watch?v=J69HkKz9g4A

Implicit association test (IAT)

https://implicit.harvard.edu

"Concepts in semantic memory are assumed to be linked together ... with associated concepts having stronger links ... than unrelated concepts" (Collins and Loftus, 1975).

- https://www.nature.com/articles/palcomms201786

"Concepts in semantic memory are assumed to be linked together ... with associated concepts having stronger links ... than unrelated concepts" (Collins and Loftus, 1975).

So does computer

Word Embeddings can be Dreadfully Sexist [nips16] w/ Tolga Bolukbasi, James Zou, Venkatesh Saligrama, Adam Kalai

 $v_{man} - v_{woman} + v_{uncle} \sim v_{aunt}$

We use Google w2v embedding trained from the news

Google	word2vec resume 💌 🔍
Scholar	About 93 results (0.02 sec)
Articles	Machine Learned Resume-Job Matching Solution
Case law My library	Amazon Amazon ditched AI recruiting tool that
Any time Since 2016 Since 2015 Since 2012 Custom range.	Tavored men for technical jobs Specialists had been building computer programs since 2014 to review résumés in an effort to automate the search process
Sort by relevar Sort by date	recruiting
✓ include patent ✓ include citation	 présente une approche associant réseaux lexico-sémantiques et représentations distribuées de mots appliquée à l'évaluation de la traduction automatique Cite Save
✓ Create alert	Macau: Large-scale skill sense disambiguation in the online recruitment domain <u>Q Luo</u> , <u>M Zhao</u> , <u>F Javed</u> , F Jacob - Big Data (Big Data), 2015, 2015 - ieeexplore.ieee.org Contexts are extracted from either skill section(s) of resumes or requirement section(s) of job postings. We used a popular tool word2vec [12] with parameter

Related works

Aylin, Joanna, and Arvind (2017) measure the biases in embedding using Implicit Association Test (IAT) and demonstrate it contain human-like biases

Garg, Schiebinger, Jurafsky, Zou (2017) Word embeddings quantify 100 years of gender and ethnic stereotypes:

1910	1950	1990
charming	delicate	maternal
placid	sweet	morbid
delicate	charming	artificial
passionate	transparent	physical
sweet	placid	caring
dreamy	childish	emotional
indulgent	soft	protective
playful	colorless	attractive
mellow	tasteless	soft
sentimental	agreeable	tidy

(a) Top adjectives associated with women in 1910, 1950, and 1990 by relative norm difference in the COHA embedding.

Gender Bias in Coref [NAACL 2018]

M.	1	1 President is more vulnerable than most.
2 Her unorthodox and controversial style of politics creates more political incentives for Republicans to take a stand Coref-	2	2 Her unorthodox and controversial style of politics creates more political incentives for Republicans to take a stand Coref-

Concurrent work (Rudinger et al., 2018) @NAACL18 also studied gender bias in Coref.

error rate: 6/30 = 80%

error rate: 6/30 = 80%

Human Bias in Structured Prediction Models

[EMNLP 17*] w/ Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Ordonez

What's the agent for this image?

Cooking		
Role	Object	
agent	?	
food	vegetable	
container	bowl	
tool	knife	
place kitcher		

An example from a vSRL (visual Semantic Role Labeling) system

*Best Long Paper Award at EMNLP 17

Dataset Gender Bias

Model Bias After Training

Male

Female

3

imsitu.org

Algorithmic Bias in Applications

Credit: Mark Yatskar

Algorithmic Bias in Applications

Credit: Mark Yatskar

Algorithmic Bias in Applications

When AI products exhibit Societal Bias

Kai-Wei Chang (kwchang.net/talks/sp.html)

What It Takes to Control Societal Bias in NLP?

"Gender discrimination is illegal in the United States."

Your query

Gender discrimination is illegal in the United States.

Tagging

Gender/JJ discrimination/NN is/VBZ illegal/JJ in/IN the/DT United/NNP States/NNPS ./.

Parse

```
(ROOT
 (S
 (NP (JJ Gender) (NN discrimination))
 (VP (VBZ is)
  (ADJP (JJ illegal)
   (PP (IN in)
        (NP (DT the) (NNP United) (NNPS States)))))
 (. .)))
```

Stanford Parser

A carton of ML (NLP) pipeline

Outline

Controlling Gender Bias in Representation Level A study of removing bias in Word Embedding

Reducing Gender Bias in Data Level A case study on co-reference resolution

Reducing Gender Bias in Inference Level Guiding predictions by corpus-wise constraints

Word Embeddings can be Dreadfully Sexist [nips16] w/ Tolga Bolukbasi, James Zou, Venkatesh Saligrama, Adam Kalai

 $v_{man} - v_{woman} + v_{uncle} \sim v_{aunt}$

We use Google w2v embedding trained from the news

Geometry of Gender and Bias

Identifying the gender subspace

Kai-Wei Chang (kwchang.net/talks/sp.html)

DEFINITIONAL

DEFINITIONAL

(related [Schmidt '15])

Approach 1:

Project out gender dimension (hard version)

Step 1: Remove gender dimension from gender-neutral words

Approach 1: Post-processing (Hard)

Project Out Gender Dimension

Step 2: re-center gender-definitional pairs

Approach 2: Post-processing (Soft)

Find a linear transformation T of the gender-neutral words to reduce the gender component while not moving the words too much.

