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Overview

• Sequence to Sequence Learning & NLP 
• Architecture: Sequence to Sequence Learning with CNNs. 
• Exposure bias/Loss Mismatch: Training at the Sequence Level. 
• Analyzing Uncertainty: model fitting and effects on search.
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Sequence to Sequence Learning & 
Natural Language Processing



Sequence to Sequence Learning

sequence of words representing the answer. It is therefore clear that a domain-independent method
that learns to map sequences to sequences would be useful.

Sequences pose a challenge for DNNs because they require that the dimensionality of the inputs and
outputs is known and fixed. In this paper, we show that a straightforward application of the Long
Short-Term Memory (LSTM) architecture [16] can solve general sequence to sequence problems.
The idea is to use one LSTM to read the input sequence, one timestep at a time, to obtain large fixed-
dimensional vector representation, and then to use another LSTM to extract the output sequence
from that vector (fig. 1). The second LSTM is essentially a recurrent neural network language model
[28, 23, 30] except that it is conditioned on the input sequence. The LSTM’s ability to successfully
learn on data with long range temporal dependencies makes it a natural choice for this application
due to the considerable time lag between the inputs and their corresponding outputs (fig. 1).

There have been a number of related attempts to address the general sequence to sequence learning
problem with neural networks. Our approach is closely related to Kalchbrenner and Blunsom [18]
who were the first to map the entire input sentence to vector, and is very similar to Cho et al. [5].
Graves [10] introduced a novel differentiable attention mechanism that allows neural networks to
focus on different parts of their input, and an elegant variant of this idea was successfully applied
to machine translation by Bahdanau et al. [2]. The Connectionist Sequence Classification is another
popular technique for mapping sequences to sequences with neural networks, although it assumes a
monotonic alignment between the inputs and the outputs [11].

Figure 1: Our model reads an input sentence “ABC” and produces “WXYZ” as the output sentence. The
model stops making predictions after outputting the end-of-sentence token. Note that the LSTM reads the
input sentence in reverse, because doing so introduces many short term dependencies in the data that make the
optimization problem much easier.

The main result of this work is the following. On the WMT’14 English to French translation task,
we obtained a BLEU score of 34.81 by directly extracting translations from an ensemble of 5 deep
LSTMs (with 380M parameters each) using a simple left-to-right beam-search decoder. This is
by far the best result achieved by direct translation with large neural networks. For comparison,
the BLEU score of a SMT baseline on this dataset is 33.30 [29]. The 34.81 BLEU score was
achieved by an LSTM with a vocabulary of 80k words, so the score was penalized whenever the
reference translation contained a word not covered by these 80k. This result shows that a relatively
unoptimized neural network architecture which has much room for improvement outperforms a
mature phrase-based SMT system.

Finally, we used the LSTM to rescore the publicly available 1000-best lists of the SMT baseline on
the same task [29]. By doing so, we obtained a BLEU score of 36.5, which improves the baseline
by 3.2 BLEU points and is close to the previous state-of-the-art (which is 37.0 [9]).

Surprisingly, the LSTM did not suffer on very long sentences, despite the recent experience of other
researchers with related architectures [26]. We were able to do well on long sentences because we
reversed the order of words in the source sentence but not the target sentences in the training and test
set. By doing so, we introduced many short term dependencies that made the optimization problem
much simpler (see sec. 2 and 3.3). As a result, SGD could learn LSTMs that had no trouble with
long sentences. The simple trick of reversing the words in the source sentence is one of the key
technical contributions of this work.

A useful property of the LSTM is that it learns to map an input sentence of variable length into
a fixed-dimensional vector representation. Given that translations tend to be paraphrases of the
source sentences, the translation objective encourages the LSTM to find sentence representations
that capture their meaning, as sentences with similar meanings are close to each other while different
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Figure from: Sutskever et al., 2014, "Sequence to Sequence Learning with Neural Networks" 

Encoder LSTM Decoder LSTM

• Encode source sequence, and decode target sequence with RNNs  
(Sutksever et al., 2014) 

• Attention: choose relevant encoder states (Bahdanau et al., 2014)



• Applications: translation, summarization, parsing, dialogue, ... 

