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Overview

Sequence to Sequence Learning & NLP

Architecture: Sequence to Sequence Learning with CNNs.
Exposure bias/Loss Mismatch: Training at the Sequence Level.
Analyzing Uncertainty: model fitting and effects on search.
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Sequence to Sequence Learning
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Figure 1: Our model reads an input sentence “ABC” and produces “WXYZ” as the output sentence. The
model stops making predictions after outputting the end-of-sentence token. Note that the LSTM reads the

Input sentence 1n reverse, because doing so introduces many short term dependencies in the data that make the
optimization problem much easier.

e Encode source sequence, and decode target sequence with RNNSs
(Sutksever et al., 2014)

e Attention: choose relevant encoder states (Bahdanau et al., 2074)

Figure from: Sutskever et al., 2014, “"Sequence to Sequence Learning with Neural Networks”



Sequence to Sequence Learning

e Applications: translation, summarization, parsing, dialogue, ...

e .. Dbasisfor 25% of papers at ACL.,
Mirella Lapata at ACL"17 keynote
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Architecture: Sequence to
Sequence Learning with CNNs

Convolutional Sequence to Sequence Learning.

Jonas Gehring, Michael Auli, Yann Dauphin, David Grangier.
ICML 2017.

https://arxiv.org/abs/1711.04956
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Convolutions vs Recurrent Networks
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Convolutions vs Recurrent Networks

CNN RNN
1d, 24, 3d... 1d
vision language, speech
convolutional filter autoregressive filter

bounded dependencies unbounded dep. (theory)

highly parallel sequential




Recurrent Neural Network

.

The cat jumps far
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Recurrent Neural Network
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Recurrent Neural Network
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Recurrent Neural Network

cat jumps far .
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The cat jumps far




Recurrent Neural Network

Jumps far | e O(T) sequential steps

l l l e Recurrent connection causes

vanishing gradient
The cat jumps far

e Are the recurrent connections
necessarys




Convolutional Neural Network

cat jumps  far e Time Delay Neural Network
(Waibel et al., 1989)
e O(1) sequential steps
e |ncrementally build context of

/F ! context windows
. ./I e Builds hierarchical structure
Q The cat
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Convolutional Neural Network

cat J‘umTps fa”T e Time Delay Neural Network
(Waibel et al., 1989)

e O(1) sequential steps
e |ncrementally build context of
./ context windows

e Builds hierarchical structure
@ The cat jumps




Gated Convolutional Neural Network

e Processes a sentence with a set of
convolutions
e Each convolution learns higher level

features
e Gates filter information to propagate

up the hierarchy

e

13
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Gated Convolutional Neural Network

e Processes a sentence with a set of
convolutions

e Each convolution learns higher level
features

e Gates filter information to propagate
up the hierarchy

y=x®oc(x’) (gated linear)

13



Gated Linear Unit

e The gated linear unit can be seen as a
multiplicative skip connection

e We find this approach to gating
improves performance

Gated Linear
Unit

Similar to ‘Swish’ .
previous layer
(Ramachandran et al., 2017) I:I I:I I:l or embeddings
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Gated Linear Unit

e The gated linear unit can be seen as a cocidun
multiplicative skip connection connection

e We find this approach to gating
improves performance

Gated Linear
Unit

Similar to ‘Swish’ .
previous layer
(Ramachandran et al., 2017) L L L or embeddings




Convolutional S2S: Encoder

e Input: word + position embeddings:
1,2,3, ..
e Weight Normalization (Salimans &
Kingma, 2016)
e No batch or layer norm:
initialization (He at al. "15) and
Residual

scale by sqrt(1/2) connection

X
D
A
¢
X
e Repeat N times i Convolution

previous layer
or embeddings

Gated Linear
Unit

15



Convolutional S2S: Decoder

e |Input: word embeddings
+ position embeadings: 1, 2, 3, ...

e Causal convolution over generated

sequence so far
e Dot-product attention at every

layer

s
SPARNEES
0 { Attention
@ 111
Y Encoder
output

previous layer

16
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Convolutional S2S: Attention

A
’é?/ 2. “T 1 1 1 weighted sum
A RS
/ attention weights
l
t ottt
t ¢+ ¢+ 1 encoder output
previous decoder
the cat sat . source sentence

layer outputs
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Convolutional S2S: Multi-hop Attention

e Attention in every decoder layer
e Queries contain information about
Drevious source contexts