W = matrix of all word vectors. N = matrix of neutral word vectors. $\min_{T} ||(TW)^{T}(TW) - W^{T}W||_{F}^{2} + \lambda ||(TN)^{T}(TB)||_{F}^{2}$ $don't \text{ move too} \qquad \text{minimize gender} \\ \text{much} \qquad \text{component}$

Approach 3: Learning Gender-Neutral Word Embedding [Jieyu+EMNLP18]

How can we "not to" encode gender information in word vectors?

Approach 3: Learning Gender-Neutral Word Embeddings [Jieyu+ EMNLP18]

Kai-Wei Chang (kwchang.net/talks/sp.html)

Are these debiased vectors actually useful?

Outline

Controlling Gender Bias in Representation Level A study of removing bias in Word Embedding

Reducing Gender Bias in Data Level A case study on co-reference resolution

Reducing Gender Bias in Inference Level Guiding predictions by corpus-wise constraints

Gender Bias in Coref [NAACL 2018]

1	President is more vulnerable than most.
2	M Her unorthodox and controversial style of politics creates more political incentives for Republicans to take a stand ^{Coref} - M against her presidency

Concurrent work (Rudinger et al., 2018) @NAACL18 also studied gender bias in Coref.

Stereotypical dataset

The physician hired the secretary because he was overwhelmed with clients.

The physician hired the secretary because she was highly recommended.

Anti-stereotypical dataset

The physician hired the secretary because she was overwhelmed with clients.

The physician hired the secretary because he was highly recommended.

Gender bias in Coref System

Gender bias in Coref System

Gender bias in Coref System

Outline

Controlling Gender Bias in Representation Level A study of removing bias in Word Embedding

Reducing Gender Bias in Data Level A case study on co-reference resolution

Reducing Gender Bias in Inference Level Guiding predictions by corpus-wise constraints

Human Bias in Structured Prediction Models

[EMNLP 17*] w/ Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Ordonez

What's the agent for this image?

Cooking		
Role	Object	
agent	?	
food	vegetable	
container	bowl	
tool	knife	
place kitcher		

An example from a vSRL (visual Semantic Role Labeling) system

*Best Long Paper Award at EMNLP 17

imSitu Visual Semantic Role Labeling (vSRL)

Conditional Random Field

Kai-Wei Chang (kwchang.net/talks/sp.html)

Yatskar et al. CVPR '16, Yang et al. NAACL '16, Gupta and Malik arXiv '16

COCO Multi-Label Classification (MLC)

Convolutional Neural Network

Kai-Wei Chang (kwchang.net/talks/sp.html)

Conditional Random Field

Defining Dataset Bias (events)

Training Gender Ratio (verb)

cooking

woman

man

Defining Dataset Bias (objects) Training Gender Ratio (noun)

Training Set

woman

man

Gender Dataset Bias

Kai-Wei Chang (kwchang.net/talks/sp.html)

Model Bias Amplification

♦ imSitu Verb▲ COCO Noun

Model Bias Amplification

Kai-Wei Chang (kwchang.net/talks/sp.html)

- Corpus level constraints on model output (ILP)
 - Doesn't require model retraining
- Reuse model inference through Lagrangian relaxation
 - Can be applied to any structured model

Reducing Bias Amplification (RBA) $\sum_{i} \max s(y_i, image)$

Reducing Bias Amplification (RBA)

Sontag et al., 2011; Rush and Collins, 2012; Chang and Collins, 2011; Peng et al., 2015, Chang et al., 2013; Dalvi, 2015

Gender Bias De-amplification in imSitu

imSituVerb Violation: 72.6% .050 |bias†| 24.07 acc.

UCLA NLP

NLP Applications

Learning from weak signals

Efficient Algorithms

activity	cooking
agent	woman
food	vegetable

Fairness (data biases)

Conclusions

Like other AI systems, NLP systems affect by societal bias present in data

The issues cause unfair predictions are not new
 Domain adaptation / Data collection bias

Ultimate goal: robust NLP systems for social good

References: <u>http://kwchang.net</u>