• "... basis for 25% of papers at ACL.",  
Mirella Lapata at ACL'17 keynote

Sequence to Sequence Learning
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Sequence to Sequence Learning
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Sequence to Sequence Learning
• Illustrate that NMT is an active research field 
• Sutskever et al., Bahdanau, Baidu, GNMT, ConvS2S, Transformer, 

DeepL...
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Architecture: Sequence to 
Sequence Learning with CNNs

Convolutional Sequence to Sequence Learning. 
Jonas Gehring, Michael Auli, Yann Dauphin, David Grangier.  
ICML 2017. 
https://arxiv.org/abs/1711.04956

https://arxiv.org/abs/1711.04956


Convolutions vs  Recurrent Networks
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Convolutions vs  Recurrent Networks
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CNN RNN

bounded dependencies unbounded dep. (theory)

highly parallel sequential

convolutional filter autoregressive filter
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Recurrent Neural Network

The cat jumps far
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Recurrent Neural Network

The cat jumps far

cat jumps far .



Recurrent Neural Network

• O(T) sequential steps 
• Recurrent connection causes 

vanishing gradient 
• Are the recurrent connections 

necessary?

The cat jumps far

cat jumps far .



Convolutional Neural Network

• Time Delay Neural Network 
(Waibel et al., 1989) 

• O(1) sequential steps 
• Incrementally build context of 

context windows 
• Builds hierarchical structure

The cat jumps

cat jumps far
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Gated Convolutional Neural Network
• Processes a sentence with a set of 

convolutions 
• Each convolution learns higher level 

features 
• Gates filter information to propagate 

up the hierarchy
GGG

GGG

SSS
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Gated Convolutional Neural Network
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y = tanh(x) (hyperbolic)
y = max(0, x) (rectified linear)
y = x⌦ �(x0) (gated linear)



Gated Linear Unit
• The gated linear unit can be seen as a 

multiplicative skip connection 
• We find this approach to gating 

improves performance

previous layer  
or embeddings

Residual 
connection

Gated Linear  
Unit

Similar to 'Swish'  
(Ramachandran et al., 2017)
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• Input: word + position embeddings: 
1, 2, 3, ... 

• Weight Normalization (Salimans & 
Kingma, 2016) 

• No batch or layer norm: 
initialization (He at al. '15) and  
scale by sqrt(1/2)  

• Repeat N times

Convolutional S2S: Encoder

previous layer  
or embeddings

15

Convolution

Residual 
connection

Gated Linear  
Unit



• Input: word embeddings  
+ position embeddings: 1, 2, 3, ... 

• Causal convolution over generated 
sequence so far 

• Dot-product attention at every 
layer

Convolutional S2S: Decoder

16

previous layer  
or embeddings
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output
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Attention

Convolutional S2S: Attention

17

the cat sat .

KKKK

O O O O

X

source sentence 

encoder output 

attention weights 

weighted sum 

previous decoder 
layer outputs 



• Attention in every decoder layer 
• Queries contain information about 

previous source contexts

Convolutional S2S: Multi-hop Attention 

18
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• Attention in every decoder layer 
• Queries contain information about 

previous source contexts

Convolutional S2S: Multi-hop Attention 
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output
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output



.... . . . .

la maison de. Léa <end> .
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WMT'14 English-German Translation

Vocabulary BLEU

CNN ByteNet (Kalchbrenner et al., 2016) Characters 23.75

RNN GNMT (Wu et al., 2016) Word 80k 23.12

RNN GNMT (Wu et al., 2016) Word pieces 24.61

ConvS2S BPE 40k 25.16

ConvS2S: 15 layers in encoder/decoder (10x512 units, 3x768 units, 2x2048) 
Maximum context size: 27 words 27
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RNN GNMT (Wu et al., 2016) Word 80k 23.12

RNN GNMT (Wu et al., 2016) Word pieces 24.61

ConvS2S BPE 40k 25.16

Transformer (Vaswani et al., 2017) Word pieces 28.4

ConvS2S: 15 layers in encoder/decoder (10x512 units, 3x768 units, 2x2048) 
Maximum context size: 27 words 27

More work on non-RNN models!



