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Is this email important?
- ‘Emails	from	my	boss	are	usually	important’
- ‘Such	emails	mention	a	deadline	or	a	meeting’
- ‘The	subject	might	say	urgent	...’	



Towards	Conversational	ML?
Ø Traditional	dependence	on	‘big	data’

ØWidely	successful	
Ø Infeasible	for	long	tail	of	learning	problems

Ø Inherent	statistical	limitations
Ø Coarsely, n	≈ log (H)

Ø Intractable	for	representations	like	
ontologies

Ø Extend	ML	to	richer	forms	of	input
ØExplanations,	instructions,	clarifications …
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Learning	from	Language
Ø Much	of	human	learning	is	through	language

Ø Think	books,	lectures,	student-teacher	dialogue
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Why	now?

• If	there	is	a	new	publication	relevant	to	my	current	
project,	email	it	to	me

• Whenever	it	snows	at	night,	wake	me	up		30	minutes	
earlier

• If	I	receive	a	late	night	email	from	my	advisor,	ring	
alarm	at	full	blast

Every user can be a programmer
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Core	issues
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Ø Learning	to	Interpret	NL
Ø Parsing	of	NL	statements	to	formal	semantic	representations

‘Emails	from	my	boss	are	
usually	important’

equals( email.sender, 
getContactEmail(“boss”) ) 

Semantic parsing

Ø Using	Language	to	Operationalize	Learning
Ø E.g.,	Learning	classification	tasks	from	language

Binary classification

{0,1}



① By defining expressive features for learning tasks
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② By specifying model constraints that can supervise training

Joint  Concept Learning and Semantic Parsing 
from Natural Language Explanations

EMNLP 2017

Zero-shot Learning of Classifiers from Natural 
Language Quantification

ACL 2018

How	can	language	operationalize	learning?



Part	1:	Defining	features	using	NL	
explanations
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Is this email important?

‘Emails	from	my	boss	are	usually	important’
‘Such	emails	mention	a	deadline	or	a	meeting’
‘The	subject	might	say	urgent	…’

Defining	features	using	NL

NL explanations Executable feature 
functions



Semantic parsing maps NL to formal logical forms
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Natural language 
statement (s)

‘three less than twenty times 
six’

‘What is the longest river 
that flows through 
Pittsburgh?’

Evaluate in a 
context (z = [l]x )

117

Ohio

‘Phishing emails often 
mention prices’

Logical form (l)

minus( prod(20, 6), 3 )

argmax( river(x) �
traverse(x,y) ��const(y, 
Pittsburgh), length)

findSemanticCategory( 
MONEY, field:body )

Yes/No

NL	Explanations	as	feature	definitions



How	to	interpret	explanations?
• Pragmatics	of	language	can	guide	parsing

– A	teacher’s	intention	would	be	use	discriminative	statements	
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NL	Explanation:	‘Phishing	emails	often	mention	prices’
Discriminative?

I1: findWord(‘prices’, body)

I2: findSemanticCategory(cat:MONEY, body)

Interpretation

Jointly learn a classifier and a semantic parser!

✓
✗

Don’t	need	annotated	logical	forms



s1 s2 sj sm Label

x1 1 0 1 0 y1
… … … … … …

xi 0 0 1 1 yi
… … … … … ---

xn 1 0 0 1 yn

s1 s2 sj sm Label

x1 z11 z12 z1j z1m y1
… …

xi zi1 zi2 zij zim yi
… ---

xn zn1 zn2 znj znm yn

Input

Latent variables

si è li  (parsing)

[li]xj è zij (evaluation)
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Problem	setting

No annotations of logical forms,  supervision is 
only through concept labels {0,1} for examples



Coupled	parsing	and	concept	classification
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s1 s2 sj sm Label

x1 z11 z12 z1j z1m y1
… …

xi zi1 zi2 zij zim yi
… ---

xn zn1 zn2 znj znm yn

Classifier Parser
How likely are the observed
concept labels, taking evaluations
of NL statements as given?