Attention

111

Encoder

18




Convolutional S2S: Multi-hop Attention

e Attention in every decoder layer
e Queries contain information about
Drevious source contexts
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El maison de L éa <enda>
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WMT'14 English-German Translation

\"[oTet:1:11] 19 BLEU

CNN ByteNet (Kalchbrenner et al., 2016) Characters 23.75
RNN GNMT (Wu et al,, 2016) Word 80k 23.12
RNN GNMT (Wu et al,, 2016) Word pieces 24.67
ConvS2S BPE 40k 25.16

ConvS2S: 15 layers in encoder/decoder (10x512 units, 3x768 units, 2x2048)

Maximum context size: 27 words 57
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WMT’14 English-French Translation

\"[oTet:1:11] 19 BLEU

RNN GNMT (Wu et al,, 2016) Word 80k 37.90
RNN GNMT (Wu et al,, 2016) Word pieces 38.95

RNN GNMT + RL (Wu et al,, 2016) Word pieces 39.92

28



WMT’14 English-French Translation

\"[oTet:1:11] 19 BLEU

RNN GNMT (Wu et al., 2016) Word 80k
RNN GNMT (Wu et al., 2016) Word pieces
RNN GNMT + RL (Wu et al,, 2016) Word pieces
ConvS2S BPE 40k
Transformer (Vaswani et al., 2017) Word pieces

ConvS2S: 15 layers in encoder/decoder (5x512 units, 4x768 units, 3x2048, 2x4096)
28

37.90

33.95

39.92

40.51

41.0



Inference Speed on WMT’14 En-Fr

Hardware BLEU Time (s)
RNN GNMT (Wu et al., 2016) GPU (K80) 31.20 3028
RNN GNMT (Wu et al., 2016) CPU (88 cores) 31.20 1322
RNN GNMT (Wu et al., 2016) TPU 31.21 384

ntst1213 (6003 sentences) 29
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Inference Speed on WMT’14 En-Fr

Hardware BLEU Time (s)
RNN GNMT (Wu et al., 2016) GPU (K80) 31.20 3028
RNN GNMT (Wu et al., 2016) CPU (88 cores) 31.20 1322
RNN GNMT (Wu et al., 2016) TPU 31.21 384
ConvS2S, beam=5 GPU (K40) 34.10 587
ConvS2S, beam=1 GPU (K40) 33.45 327
ConvS2S, beam=1 GPU (GTX-1080ti) 33.45 142
ConvS2S, beam=" CPU (48 cores) 33.45 142

ntst1213 (6003 sentences) 29



Summary

e Alternative architecture for sequence to sequence learning
e Higher accuracy than models of similar size, despite fixed size context
e Faster generation (9x faster on lesser hardware)

Code & pre-trained models:
+ lua/torch: http://github.com/facebookresearch/fairseq
+ PyTorch: http://github.com/facebookresearch/fairseg-py
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Exposure bias/Loss Mismatch:
Training at the Sequence Level

Classical Structured Prediction Losses for Sequence to Sequence Learning

Sergey Edunov*, Myle Ott*, Michael Auli, David Grangier, Marc'Aurelio Ranzato *
NAACL 2018

https://arxiv.org/abs/1711.04956

31 slide credit: Sergey Edunov, Marc'Aurelio Ranzato
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Problems

e Exposure bias: training and testing are inconsistent
At training, the model has never observed its own predictions as
Input.

e Training criterion != Evaluation criterion

e Evaluation criterion is not differentiable

32



Selection of Recent Literature

e Reinforcement Learning-inspired methods
e MIXER (Ranzato et al., ICLR 2016)
e Actor-Critic (Bahdanau et al., ICLR 2017)
e Using beam search at training time:
e Beam search optimization (Wiseman et al. ACL 2016)
e Distillation based (Kim et al., EMNLP 2016)

33



Questions

1) How do classical structure prediction losses compare to recent

methods?
2) Classical losses were often applied to log-linear models - how well do

they work for neural nets?