WMT'14 English-French Translation

Vocabulary BLEU

RNN GNMT (Wu et al., 2016) Word 80k 37.90

RNN GNMT (Wu et al., 2016) Word pieces 38.95

RNN GNMT + RL (Wu et al., 2016) Word pieces 39.92
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WMT'14 English-French Translation

Vocabulary BLEU

RNN GNMT (Wu et al., 2016) Word 80k 37.90

RNN GNMT (Wu et al., 2016) Word pieces 38.95

RNN GNMT + RL (Wu et al., 2016) Word pieces 39.92

ConvS2S BPE 40k 40.51

Transformer (Vaswani et al., 2017) Word pieces 41.0

ConvS2S: 15 layers in encoder/decoder (5x512 units, 4x768 units, 3x2048, 2x4096)
28



Inference Speed on WMT'14 En-Fr

Hardware BLEU Time (s)

RNN GNMT (Wu et al., 2016) GPU (K80) 31.20 3028

RNN GNMT (Wu et al., 2016) CPU (88 cores) 31.20 1322

RNN GNMT (Wu et al., 2016) TPU 31.21 384

ntst1213 (6003 sentences) 29
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Hardware BLEU Time (s)

RNN GNMT (Wu et al., 2016) GPU (K80) 31.20 3028

RNN GNMT (Wu et al., 2016) CPU (88 cores) 31.20 1322

RNN GNMT (Wu et al., 2016) TPU 31.21 384

ConvS2S, beam=5 GPU (K40) 34.10 587

ConvS2S, beam=1 GPU (K40) 33.45 327

ConvS2S, beam=1 GPU (GTX-1080ti) 33.45 142

ConvS2S, beam=1 CPU (48 cores) 33.45 142

ntst1213 (6003 sentences) 29



Summary
• Alternative architecture for sequence to sequence learning 
• Higher accuracy than models of similar size, despite fixed size context 
• Faster generation (9x faster on lesser hardware)

Code & pre-trained models:  
+ lua/torch:  http://github.com/facebookresearch/fairseq 
+ PyTorch:   http://github.com/facebookresearch/fairseq-py

http://github.com/facebookresearch/fairseq
http://github.com/facebookresearch/fairseq


Exposure bias/Loss Mismatch: 
Training at the Sequence Level

31

Classical Structured Prediction Losses for Sequence to Sequence Learning 
Sergey Edunov*, Myle Ott*, Michael Auli, David Grangier, Marc'Aurelio Ranzato 
NAACL 2018 
https://arxiv.org/abs/1711.04956

slide credit: Sergey Edunov, Marc'Aurelio Ranzato

https://arxiv.org/abs/1711.04956


Problems
• Exposure bias: training and testing are inconsistent 

At training, the model has never observed its own predictions as 
input. 

• Training criterion != Evaluation criterion 
• Evaluation criterion is not differentiable
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Selection of Recent Literature
• Reinforcement Learning-inspired methods 

• MIXER (Ranzato et al., ICLR 2016) 
• Actor-Critic (Bahdanau et al., ICLR 2017) 

• Using beam search at training time: 
• Beam search optimization (Wiseman et al. ACL 2016) 
• Distillation based (Kim et al., EMNLP 2016)
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Questions
1) How do classical structure prediction losses compare to recent 
methods? 
2) Classical losses were often applied to log-linear models - how well do 
they work for neural nets?

34

Tsochantaridis et al. “Large margin methods for structured and interdependent output variables” JMLR 2005

Och “Minimum error rate training in statistical machine translation” ACL 2003

Smith and Eisner “Minimum risk annealing for training log-linear models” ACL 2006

Gimpel and Smith “Softmax-margin CRFs: training log-linear models with cost functions” ACL 2010

Taskar et al. “Max-margin Markov networks” NIPS 2003
Collins “Discriminative training methods for HMMs” EMNLP 2002

Bottou et al. “Global training of document processing systems with graph transformer networks” CVPR 1997
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x = (x1, . . . , xm) input sentence

Notation 
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input sentence

t

x

target sentence

Notation 
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input sentence

t

x

target sentence

u hypothesis generated by the model

oracle hypothesisu⇤ = arg min
u2U(x)

cost(u, t)

Notation 



39

input sentence

t

x

target sentence

u hypothesis generated by the model

u⇤ oracle hypothesis

û most likely hypothesis

Notation 
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LTokNLL = �
nX

i=1

log p(ti|t1, . . . , ti�1,x)

for one particular training example. 

'Locally' normalized over vocabulary.

