Discovering Bugs in NLP Models Using Natural Perturbations

Sameer Singh

Stanford University

May 2nd, 2019

What is the population of the capital of New York?

circa 2005

News results for population of New York

UN: World Population Aging Rapidly In Developing Countries - RFE/RL https://www.rferl.org/a/1099361.html -

Apr 10, 2002 - A weeklong UN conference in Madrid is warning that the world's population is aging rapidly, with people aged 60 and older poised to ...

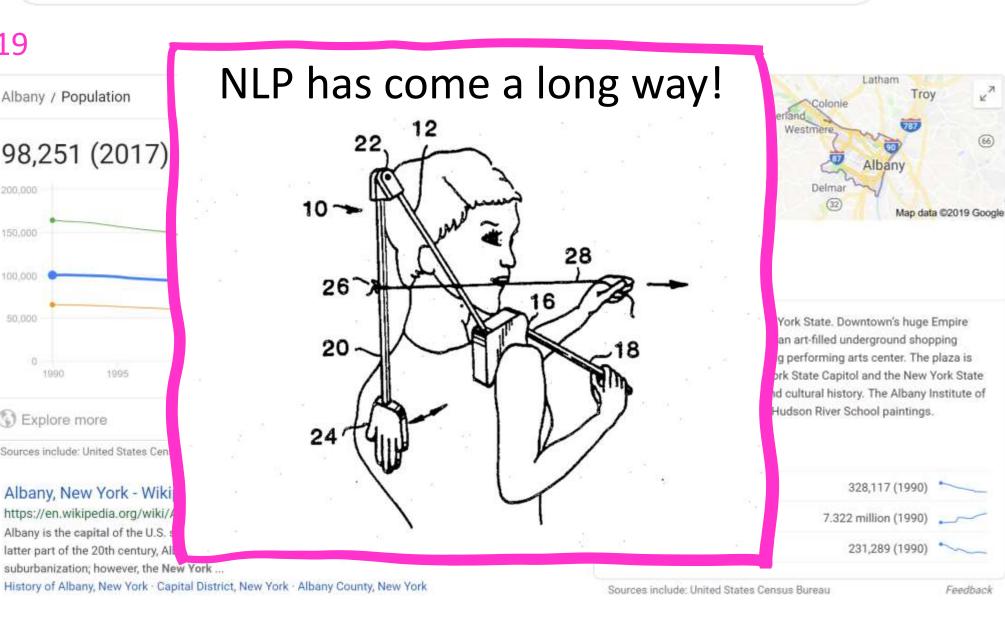
The town of the talk - The Economist

https://www.economist.com/special-report/2005/02/19/the-town-of-the-talk *

Feb 19, 2005 - The town of the talk. After the twin-tower nightmare, New York is back on form, says Anthony Gottlieb (interviewed here) ...

2019

Albany, New York - Wiki https://en.wikipedia.org/wiki// Albany is the capital of the U.S. latter part of the 20th century, All suburbanization; however, the New York



Feedback

But we know models remain brittle...

Anton van den Hengel, ACL 2018

Jia and Liang, EMNLP 2017

Article: Super Bowl 50

Paragraph: "Peyton Manning became the first quarterback ever to lead two different teams to multiple Super Bowls. He is also the oldest quarterback ever to play in a Super Bowl at age 39. The past record was held by John Elway, who led the Broncos to victory in Super Bowl XXXIII at age 38 and is currently Denver's Executive Vice President of Football Operations and General Manager. Quarterback Jeff Dean had jersey number 37 in Champ Bowl XXXIV."

Question: "What is the name of the quarterback who was 38 in Super Bowl XXXIII?" Original Prediction: John Elway Prediction under adversary: Jeff Dean

SQUAD

Context

Original Reduced

Confidence

In 1899, John Jacob Astor IV invested \$100,000 for Tesla to further develop and produce a new lighting system. Instead, Tesla used the money to fund his Colorado Springs experiments.

Feng et al, EMNLP 2018

What did Tesla spend Astor's money on ? did $0.78 \rightarrow 0.91$

How do we discover bugs in NLP?

A **software bug** is an error, flaw, failure or fault in a computer program or system that causes it to produce an incorrect or unexpected result, or to behave in unintended ways.