Bottou et al. “Global training of document processing systems with graph transformer networks” CVPR 1997

Collins “Discriminative training methods for HMMs” EMNLP 2002
Taskar et al. “Max-margin Markov networks” NIPS 2003

Tsochantaridis et al. “Large margin methods for structured and interdependent output variables” JMLR 2005
Och “Minimum error rate training in statistical machine translation” ACL 2003
Smith and Eisner “Minimum risk annealing for training log-linear models” ACL 2006

Gimpel and Smith “Softmax-margin CRFs: training log-linear models with cost functions” ACL 2010

34



Notation

X = (r1,..., Ty)  input sentence

35



Notation

X iINnput sentence

t farget sentence
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Notation

X INput sentence
t target sentence

u hypothesis generated by the model
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Notation

X INput sentence
t target sentence

u hypothesis generated by the model

u* = arg 1121/}? ) cost(u, t) oracle hypothesis
uci(x
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Notation

X iINnput sentence

t target sentence

u hypothesis generated by the model
u*  oracle hypothesis

u most likely hypothesis

39



Baseline: Token Level NLL

ETOkNLL — — Z lng(tiltlp o 7tz’—17 X)
1=1

for one particular training example.

Locally’ normalized over vocabulary.

40



Sequence Level NLL

L3eqNLL = — logp(u'[x) +log > p(ulx)
ucl (x)

The sequence log-probability is simply the sum of the
token-level log-probabillities.

'‘Globally' normalized over set of hypothesis U (x)

41



Sequence Level NLL

Source:
Wir mUssen unsere Einwanderungspolitik in Ordnung bringen.

Target:
We have to fix our immigration policy.

Beam:

BLEU Model score

/5.0 -0.23 We need to fix our immigration policy.
100.0 -0.30 We have to fix our immigration policy.
36.9 -0.36 We need to fix our policy policy.

66.1 -0.42 We have to fix our policy policy.

66.1 -0.44 We've got to fix our immigration policy.
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Sequence Level NLL

Source:
Wir mUssen unsere Einwanderungspolitik in Ordnung bringen.

Target:
We have to fix our immigration policy.

Beam:

BLEU Model score

/5.0 -0.23 * We need to fix our immigration policy.
100.0 -0.30 We have to fix our immigration policy.
36.9 -0.36 { We need to fix our policy policy.

66.1 -0.42 t  We have to fix our policy policy.

66.1 -0.44 t  We've got to fix our immigration policy.
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Observations

* |mportant to use oracle hypothesis as surrogate target.
Otherwise, the model learns to assign very bad scores to its hypotheses
but IS not trained to reach the target.

* Evaluation metric only used for oracle selection of target.

» Several ways to generate U (x)

43



Expected Risk

LRigk = Z cost(t,u)z p(ulx)

AT et P

* [he cost is the evaluation metric; e.g.: 100-BLEU.
« REINFORCE is a special case of this (a single

sample Monte Carlo estimate of the expectation
over the whole hypothesis space).

44



Expected Risk

Source:
Wir mUssen unsere Einwanderungspolitik in Ordnung bringen.

Target
We have to fix our immigration policy.

Beam:

BLEU Model score

/5.0 -0.23 We need to fix our immigration policy.
100.0 -0.30 We have to fix our immigration policy.
36.9 -0.36 ¥ We need to fix our policy policy.

66.1 -0.42 t  We have to fix our policy policy.

66.1 -0.44 t We've got to fix our immigration policy.

(expected BLEU=69)
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Check out the paper for more examples
of sequence level training losses!

46



Practical Tips

e Start from a model pre-trained at the token level. Training with search
s excruciatingly slow...

e Even better if pre-trained model had label smoothing.

e Accuracy vs speed trade-off: offline/online generation of hypotheses.

e Mix token level NLL loss with sequence level loss to improve
robustness.

47



Results on IWSLT’14 De-En

TokNLL
i (Wisemanetal.2016) 240 ________________________________________________
BSO
i (Wisemanetal.2016) 264 ________________________________________________
Actor-Critic
_____________________________________________________________ (Bahdanauetal.2016) 285
Phrase-based NMT 29 2

(Huana et al. 2017)
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Results on IWSLT’14 De-En

TEST
(Wlsemch:l?]kle\ltLalTZOm) 240 ________________________________________________
(Wlsemalr?sé?al2016) 264 ________________________________________________
_____________________________________________________________ pencammeial o) | 85
_________________________________________________________________
our TokNLL 31.8
''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' SN LL | 327
""""""""""""""""""""""""""""""""""""""""""""""" Msk | 328
''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' Vax-Margin | 326
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Fair Comparison to BSO

TEST
TokNLL
(Wiseman et al. 2016) 24.0
BSO
(Wiseman et al. 2016) 206.4
Our re-implementation of their TokNLL 23 Q
Risk on top of the above TokNLL 26 7
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Fair Comparison to BSO