Baseline: Token Level NLL
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LSeqNLL = � log p(u⇤|x) + log
X

u2U(x)

p(u|x)

The sequence log-probability is simply the sum of the 
token-level log-probabilities. 

'Globally' normalized over set of hypothesis 

Sequence Level NLL

U(x)



Source:

Wir müssen unsere Einwanderungspolitik in Ordnung bringen.


Target:

We have to fix our immigration policy.


Beam:

BLEU  Model score                             

75.0      -0.23                  We need to fix our immigration policy.

100.0    -0.30                  We have to fix our immigration policy.

36.9      -0.36                  We need to fix our policy policy.

66.1      -0.42                  We have to fix our policy policy.

66.1      -0.44                  We've got to fix our immigration policy.


42

U(x)

}
Sequence Level NLL
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U(x)

}
Sequence Level NLL



• Important to use oracle hypothesis as surrogate target. 
Otherwise, the model learns to assign very bad scores to its hypotheses 
but is not trained to reach the target. 

• Evaluation metric only used for oracle selection of target. 

• Several ways to generate   

43

U(x)

Observations
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LRisk =
X

u2U(x)

cost(t,u)
p(u|x)P

u02U(x) p(u
0|x)

• The cost is the evaluation metric; e.g.: 100-BLEU. 

• REINFORCE is a special case of this (a single 
sample Monte Carlo estimate of the expectation 
over the whole hypothesis space).

Expected Risk



Source:

Wir müssen unsere Einwanderungspolitik in Ordnung bringen.


Target

We have to fix our immigration policy.


Beam:

BLEU  Model score                             

75.0      -0.23                  We need to fix our immigration policy.

100.0    -0.30                  We have to fix our immigration policy.

36.9      -0.36                  We need to fix our policy policy.

66.1      -0.42                  We have to fix our policy policy.

66.1      -0.44                  We've got to fix our immigration policy.
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(expected BLEU=69)

U(x)

}
Expected Risk



Check out the paper for more examples 
of sequence level training losses!
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Practical Tips
• Start from a model pre-trained at the token level. Training with search 

is excruciatingly slow… 
• Even better if pre-trained model had label smoothing. 
• Accuracy vs speed trade-off: offline/online generation of hypotheses. 
• Mix token level NLL loss with sequence level loss to improve 

robustness.
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Results on IWSLT’14 De-En

48

TEST
TokNLL 

(Wiseman et al. 2016) 24.0
BSO

(Wiseman et al. 2016) 26.4
Actor-Critic

(Bahdanau et al. 2016) 28.5
Phrase-based NMT
(Huang et al. 2017) 29.2

our TokNLL 31.7

SeqNLL 32.7

Risk 32.9

Perceptron 32.6
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TEST
TokNLL 

(Wiseman et al. 2016) 24.0
BSO

(Wiseman et al. 2016) 26.4
Actor-Critic

(Bahdanau et al. 2016) 28.5
Phrase-based NMT
(Huang et al. 2017) 29.2

our TokNLL 31.8

SeqNLL 32.7

Risk 32.8

Max-Margin 32.6



Fair Comparison to BSO

50

TEST
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(Wiseman et al. 2016) 26.4
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Fair Comparison to BSO

50

TEST

TokNLL 
(Wiseman et al. 2016) 24.0

BSO
(Wiseman et al. 2016) 26.4

Our re-implementation of their TokNLL 23.9

Risk on top of the above TokNLL 26.7

Methods fare comparably once the baseline is the same…



Diminishing Returns

51

On WMT’14 En-Fr, TokNLL gets 40.6 while Risk gets 41.0
The stronger the baseline, the less to be gained.



Summary
• Sequence level training does improve, but with diminishing returns. 

It’s computationally very expensive. 
• Particular method to train at the sequence level does not matter. 
• Important to use pseudo reference as opposed to real reference. 
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Analyzing Uncertainty: model 
fitting and effects on search

Why do larger beams perform worse? 
Why is the model under-estimating rare words? 