Original Data NLP Pipeline Perturb it in a specific way Changed Data NLP Pipeline Unexpected Prediction!

Outline

Changing individual instances

Semantically Equivalent Adversaries

Semantically Implied Adversaries

Universal Adversaries

Changing training data

Link Prediction Adversaries

Outline

Changing individual instances

Semantically Equivalent Adversaries

Semantically Implied Adversaries

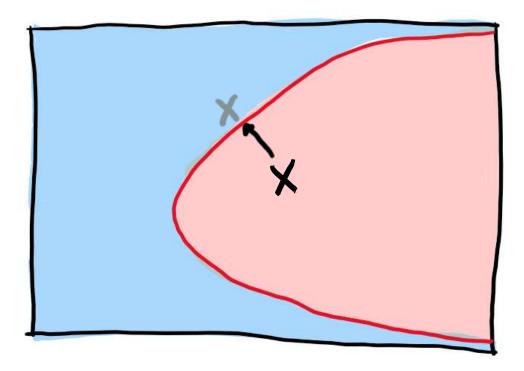
Universal Adversaries

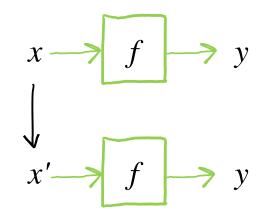
Changing training data

Link Prediction Adversaries

ACL 2018

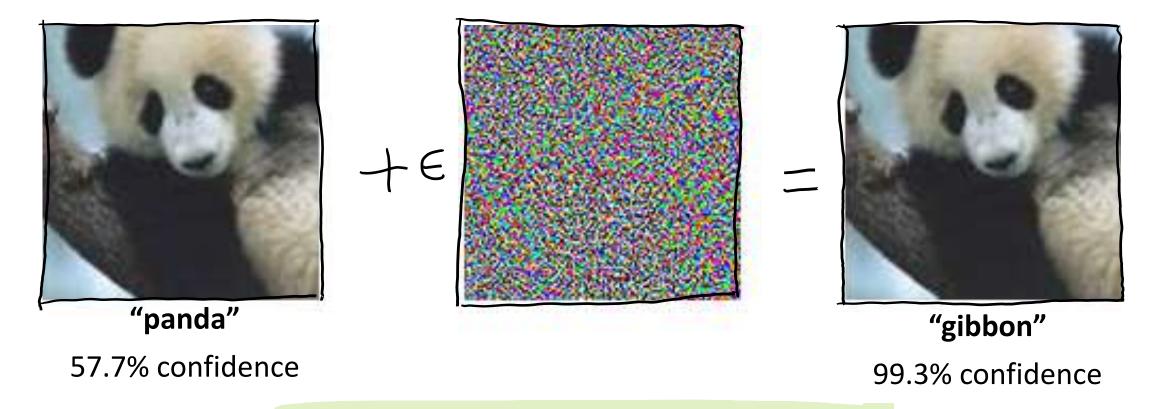
Adversarial Examples: Oversensitivity





Find closest example with different prediction

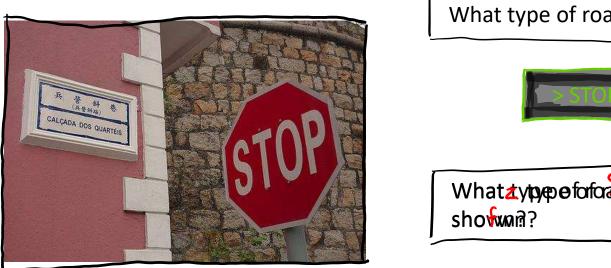
Oversensitivity in images



Adversaries are indistinguishable to humans...

But unlikely in the real world (except for attacks)

What about text?



Perceptible by humans, unlikely in real world

What about text?

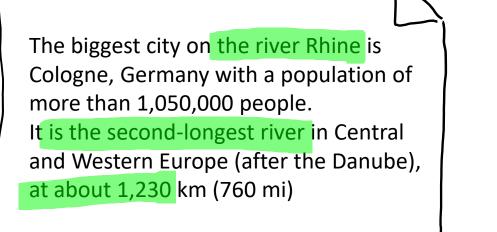


A single word changes too much!