How probable is a NL statement to
apply for a given email (marginalized
over all interpretations)?

logP (yi|xi, s, ✓) = logP (yi|zi:, ✓pred) + logP (zi:|xi, s, ✓parse)

=
X

[l]xi=zij

P (l|sj)

Input



Model	training
Ø Variational EM:

Ø E- step:	Calculate	estimates	of	zij (evaluations	of	statements	in	
different	contexts)

ØM- step:	Updates	concept	classifier	and	semantic	parsing	models	
taking	zij ‘s	as	given.	
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Prefer	interpretations	of	sentences	that	are	both	discriminative	as	well	
as	supported	by	linguistic	evidence

Prefer values that are 
discriminative

Prefer interpretations supported 
by linguistic evidence

qj(zj) / exp
⇣

E
j0 6=j

[log p✓c(y|z, x)] + log p✓p(zj |x, sj)
⌘
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Update parameters

✓c

ypred

Classifier

Parser ✓p

Learning
Algorithm

Update parameters

ytrue

Executable
feature functions [l]

stringMatch(body stringVal (`prices’))
<<Latent logical form>>

Instance feature
Vector [z]

Feature
Evaluator

Instance  

z

x

Natural language
Statements [s]

Phishing emails often contain mentions of prices

Concept to Learn: Phishing Emails

findSemanticCategory(body cat:MONEY)
<<Latent logical form>>



Data:	Email	classification
Ø Emails	representing	common	email	categories	through	AMT
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E.g. You are writing an email to yourself as a reminder to do something

Ø Reminders,	meeting	invitations,	requests	from	boss,	internet	humor,	going	
out	with	friends,	policy	announcements,	etc.

Ø 1100	emails,	7	types

Subject: Note to self - Move the Bodies

From: john@initech-corp.com

To:  john@initech-corp.com

Body: Blasted police. I need to pick up lye and move the bodies 
tonight. Forecast is rain and the swamp's filling up.  Need to 
remember galoshes, too.

Attachment: none

mailto:john@initech-corp.com
mailto:john@initech-corp.com


Data:	NL	Explanations
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Ø Dataset	of	statements	explaining	each	
concept

Ø Turkers describe	emails	from	each	
category

Ø 30	statements	for	each	category

Most	reminders	mention	a	date	and	a	time	in	the	message	of	the	email
The	sender	of	the	email	is	the	same	as	the	recipient
These	emails	usually	close	with	a	name	or	title
These	emails	sometimes	have	jpg	attachments
The	email	likely	has	words	like	"policy"	or	"announcement"	in	the	subject
Emails	from	a	public	domain	are	not	office	requests

Sample explanations:



Results:	Email	classification
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Average F1 across concepts

Av
er

ag
e 

F1

Ø Significantly	better	than	best	baseline	for	6	of	7	categories



Learning	from	fewer	examples
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Ø LNL	consistently	outperforms	BoW,	especially	with	fewer	examples
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Predicted logical forms are often highly correlated

getPhraseMention( email, stringVal(‘meeting’)) 
getPhraseMention( body, stringVal(‘meeting’))

Pa
rs

in
g 

ac
cu

ra
cy

(E
xa

ct
 m

at
ch

)

Ø Baseline	(red):	traditional	supervised	model	trained	on	statements	
paired	with	logical	forms

0
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0.8

Full Supervision
LNI
No Training

Results:	Semantic	Parsing
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Summary
Ø NL explanations can define executable feature functions that 

improve concept learning performance

Ø Pragmatic context can guide learning of semantic parsers 
even with very weak supervision (class-labels only)

Ø Each domain requires specifying a DSL (one-time effort)
Ø Reusable across long tail of categories 



Part	2:	Incorporating	model	
constraints	from	NL
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NL	advice	as	defining	model	constraints

Ø Potentially	enable	learning	without	labeled	examples?
Ø Leverage	quantifier	expressions	in	language
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Emails that I reply to are usually
important

x   (email.replied == true)
y important:true

Semantic
Parser

θ
Unlabeled data

f : x → y
Classifier

Posterior Regularization

Ey|x[�(x, y)] = busually

Sequential	Approach

Mapping language to 
quantitative constraints

Incorporating constraints 
in model training
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Emails that I reply to are usually
important

x   (email.replied == true)
y important:true

Semantic
Parser

Unlabeled data

Classifier

Posterior Regularization

Ey|x[�(x, y)] = busually

Sequential	Approach

Mapping language to 
quantitative constraints
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Training	classifiers	from	declarative	NL
Ø Explanations	encode	multiple	properties	that	can	aid	
statistical learning
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‘Emails	that	I	reply	to are	usually important’
1. Features important for a learning problem