53

Analyzing uncertainty in neural machine translation 
Myle Ott, Michael Auli, David Grangier, Marc'Aurelio Ranzato 
in submission

slide credit: Marc'Aurelio Ranzato



Goal
BETTER  UNDERSTANDING 

rare word under-estimation 
• artifact of beam search (argmax)? 
• due to exposure bias? 
• due to poor estimation? 

performance degradation with wide beams 
• due to heuristic nature of beam search? 
• is the model poorly trained? 

model fitting 
• are NMT models calibrated? 
• what do NMT models over/under-estimate?
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Outline
• Data uncertainty 
• Search 
• Analyzing the model distribution
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Data Uncertainty
Intrinsic 

• there are many semantically equivalent translations of the same 
sentence. E.g.: style, skipping prepositions, choice of words, 
structural choices (active/passive), etc.

EXAMPLE
Source: The night before would be practically sleepless .

Target #1: La nuit qui précède pourrait s’avérer quasiment blanche .
Target #2: Il ne dormait pratiquement pas la nuit précédente .
Target #3: La nuit précédente allait être pratiquement sans sommeil .
Target #4: La nuit précédente , on n’a presque pas dormi .
Target #5: La veille , presque personne ne connaitra le sommeil .
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Data Uncertainty
Intrinsic 

• there are many semantically equivalent translations of the same 
sentence. E.g.: style, skipping prepositions, choice of words, 
structural choices (active/passive), etc. 

• under-specification. E.g.: gender, tense, number, etc. 

57

EXAMPLE
Source: nice .

Target #1: chouette .
Target #2: belle .
Target #3: beau .



Data Uncertainty
Intrinsic 

• there are many semantically equivalent translations of the same 
sentence. E.g.: style, skipping prepositions, choice of words, 
structural choices (active/passive), etc. 

• under-specification. E.g.: gender, tense, number, etc. 

Extrinsic 
• noise in the data. E.g.: partial translation, copies of the source, etc.
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Example: on WMT between 1 and 2% of the 
training target sentences are copies of the source.
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Intrinsic 

• there are many semantically equivalent translations of the same 
sentence. E.g.: style, skipping prepositions, choice of words, 
structural choices (active/passive), etc. 

• under-specification. E.g.: gender, tense, number, etc. 

Extrinsic 
• noise in the data. E.g.: partial translation, copies of the source, etc.
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Example: on WMT between 1 and 2% of the 
training target sentences are copies of the source.

HOW DOES THIS AFFECT NMT?



Outline
• Data uncertainty 
• Search 
• Analyzing the model distribution
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Search
Find the most likely sequence according to the model:  
 
 
Preliminary questions: 

• is beam search effective? 
• is beam search efficient? 
• are there better search strategies?

argmax
y

p(y|x; ✓)
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Search
• Convolutional NMT  

with attention 
• 15 layers 
• 716D embeddings 
• ~250M parameters

Beam search is very effective; only 20% of the tokens 
with probability < 0.7 (despite exposure bias)!61



Search

62

• Increasing the beam width does not increase BLEU, while probability increases. 

• Sampling can find hypotheses with similar logprob but: 
• lower BLEU 
• it’s 20x less inefficient



Search
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• Increasing the beam width does not increase BLEU, while probability increases. 

• Sampling can find hypotheses with similar logprob but: 
• lower BLEU 



Search
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• Increasing the beam width does not increase BLEU, while probability increases. 

• Sampling can find hypotheses with similar logprob but: 
• lower BLEU 
• it’s more than 10x more inefficient



Search
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• Increasing the beam width does not increase BLEU, while probability increases. 

• Sampling can find hypotheses with similar logprob but: 
• lower BLEU 
• it’s 20x less inefficient



Search

• Increasing the beam width does not increase BLEU, while probability increases.  

• Sampling can find hypotheses with similar logprob but… 

• Among the generated hypotheses, there exist at least one that is pretty close to the reference.

66



Search

Beam search is very effective and efficient.
However, large beams yield worse BLEU!
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Search

• Beam 200/sampling 10K cover only about 22% of the total probability mass 
Where is the rest? 
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Search

Model distribution has a lot of uncertainty.
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Puzzling Observations

• Increasing beam size hurts performance in terms of BLEU. 

• Large beam accounts only for fraction of total probability mass.

70



Scatter Plot of Samples
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Scatter Plot of Samples
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The first nine episodes of Sheriff [unk]'s Wild West 
will be available from November 24 on the site [unk] 
or via its application for mobile phones and tablets.

Les neuf premiers épisodes de [unk] [unk] s Wild 
West seront disponibles à partir du 24 novembre sur 
le site [unk] ou via son application pour téléphones 
et tablettes.