Semantics matter

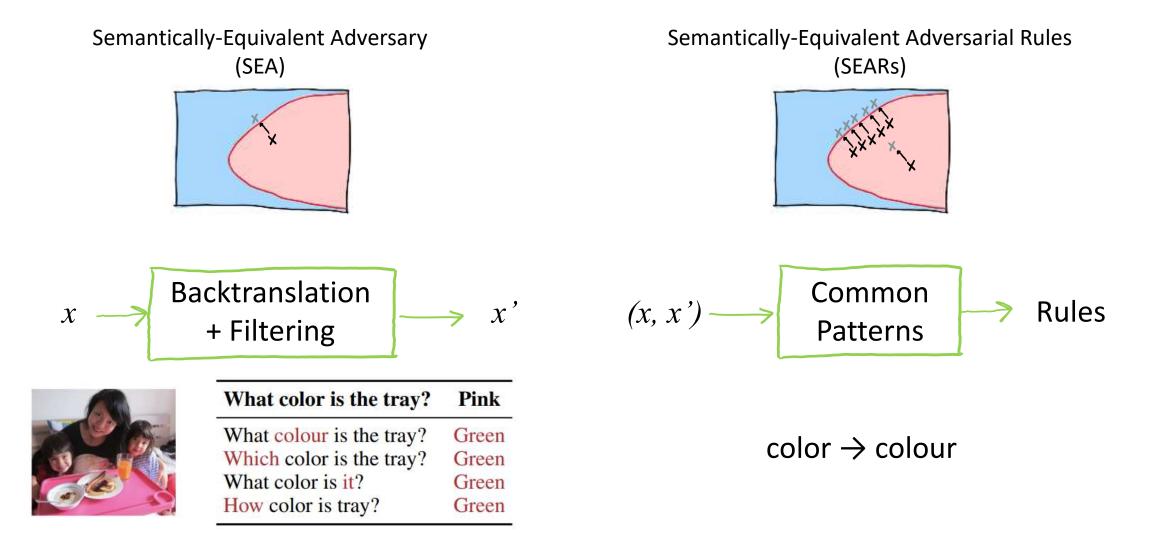
Bug, and likely in the real world

Semantics matter



Not all changes are the same: meaning should be same

How do we do this?



SEARs Examples: VisualQA

SEAR	Questions / SEAs	f(x)	Flips
WP VBZ \rightarrow WP's	What has What's been cut?	Cake Pizza	3.3%
What NOUN → Which NOUN	What-Which kind of floor is it?	Wood Marble	3.9%
color \rightarrow colour	What color colour is the tray?	Pink Green	2.2%
ADV is → ADV's	Where is Where's the jet?	Sky Airport	2.1%

Visual7a-Telling [Zhu et al 2016]

SEARs Examples: SQuAD

SEAR	Questions / SEAs	f(x)	Flips
What VBZ → What's	What is What's the NASUWT?	Trade union Teachers in Wales	2%
What NOUN → Which NOUN	What resource Which resource was mined in the Newcastle area?	coal wool	1%
What VERB → So what VERB	What was So what was Ghandi's work called?	Satyagraha Civil Disobedience	2%
What VBD→ And what VBD	What was And what was Kenneth Swezey's job?	journalist sleep	2%

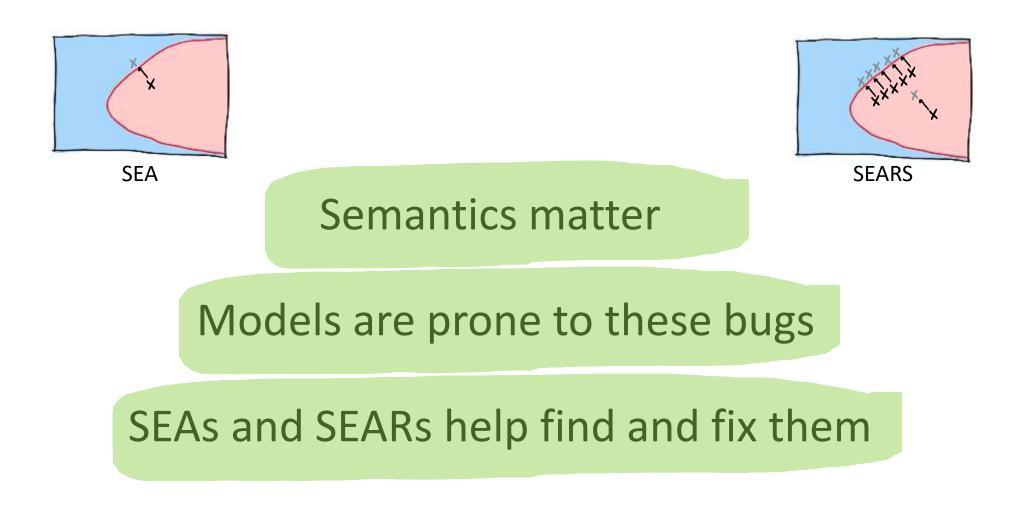
BiDAF [Seo et al 2017]