ü x  : repliedTo:true

2. Class labels
ü y : Important

3. Type of  Relationship b/w features and labels
ü P(y|x)

4. Strength of  Relationship
ü Specified by quantifier?



Ø Novelty	largely	in	identifying	the	type	of	the	assertion
Ø Primarily depends on syntactic features 

ü Features based on dependency paths
ü Presence/absence of  negation words
ü Identifying active/passive voice
ü Order of  occurrence of  triggers for x and y
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Semantic	parsing

‘Emails that I reply to are usually important’

P (important| replied:true) ≈ pusually

Ø Constraint	types:
i. About a third of  the emails that I get are important : P(y)
ii. Emails that I reply to are usually important :  P(y|x)
iii. I almost always reply to important emails : P(x|y)
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Semantic	parsing

Frequency quantifier Probability value
always , certainly , definitely , all 0.95
usually , normally , generally , likely 0.70
most , majority 0.60
often , half 0.50
many 0.40
sometimes , frequently , some 0.30
few , occasionally 0.20
rarely , seldom 0.10
never 0.05

Ø Purely subjective beliefs, not calibrated on any data

ØLeverage semantics of  linguistic quantifiers
Ø Associate point probability estimates for  frequency adverbs and determiners



x   (email.replied == true)
y important:true

Semantic
Parser

θ
Unlabeled data

f : x → y
Classifier

Posterior Regularization

Ey|x[�(x, y)] = busually

Sequential	Approach

Incorporating constraints 
in model training
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Posterior	Regularization
Ø Use the posterior regularization (PR) principle to imbue 

human-provided advice in learned models
Ø Unobserved class labels as latent variables

Ø PR optimizes a latent variable model subject to a set of  
constraints on the posterior distribution 
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p✓(y | x)

y1 = ?

y2 = ?

y3 = ?

Q
(Constraint 

set)
qX(Y )