TEST
TokNLL
(Wiseman et al. 2016) 24.0
BSO
(Wiseman et al. 2016) 20.4
Our re-implementation of their TOkNLL 23 9
Risk on top of the above TokNLL 26 7

Methods tare comparably once the baseline is the same...
50



Diminishing Returns

40 -

35 -
7 30
—
a

25 -

20-

mixer actor-critic BSO Risk IWSLT14 De-En  Risk WMT14 En-Fr
methods

On WMT’'14 En-Fr, TokNLL gets 40.6 while Risk gets 41.0

The stronger the baseline, the less to be gained.
51




Summary

e Sequence level training does improve, but with diminishing returns.

it’s computationally very expensive.
e Particular method to train at the sequence level does not matter.
e |Important to use pseudo reference as opposed to real reference.
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Analyzing Uncertainty: model
fitting and effects on search

Why do larger beams perform worses?
Why is the model under-estimating rare wordss

Analyzing uncertainty in neural machine translation A

Myle Ott, Michael Auli, David Grangier, Marc'Aurelio Ranzato
IN submission

S slide credit: Marc'Aurelio Ranzato



Goal
BETTER UNDERSTANDING

rare word under-estimation
e artifact of beam search (argmax)?
e due to exposure bias?
e due to poor estimations
performance degradation with wide beams
e due to heuristic nature of beam search?
e isthe model poorly trained?
model fitting
e are NMT models calibrated?
e« what do NMT models over/under-estimate?
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Outline

e Data uncertainty
e Search
e Analyzing the model distribution

55



Data Uncertainty

INtrinsic
e there are many semantically equivalent translations of the same

sentence. E.g.: style, skipping prepositions, choice of words,
structural choices (active/passive), etc.

EXAMPLE
Source: The night before would be practically sleepless .

Target #1: La nuit qui precede pourrait s’avérer quasiment blanche .
Target #2: Il ne dormait pratiquement pas la nuit précédente .

Target #3: La nuit precédente allait étre pratiquement sans sommeil .
Target #4: La nuit precédente , on n’a presque pas dormi .

Target #5: La vellle , presque personne ne connaitra le sommeil .

56



Data Uncertainty

Intrinsic
e there are many semantically equivalent translations of the same

sentence. E.g.: style, skipping prepositions, choice of words,

structural choices (active/passive), etc.
e under-specification. E.g.: gender, tense, number, etc.

EXAMPLE
Source: nice.

Target #1: chouette .

Target #2: belle .
Target #3: beau .

57



Data Uncertainty

Intrinsic

e there are many semantically equivalent translations of the same

sentence. E.g.: style, skipping prepositions, choice of words,
structural choices (active/passive), etc.

e under-specification. E.g.: gender, tense, number, etc.

Extrinsic

e noise in the data. E.g.: partial translation, copies of the source, etc.
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Data Uncertainty

INtrinsic
e there are many semantically equivalent translations of the same
sentence. E.g.: style, skipping prepositions, choice of words,
structural choices (active/passive), etc.
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training target sentences are copies of the source.
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Data Uncertainty

INntrinsic

e there are many semantically equivalent translations of the same

sentence. E.g.: style, skipping prepositions, choice of words,
structural choices (active/passive), etc.

e under-specification. E.g.: gender, tense, number, etc.

o HOW DOES THIS AFFECT NMT?
Extrinsic

e noise in the data. E.g.: partial translation, copies of the source, etc.

Example: on WMT between 1 and 2% of the
training target sentences are copies of the source.
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Outline

e Data uncertainty

e Search
e Analyzing the model distribution
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Search

Find the most likely sequence according to the model:
arg max p(y|z; 0)
Y

Preliminary questions:
e S beam search effective?
e S beam search efficient?
e are there better search strategiess

60



Search

e Convolutional NMT 1.0 (=
with attention >
e 15 layers | 3 0.1
e 716D embeddings o
O
e ~250M parameters c .01] —=— reference
= - beam 5
- - /= sampling
0.001

0 20 40 60 80 100
Percentile

Beam search is very effective; only 20% of the tokens
with probability < 0.7 (despite exposure bias)!