SEARs Example: Sentiment

SEAR	Reviews / SEAs	f(x)	Flips	
	Yeah, the movie film pretty much sucked .	Neg Pos	2%	
movie \rightarrow mm	This is not <i>movie</i> film making .	Neg Pos		
	Excellent film movie .	Pos Neg	10/	
$film \rightarrow movie$	I'll give this <i>film</i> movie 10 out of 10 !	Pos Neg	1%	
	Ray Charles is was legendary .	Pos Neg	40/	
is → was	It is was a really good show to watch .	Pos Neg	4%	
this → <mark>that</mark>	Now this that is a movie I really dislike .	Neg Pos	10/	
	The camera really likes her in this that movie.	Pos Neg	1%	

fastText [Joulin et al., 2016]

Semantic Adversaries



Outline

Changing individual instances

Semantically Equivalent Adversaries

Semantically Implied Adversaries

Universal Adversaries

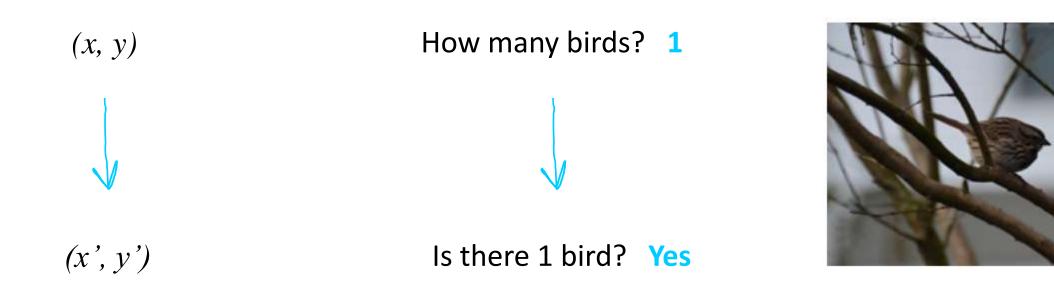
Changing training data

Link Prediction Adversaries

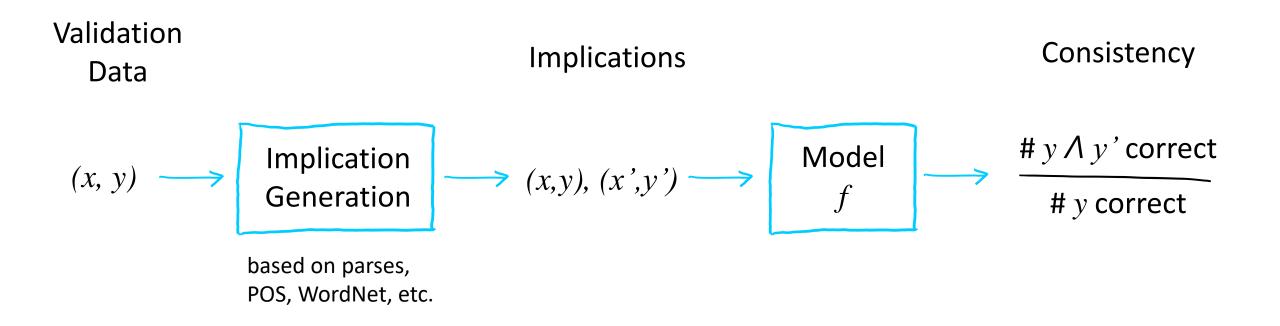
ACL 2019

Consistency in predictions

So far, we have considered equivalence, i.e. $(x, y) \rightarrow (x', y)$



Evaluating Implication Consistency



Visual QA

(*x*, *y*): What room is this? **bathroom**

Logical Equivalence	57%	
(x', y'): Is this a bathroom? Yes		
Necessary Condition (x', y'): Is there a bathroom in the picture? Yes	50%	67%
		97% are valid!
Mutual Exclusion		
(x', y'): Is this a kitchen? No	35%	