<latexit sha1_base64="zMv8NJBZ6RFA4Ix2Hu4gCAD9p44=">AAAB73icbVBNTwIxEJ3iF+IX6tFLIzHBC9k1JnokevGIicAa2JBu6UJDt7u0XROy4U948aAxXv073vw3FtiDgi+Z5OW9mczMCxLBtXGcb1RYW9/Y3Cpul3Z29/YPyodHLR2nirImjUWsvIBoJrhkTcONYF6iGIkCwdrB6Hbmt5+Y0jyWD2aSMD8iA8lDTomxkjfuZd60+njeK1ecmjMHXiVuTiqQo9Erf3X7MU0jJg0VROuO6yTGz4gynAo2LXVTzRJCR2TAOpZKEjHtZ/N7p/jMKn0cxsqWNHiu/p7ISKT1JApsZ0TMUC97M/E/r5Oa8NrPuExSwyRdLApTgU2MZ8/jPleMGjGxhFDF7a2YDoki1NiISjYEd/nlVdK6qLlOzb2/rNRv8jiKcAKnUAUXrqAOd9CAJlAQ8Ayv8IbG6AW9o49FawHlM8fwB+jzB3hqj5Q=</latexit><latexit sha1_base64="zMv8NJBZ6RFA4Ix2Hu4gCAD9p44=">AAAB73icbVBNTwIxEJ3iF+IX6tFLIzHBC9k1JnokevGIicAa2JBu6UJDt7u0XROy4U948aAxXv073vw3FtiDgi+Z5OW9mczMCxLBtXGcb1RYW9/Y3Cpul3Z29/YPyodHLR2nirImjUWsvIBoJrhkTcONYF6iGIkCwdrB6Hbmt5+Y0jyWD2aSMD8iA8lDTomxkjfuZd60+njeK1ecmjMHXiVuTiqQo9Erf3X7MU0jJg0VROuO6yTGz4gynAo2LXVTzRJCR2TAOpZKEjHtZ/N7p/jMKn0cxsqWNHiu/p7ISKT1JApsZ0TMUC97M/E/r5Oa8NrPuExSwyRdLApTgU2MZ8/jPleMGjGxhFDF7a2YDoki1NiISjYEd/nlVdK6qLlOzb2/rNRv8jiKcAKnUAUXrqAOd9CAJlAQ8Ayv8IbG6AW9o49FawHlM8fwB+jzB3hqj5Q=</latexit><latexit sha1_base64="zMv8NJBZ6RFA4Ix2Hu4gCAD9p44=">AAAB73icbVBNTwIxEJ3iF+IX6tFLIzHBC9k1JnokevGIicAa2JBu6UJDt7u0XROy4U948aAxXv073vw3FtiDgi+Z5OW9mczMCxLBtXGcb1RYW9/Y3Cpul3Z29/YPyodHLR2nirImjUWsvIBoJrhkTcONYF6iGIkCwdrB6Hbmt5+Y0jyWD2aSMD8iA8lDTomxkjfuZd60+njeK1ecmjMHXiVuTiqQo9Erf3X7MU0jJg0VROuO6yTGz4gynAo2LXVTzRJCR2TAOpZKEjHtZ/N7p/jMKn0cxsqWNHiu/p7ISKT1JApsZ0TMUC97M/E/r5Oa8NrPuExSwyRdLApTgU2MZ8/jPleMGjGxhFDF7a2YDoki1NiISjYEd/nlVdK6qLlOzb2/rNRv8jiKcAKnUAUXrqAOd9CAJlAQ8Ayv8IbG6AW9o49FawHlM8fwB+jzB3hqj5Q=</latexit><latexit sha1_base64="zMv8NJBZ6RFA4Ix2Hu4gCAD9p44=">AAAB73icbVBNTwIxEJ3iF+IX6tFLIzHBC9k1JnokevGIicAa2JBu6UJDt7u0XROy4U948aAxXv073vw3FtiDgi+Z5OW9mczMCxLBtXGcb1RYW9/Y3Cpul3Z29/YPyodHLR2nirImjUWsvIBoJrhkTcONYF6iGIkCwdrB6Hbmt5+Y0jyWD2aSMD8iA8lDTomxkjfuZd60+njeK1ecmjMHXiVuTiqQo9Erf3X7MU0jJg0VROuO6yTGz4gynAo2LXVTzRJCR2TAOpZKEjHtZ/N7p/jMKn0cxsqWNHiu/p7ISKT1JApsZ0TMUC97M/E/r5Oa8NrPuExSwyRdLApTgU2MZ8/jPleMGjGxhFDF7a2YDoki1NiISjYEd/nlVdK6qLlOzb2/rNRv8jiKcAKnUAUXrqAOd9CAJlAQ8Ayv8IbG6AW9o49FawHlM8fwB+jzB3hqj5Q=</latexit>