100 o o e e e 1 0.8 -
D o
W 80 - g
~ c 0.6
Q
- AV,
O =
= = 0.4 -
3 z
I 02 I
1 100 10000 1 100 1000
Number of hypotheses considered Number of hypothesas considered
sampling sampling

beam 5 - heam 200 - reference

(max by model prob.) (max by oracle BLEU)

e Increasing the beam width does not increase BLEU, while probability increases.
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60 -

Sentence BLEU
Avg. token prob.

40 -
20
1 100 10000 1000
Number of hypotheses considered Number of hypotheses considered

sampling sampling
(max by model prob.) (max by oratle BLEU)

—_— heam 5 - heam 200 - reference

e Increasing the beam width does not increase BLEU, while probability increases.

e Sampling can find hypotheses with similar logprob but:
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100 === ———— ]
- o
L 80 - O
n_D, 80 2
-
: g
5 =
C .
& / 2
1 100 10000 1000
Number of hypotheses/considered Number of hypotheses considered
sampling sampling
(max by model prob.) (max by orgtle BLEU) beam5 -~ beam 200 - reference

e Increasing the beam wrdth does not increase BLEU, while probability increases.

e Sampling can findfypotheses with similar logprob but:
e |ower BLEU
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100 === ———— 1
D o
L 80 - O
n_D, 80 o
-
: g
5 =
C .
& / 2
1 100 10000 1000
Number of hypotheses/considered Number of hypotheses considered
sampling sampling
(max by mogdel prob.) ~ (max by ogpatle BLEU) — pbeam 5 - peam 200 - reference

e |ower BLEU
e it’s 20x less inefficient
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- 0.8 A
) o
80 - o
- c 0.6
¢ )
- AV,
O =
= = 0.4 -
3 z
I 02 I
1 100 10000 1 100 1000
Number of hypotheses Lonsidered Number of hypotheses considered
sampling sampling

—_— heam 5 - heam 200 - reference

(max by mode)/ prob.) (max by oracle BLEU)

e Increasing the beam width/does not increase BLEU, while probability increases.
e Sampling can find hypotheses with similar logprob but...

e Among the generated hypotheses, there exist at least one that is pretty close to the reference.
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Beam search is very effective and efficient.
However, large beams yield worse BLEU!
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e Beam 200/sampling 10K cover only about 22% of the total probability mass
Where is the rest?
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Model distribution has a lot of uncertainty.
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Puzzling Observations

e Increasing beam size hurts performance in terms of BLEU.

e Large beam accounts only for fraction of total probability mass.
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Scatter Plot of Samples
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Scatter Plot of Samples

Source #115 (red):

The first nine episodes of Sheriff [unk]'s Wild West

| will be available from November 24 on the site [unk]
or via its application for mobile phones and tablets.

Target #115 (red):

Les neuf premiers épisodes de [unk] [unk] s Wild
West seront disponibles a partir du 24 novembre sur
le site [unk] ou via son application pour téléphones
et tablettes.

High-logp low BLEU sample:

The first nine episodes of Sheriff [unk] s Wild West
will be available from November 24 on the site [unk]
or via its application for mobile phones and tablets.
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Scatter Plot of Samples

Source #115 (red):

| The First nine episodes of Sheriff [unk]'s Wild West
will be available from November 24 on the site [unk]
or via its application for mobile phones and tablets.

logprob
&

Target #115 (red):

b S S N T S —
fo oo z z s : s z . , .
et | | g N+ - sent#115 Les neuf premiers épisodes de [unk] [unk] s Wild
_5_.'5. ............. .............. ............. .............. ..... N Sent#410 [ \Aest seront disponib|es ] par’[ir du 24 novembre sur
et z z ; |+ \ Sent #2061 : : : : L1 2
N . Sent #2375 le site [unk] ou via son application pour téléphones
-6 i i i i i —— et tablettes.
0 10 20 30 40 50 60 0 80
BLEU

High-logp low BLEU sample:

MOdG' generates copies Of The first nine episodes of Sheriff [unk] s Wild West
source sentence! will be available from November 24 on the site [unk]

Whyv d b find this? or via its application for mobile phones and tablets.
y aoes beam 1in IS
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Uncertainty <—> Search

e Hard to characterize how uncertainty affects search in general.
e \We can however simulate (extrinsic) uncertainty:
e add fraction of “copy noise” and check effects on search.
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Uncertainty <—> Search

BLEU on valid set

20
15 A
10 4 —— Beam 1
—— Beam 5
—a— Beam 10
> 7 —e— Beam 20
0.0 0.001 0.01 0.1

Prob. of copy In train set
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A
|

Beam 20
Beam 10

Beam 1
Reference

0.01 0.1
Prob. of copy in the train set

Large beams are more prone to copy the
source, hence the lower BLEU.