Visual QA Results

Model	Acc	LogEq	Mutex	Nec	Avg	
SAAA (Kazemi, Elqursh, 2017)	61.5	76.6	42.3	90.2	72.7	
Count (Zhang et al., 2018)	65.2	81.2	42.8	92.0	75.0	
BAN (Kim et al., 2018)	64.5	73.1	50.4	87.3	72.5	

Good at answer w/ numbers, but not questions w/ numbers e.g. How many birds? 1 (12%) \rightarrow Are there 2 birds? yes (<1%)

SQuAD

Subj	When did Zhenjin die? 1285 → Who died in 1285? <mark>Zhenjin</mark>	29%	
Dobj	When did Denmark join the EU? 1972 → What did Denmark join in 1972? the EU	10%	73%
Amod	When did the Chinese famine begin? 1331 → Which famine began in 1331? Chinese	30%	97% are valid!
Prep	Who received a bid in 1915? <mark>Edison</mark> → When did Edison receive a bid? 1915	46%	

SQuAD Results

			\sim			
Model	F1	Subj	Dobj	Amod	Prep	Avg
bidaf (Seo et al., 2017)	77.9	70.6	65.9	75.1	72.4	72.1
bidaf+e (Peters et al., 2018)	81.3	71.2	69.3	75.8	72.8	72.9
rnet (Wang et al., 2017)	79.5	68.5	67.0	74.7	70.7	70.9
Mnem (Hu et al., 2018)	81.5	70.3	68.0	75.8	71.9	72.2

Bad at questions with Wh-word as direct object e.g. Who is Moses? (53%) vs Who did Hayk defeat? (12%)

Implication Adversaries

- We shouldn't treat each prediction in isolation
 - Inconsistency leads to poor user experience
- Currently, rule-based system for generating them
- Already promising!
 - Reveals important bugs in the models
 - Even simple data augmentation is promising

Outline

Changing individual instances

Semantically Equivalent Adversaries

Semantically Implied Adversaries

Universal Adversaries

Changing training data

Link Prediction Adversaries

in preparation

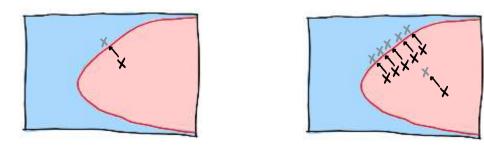
Universal Adversaries

How do we do this?

Textual Entailment

Language Modeling (GPTv2 small)

Changing Instances



- "Adversarial attacks" for NLP
 - Semantically Equivalent
 - Semantic Implications
 - Universal Tokens
- Useful for identifying different kinds of problems
 - Not all of them are traditional "bugs"
- General set of approaches that apply for most NLP models