The first nine episodes of Sheriff [unk] s Wild West 
will be available from November 24 on the site [unk] 
or via its application for mobile phones and tablets.

Source #115 (red):

High-logp low BLEU sample:

Target #115 (red):



Scatter Plot of Samples
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The first nine episodes of Sheriff [unk]'s Wild West 
will be available from November 24 on the site [unk] 
or via its application for mobile phones and tablets.

Les neuf premiers épisodes de [unk] [unk] s Wild 
West seront disponibles à partir du 24 novembre sur 
le site [unk] ou via son application pour téléphones 
et tablettes.

The first nine episodes of Sheriff [unk] s Wild West 
will be available from November 24 on the site [unk] 
or via its application for mobile phones and tablets.

Model generates copies of 
source sentence!

Why does beam find this?

Source #115 (red):

High-logp low BLEU sample:

Target #115 (red):



Uncertainty <—> Search
• Hard to characterize how uncertainty affects search in general. 
• We can however simulate (extrinsic) uncertainty: 

• add fraction of “copy noise” and check effects on search.
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Uncertainty <—> Search

75

Large beams are more prone to copy the 
source, hence the lower BLEU.



Uncertainty <—> Search

76

•Source:	The first nine episodes of Sheriff <unk> ’s Wild West 
will be available from November 24 on the site <unk> or via 
its application for mobile phones and tablets . 
•Target	(reference):	Les neuf premiers épisodes de <unk> <unk> s Wild 
West seront disponibles à partir du 24 novembre sur le site 
<unk> ou via son application pour téléphones et tablettes . 
•Sample: The first nine episodes of Sheriff <unk> s Wild West 
will be available from November 24 on the site <unk> or via 
its application for mobile <unk> and tablets .



Uncertainty <—> Search

76

•Source:	The first nine episodes of Sheriff <unk> ’s Wild West 
will be available from November 24 on the site <unk> or via 
its application for mobile phones and tablets . 
•Target	(reference):	Les neuf premiers épisodes de <unk> <unk> s Wild 
West seront disponibles à partir du 24 novembre sur le site 
<unk> ou via son application pour téléphones et tablettes . 
•Sample: The first nine episodes of Sheriff <unk> s Wild West 
will be available from November 24 on the site <unk> or via 
its application for mobile <unk> and tablets .

log	probs:			-4.53			-0.02						-0.28							-0.11									-0.01				-0.001			-0.004		-0.002	-0.001	-0.005

Inductive bias: 
NMT + attention has easy time to learn how to copy!



Uncertainty <—> Search

Initial tokens pay big penalty, but afterwards copying the 
source is cheap. Only large beams can discover this.77



Uncertainty <—> Search
• On WMT’14 En-Fr: ~2% of the training target sentences are 

copies of the corresponding source.  

• Beam@1 yields copies 2.6% of the time. 
• Beam@20 yields copies 3.5% of the time.

78



Fixing Search
• Filtering the data with model trained on “clean data” to remove 

copies from training set. 
• Constrain beam search not to output too many words from the 

source sentence.
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Fixing Search
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filtered (no copy)
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Search & Uncertainty
• Search works very well, i.e. beam finds likely model hypotheses. 
• However, it can find noisy sentences (model is wrong), that are 

merely due to noise in the data collection process. 
• This explains why BLEU deteriorates for large beams. 
• There are easy fixes.
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Puzzling Observations

• Increasing beam size hurts performance in terms of BLEU. 

• Large beam accounts only for fraction of total probability mass.

Understood
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Outline
• Data uncertainty 
• Search 
• Analyzing the model distribution
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Model Distribution
Check match between model and data distribution is challenging: 
• For a given source sentence, we typically observe only one sample 

from the data distribution (the provided reference). 
• Enumeration of all possible sequences using the data distribution is 

intractable anyway. 
 
We would like to: 
• check how closely model and data distribution match 
• understand when they differ and why
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Anecdotal Example
In the training set, some source sentences appear many times.  
Use corresponding targets to estimate the underlying data distribution!

EXAMPLE
Source: ( The  president cutoff the speaker ) .

Appears 798 times on the training set with 36 unique translations.