Uncertainty <—> Search

*Source: The first nine episodes of Sheriff <unk> ’'s Wild West
will be available from November 24 on the site <unk> or via
1ts application for mobile phones and tablets

*Target (reference): Les neuf premiers épisodes de <unk> <unk> s Wild
West seront disponibles a partir du 24 novembre sur le site
<unk> ou via son application pour téléphones et tablettes

Sample: The first nine episodes of Sheriff <unk> s Wild West
will be available from November 24 on the site <unk> or via
1ts application for mobile <unk> and tablets
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Uncertainty <—> Search

Source: The first nine episodes of Sheriff <unk> ’'s Wild West
will be available from November 24 on the site <unk> or via
1ts application for mobile phones and tablets

Target (reference): Les neuf premlers épisodes de <unk> <unk> s Wild

TalAacmdesE coavarndE Aa svmarnalnl aAas A aaeandeaq an
log probs: -4.53 -0.02 -0.28 -0.11  -0.01 -0.001 -0.004 -0.002 -0.001 -0.905

Sample: The first nine episodes of Sheriff <unk> s Wild West
will be available from November 24 on the site <unk> or via
1ts application for mobile <unk> and tablets

Inductive bias:
NMT + attention has easy time to learn how to copy!
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Uncertainty <—> Search

—o— reference
—— peam 5
- = COpYyIng source

Avg. token prob.

1 5 10 15
Position In sentence

Initial tokens pay big penalty, but afterwards copying the
source is cheap. Only large beams can discover this.



Uncertainty <—> Search

e On WMT’14 En-Fr: ~2% of the training target sentences are
copies of the corresponding source.

e Beam@?1 yields copies 2.6% of the time.
e Beam@?20 yields copies 3.5% of the time.
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Fixing Search

e Filtering the data with model trained on “clean data” to remove

copies from training set.
¢ Constrain beam search not to output too many words from the

source sentence.
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Fixing Search

BLEU
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Search & Uncertainty

e Search works very well, i.e. beam finds likely model hypotheses.

e However, it can find noisy sentences (model is wrong), that are
merely due to noise in the data collection process.

e This explains why BLEU deteriorates for large beams.

e There are easy fixes.
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Puzzling Observatlons

06
e Increasing beam size hurk 8%(& ice in terms of BLEU.

\)(\

e Large beam accounts on\y for fraction of total probability mass.
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Outline

e Data uncertainty

e Search
¢ Analyzing the model distribution
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Model Distribution

Check match between model and data distribution is challenging:

e Foragiven source sentence, we typically observe only one sample
from the data distribution (the provided reference).

e Enumeration of all possible sequences using the data distribution is
intractable anyway.

We would like to:

e check how closely model and data distribution match
e understand when they differ and why
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Anecdotal Example

In the training set, some source sentences appear many times.
Use corresponding targets to estimate the underlying data distribution!

EXAMPLE
Source: ( The president cutoff the speaker) .

Appears 798 times on the training set with 36 unique translations.

0.3

daté
mode| ——e—

0.25

For this source sentence,
0.15 model and data distribution

R match very well!
0.05
0 85

5 10 15 20 25 30 35

o
V)

Probability

o
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Analysis Tools

Token level fitting
Sentence level calibration
Set level calibration

Other necessary conditions
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Token Level: Matching Unigram Stats

16%
B reference
B beam b5

Bl sampling

=
N
X

-
N
X

-
-
X

00
X

Frequency In train set

MLl

WMT’17 En-De 10 20 30 40 50 60 70 80 90100

Freguency percentile in train

news-comm. portion
<hrare words common words g >

Model grossly under-estimate rare words.
Beam over-estimates frequent words, as expected.



Token Level: Matching Unigram Stats

16%
B reference
B beam b5

129 | I sampling

00
X

Frequency In train set

6%
WMT’17 En-De 10 20 30 40 50 60 70 80 90100

Freguency percentile in train

news-comm. portion
<hrare words common words g >

Model grossly under-estimate rare words.
Beam over-estimates frequent words, as expected.