Outline

Changing individual instances

Semantically Equivalent Adversaries

Semantically Implied Adversaries

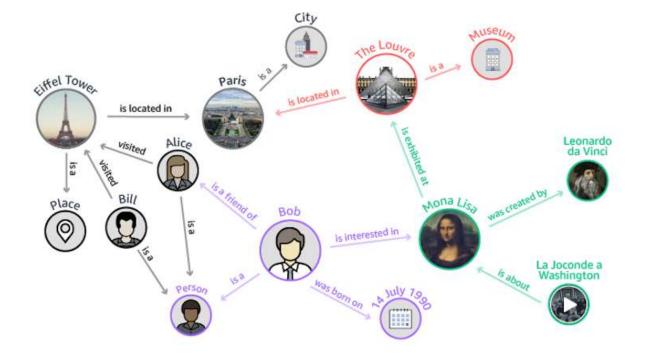
Universal Adversaries

Changing training data

Link Prediction Adversaries

NAACL 2019

Different Kind of Model: Link Prediction



Entity Prediction

5

Relation Prediction

Knowledge Base Completion

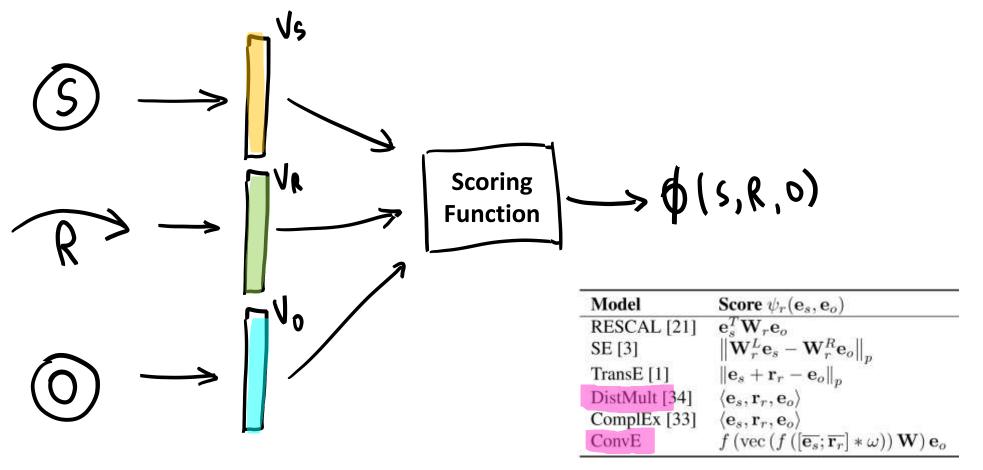
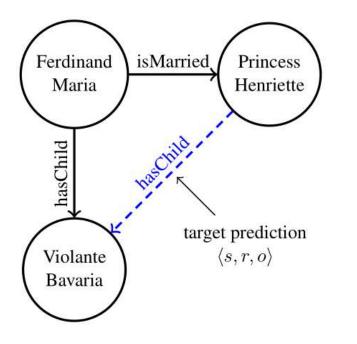


Table from Dettmers, et al. (2018)

Link Prediction Example

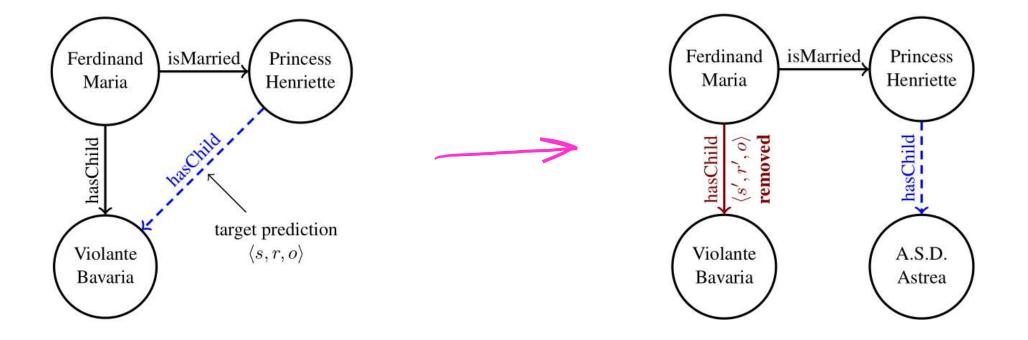


Why was this prediction made?

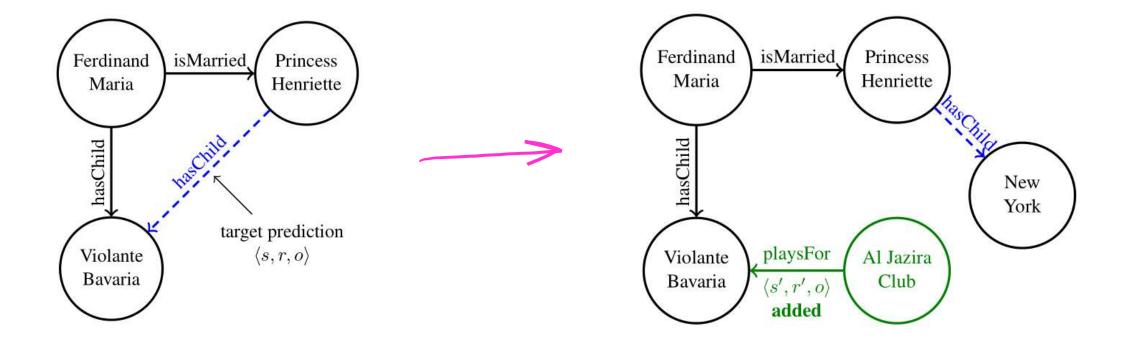
What is this sensitive to?