 0
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For this source sentence, 
model and data distribution 

match very well!
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Analysis Tools
• Token level fitting 
• Sentence level calibration 
• Set level calibration 
• Other necessary conditions
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Token Level: Matching Unigram Stats

87
Model grossly under-estimate rare words. 

Beam over-estimates frequent words, as expected.

WMT’17 En-De 
news-comm. portion



Token Level: Matching Unigram Stats

87
Model grossly under-estimate rare words. 

Beam over-estimates frequent words, as expected.

WMT’17 En-De 
news-comm. portion

FAILED



Token Level: Matching Unigram Stats

88
More data & better model close the gap, but rare words 

are still under-estimated.

WMT’17 En-De news-comm. portion WMT’14 En-Fr

• ~300K parallel sentences 
• 21 BLEU on test 
• median freq. in 10% bin: 12

• ~35M parallel sentences 
• 41 BLEU on test 
• median freq. in 10% bin: 2500



Token Level: Matching Unigram Stats
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WMT’17 En-De news-comm. portion WMT’14 En-Fr

• ~300K parallel sentences 
• 21 BLEU on test 
• median freq. in 10% bin: 12

• ~35M parallel sentences 
• 41 BLEU on test 
• median freq. in 10% bin: 2500

Match may look better than it is if model shifts probability mass 
within each of these buckets, let’s take a closer look then…



0.001 0.01 0.1 0.5
pnoise

0.0001

0.001

0.01

0.1

1.0
ra

te

perfect match
partial (incl. exact) copy
exact copy

Sentence Level Calibration

NMT model under-estimates copy probability at low rates, 
while it over-estimates it at high rates.

Model spills probability mass on partial copies. 
90

Copy source sentences at a given rate 
during training, check whether probability 
assigned by the model to copies matches 
the copy production rate.



Set Level Calibration

E
x⇠pd

[I{x 2 S}] = pm(S)

where S is the set of hypotheses 
produced by beam.

NMT model is very well calibrated at the set level.91



Distance Matching

92

E
y⇠pd,y0⇠pd

[BLEU(y, y0)]
?
= E

y⇠pm,y0⇠pm

[BLEU(y, y0)]

NMT model produces samples that have low BLEU and 
that are too diverse. Model spreads probability mass.

En-Fr En-De

human 44.5 32.1

NMT 28.6 24.2



Distance Matching

92

E
y⇠pd,y0⇠pd

[BLEU(y, y0)]
?
= E

y⇠pm,y0⇠pm

[BLEU(y, y0)]

NMT model produces samples that have low BLEU and 
that are too diverse. Model spreads probability mass.

FAILED

En-Fr En-De

human 44.5 32.1

NMT 28.6 24.2



Multi-Reference Experiments

Beam@5 Beam@200 200 Samples

single reference 41.4 36.2 38.2

oracle reference

average oracle

coverage

93

We collected 10 additional references for 500 randomly selected source 
sentences from the test set.

BLEU with reference yielding the largest BLEU score 

average BLEU over all hypothesis of beam/sampling 
- with closest ref

number of unique references using in matching



Multi-Reference Experiments

Beam@5 Beam@200 200 Samples

single reference 41.4 36.2 38.2

oracle reference 70.2 61.0 64.1

average oracle 65.7 56.4 39.1

coverage 1.9 5.0 7.4

94



Multi-Reference Experiments

95

Beam@5 Beam@200 200 Samples

single reference 41.4 36.2 38.2

oracle reference 70.2 61.0 64.1

average oracle 65.7 56.4 39.1

coverage 1.9 5.0 7.4

Beam produces outputs close to an actual reference. 
Lower scoring hypotheses are not far from a reference. 

However, they often map to the same reference.



Multi-Reference Experiments

96

Sampling is more diverse but several samples poorly 
match any given reference. Mass is spread too much.

Beam@5 Beam@200 200 Samples

single reference 41.4 36.2 38.2

oracle reference 70.2 61.0 64.1

average oracle 65.7 56.4 39.1

coverage 1.9 5.0 7.4



Conclusions
• Uncertainty in data: intrinsic/extrinsic 

• Search: works really well. For large beams, we find spurious modes, 
but we know how to fix it! 

• Model & Data distribution: model is surprisingly well calibrated. In 
general, it spreads probability mass too much compared to the data 
distribution.
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Questions?

Come work with us!  
Openings for internships, postdocs, research scientists
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