Token Level: Matching Unigram Stats

WMT'17 En-De news-comm. portion WMT'14 En-Fr

o 16% | | | | | | | | | | e 16% | | | | | | | | | I
4 . B reference 4 . B reference
.% 14% 1" mmm beam 5 .% 14% " mmm beam 5
S 10, | HEE sampling S 10, | HEE sampling
- -
> >
O O —
- -
Q Q
) )
O O
Y Y
L L
20 30 40 50 60 70 80 90100
Frequency percentile in train Frequency percentile in train
<brare words common words o> <brare words common words o>
e ~300K parallel sentences e ~35M parallel sentences
e 21 BLEU on test « 41 BLEU on test
« median freq. in 10% bin: 12 « median freq. in 10% bin: 2500

More data & better model close the gap, but rare words
are still under-estimated.



Token Level: Matching Unigram Stats

WMT'17 En-De news-comm. portion WMT'14 En-Fr
16% | | | | | | | | | | e 16% | | | | | | | | | |
. B reference a . B reference
14% " mmm peam 5 .% 14% - mmm peam 5
129, | HEE sampling S 10, | HEE sampling
-
:>; -
-
()
-
0
L

Frequency in train set

20 30 40 50 60 70 80 90100

Frequency percentile in train
<hrare words common words o>

~300K parallel sentences
21 BLEU on test

median freq. in 10% bin: 12 .

Match may look
within each of

Frequency percentile in train
<hrare words common words o>

e ~35M parallel sentences
« 41 BLEU on test
median freq. in 10% bin: 2500

oetter than it is If model shifts probability mass

these buckets, let's take a closer look then...
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Sentence Level Calibration

1.0

Copy source sentences at a given rate
during training, check whether probabillity
assigned by the model to copies matches
the copy production rate.

0.1 -

0.01 -

rate

0.001
—— perfect match

—e— partial (incl. exact) copy
—e— exact copy

0.0001

0.001 0.01 0.1 0.5

Pnoise

NMT model under-estimates copy probability at low rates,
while it over-estimates it at high rates.
Model spills probability mass on partial copies.
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Set Level Calibration

Prob. of reference

1.0

— Perfect calibration
—0O— Beam 200 (valid)
0.1 4+ —o— Beam 200 (test)

L |z € S} = pm(5)

L~YPd

where S is the set of hypotheses
produced by beam.

0.001 -

I | |
0.001 0.1 1.0
Model probability

NMT model is very well calibrated at the set level.



Distance Matching

En-Fr En-De

human 44 5 32.1

NMT 28.0 24.2

NMT model produces samples that have low BLEU and
that are too diverse. Model spreads probability mass.



Distance Matching

. [BLEU(y,y')] = i [BLEU(y,y')]

Yy~pd,y’ ~pq Y~Dm Y ~Dm

En-Fr En-De

NMT model produces samples that have low BLEU and
that are too diverse. Model spreads probability mass.



Multi-Reference Experiments

Beam@5 Beam@200 200 Samples

single reference 41.4 36.2 38.2

..............................................................................................................................................................................................................................................................................................................

..............................................................................................................................................................................................................................................................................................................

average BLEU @ver all hypotheS|s of beam/sampling
- with closest ref ’

..............................................................................................................................................................................................................................................................................................................

average oracle

coverage number of unlque references u:sing in matching

We collected 10 additional references tor 500 randomly selected source
sentences from the test set. o3



Multi-Reference Experiments

Beam@5 Beam@200 200 Samples
single reference 41.4 36.2 38.2
oracle reference| 70 oo | st
““““ awerage oracle | 65.
““““““““““ coverage
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Multi-Reference Experiments

Beam@5 Beam@200 200 Samples
single reference 41.4 36.2 38.2
oraclereterence| /702 | 0 | st
““““ awersgeorscle | | 657 | | s
““““““““““ oversge | \1s/ | so

Beam produces outputs close to an actual reference.
Lower scoring hypotheses are not far from a reference.
However, they often map to the same reference.



Multi-Reference Experiments

Beam@5 Beam@200 200 Samples
single reference 41.4 36.2 38.2
oracle reference| 70 o | fa\
““““ awerageorscle | 6.7
““““““““““ coverage

Sampling is more diverse but several samples poorly
match any given reference. Mass is spread too much.



Conclusions

e Uncertainty in data: intrinsic/extrinsic
e Search: works really well. For large beams, we find spurious modes,
but we know how to fix it!
e Model & Data distribution: model is surprisingly well calibrated. In
general, it spreads probability mass too much compared to the data
distribution.
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Come work with us!
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