Depends on the graph structure!

Link Prediction: Removing a Link



Link Prediction: Adding a Link



How do we do it?

argmax $\phi(s,r,o) - \overline{\phi}(s,r,o)$ (s',r')

Original score Score after retraining

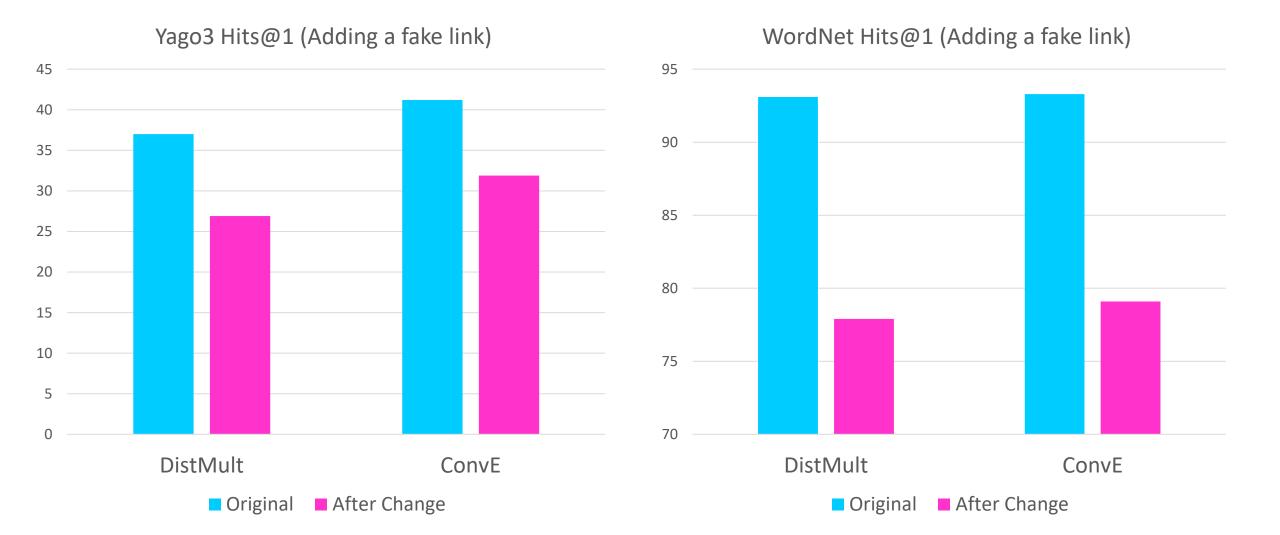
Link to add/remove from the graph

Retraining is too expensive!

Too many links to search!

Learn a continuous space of links, and search using gradient descent Taylor approximation, and utilize graph structure

Adding Links: How sensitive is the model?



Removing Links: Cause behind prediction

Summarize by rule mining on which edges are used

Bug in DistMult and ConvE isMarriedTo(a,c) \land hasChild(c,b) \Rightarrow hasChild(a,b)

playsFor(a,c) ∧ isLocatedIn(c,b) ⇒ wasBornIn(a,b)* isAffiliatedTo(a,c)∧ isLocatedIn(c,b) ⇒ diedIn(a,b)*

hasAdvisor(a,c) \land graduatedFrom(c,b) \Rightarrow graduatedFrom(a,b) influences(a,c) \land influences(c,b) \Rightarrow influences(a,b)

Only in ConvE

Only in DistMult

* Identified as rules by [Yang et. al. 2015]

Changing the training data

- Sometimes, "bugs" are problems in the training data/pipeline
 - Embeddings of all kinds, for example
- To find these bugs, you need to change the training data
 - And efficiently estimate the effect of retraining
- We show how to do that for link prediction

Outline

Changing individual instances

Semantically Equivalent Adversaries

Semantically Implied Adversaries

Universal Adversaries

Changing training data

Link Prediction Adversaries

Thanks!

sameer@uci.edu
sameersingh.org
@sameer

Work with Matt Gardner and me

as part of The Allen Institute for Artificial Intelligence in **Irvine**, CA

All levels: pre-PhD, PhD interns, postdocs, and research scientists!