E – step 
Infer label assignments for 

unlabeled data,  regularized 
by NL constraints

M – step 
Update classifier 

parameters using 
inferred labels as given

p✓c(Y |X)
<latexit sha1_base64="r2xq5Suxvhh23+soGl74X4o56X8=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WSxCvZREBD0WvXisYD+kDWGz3bRLN5uwO1FK2p/ixYMiXv0l3vw3btsctPXBwOO9GWbmBYngGhzn2yqsrW9sbhW3Szu7e/sHdvmwpeNUUdaksYhVJyCaCS5ZEzgI1kkUI1EgWDsY3cz89iNTmsfyHsYJ8yIykDzklICRfLuc+FkPhgyIT6fVh0nnzLcrTs2ZA68SNycVlKPh21+9fkzTiEmggmjddZ0EvIwo4FSwaamXapYQOiID1jVUkohpL5ufPsWnRunjMFamJOC5+nsiI5HW4ygwnRGBoV72ZuJ/XjeF8MrLuExSYJIuFoWpwBDjWQ64zxWjIMaGEKq4uRXTIVGEgkmrZEJwl19eJa3zmuvU3LuLSv06j6OIjtEJqiIXXaI6ukUN1EQUPaFn9IrerIn1Yr1bH4vWgpXPHKE/sD5/AP7Yk84=</latexit><latexit sha1_base64="r2xq5Suxvhh23+soGl74X4o56X8=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WSxCvZREBD0WvXisYD+kDWGz3bRLN5uwO1FK2p/ixYMiXv0l3vw3btsctPXBwOO9GWbmBYngGhzn2yqsrW9sbhW3Szu7e/sHdvmwpeNUUdaksYhVJyCaCS5ZEzgI1kkUI1EgWDsY3cz89iNTmsfyHsYJ8yIykDzklICRfLuc+FkPhgyIT6fVh0nnzLcrTs2ZA68SNycVlKPh21+9fkzTiEmggmjddZ0EvIwo4FSwaamXapYQOiID1jVUkohpL5ufPsWnRunjMFamJOC5+nsiI5HW4ygwnRGBoV72ZuJ/XjeF8MrLuExSYJIuFoWpwBDjWQ64zxWjIMaGEKq4uRXTIVGEgkmrZEJwl19eJa3zmuvU3LuLSv06j6OIjtEJqiIXXaI6ukUN1EQUPaFn9IrerIn1Yr1bH4vWgpXPHKE/sD5/AP7Yk84=</latexit><latexit sha1_base64="r2xq5Suxvhh23+soGl74X4o56X8=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WSxCvZREBD0WvXisYD+kDWGz3bRLN5uwO1FK2p/ixYMiXv0l3vw3btsctPXBwOO9GWbmBYngGhzn2yqsrW9sbhW3Szu7e/sHdvmwpeNUUdaksYhVJyCaCS5ZEzgI1kkUI1EgWDsY3cz89iNTmsfyHsYJ8yIykDzklICRfLuc+FkPhgyIT6fVh0nnzLcrTs2ZA68SNycVlKPh21+9fkzTiEmggmjddZ0EvIwo4FSwaamXapYQOiID1jVUkohpL5ufPsWnRunjMFamJOC5+nsiI5HW4ygwnRGBoV72ZuJ/XjeF8MrLuExSYJIuFoWpwBDjWQ64zxWjIMaGEKq4uRXTIVGEgkmrZEJwl19eJa3zmuvU3LuLSv06j6OIjtEJqiIXXaI6ukUN1EQUPaFn9IrerIn1Yr1bH4vWgpXPHKE/sD5/AP7Yk84=</latexit><latexit sha1_base64="r2xq5Suxvhh23+soGl74X4o56X8=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WSxCvZREBD0WvXisYD+kDWGz3bRLN5uwO1FK2p/ixYMiXv0l3vw3btsctPXBwOO9GWbmBYngGhzn2yqsrW9sbhW3Szu7e/sHdvmwpeNUUdaksYhVJyCaCS5ZEzgI1kkUI1EgWDsY3cz89iNTmsfyHsYJ8yIykDzklICRfLuc+FkPhgyIT6fVh0nnzLcrTs2ZA68SNycVlKPh21+9fkzTiEmggmjddZ0EvIwo4FSwaamXapYQOiID1jVUkohpL5ufPsWnRunjMFamJOC5+nsiI5HW4ygwnRGBoV72ZuJ/XjeF8MrLuExSYJIuFoWpwBDjWQ64zxWjIMaGEKq4uRXTIVGEgkmrZEJwl19eJa3zmuvU3LuLSv06j6OIjtEJqiIXXaI6ukUN1EQUPaFn9IrerIn1Yr1bH4vWgpXPHKE/sD5/AP7Yk84=</latexit>



Probability	Assertions	as	PR	Constraints
Ø PR can handle linear constraints over distributions of  latent 

variables

31

Q := {qx(y) : Eq[�(x,y)]  b}

Type Example
P(y|x) Emails that I reply to are 

usually important

P(x|y) I almost always reply to 
important emails

P(y) About a third of all emails 
I get are important

Same as P(y|x), when x is a constant feature

Linear bounds on expected values of features 
under q

Ø Can convert each constraint type to this form:



Ø Each constraint from the semantic parser can be expressed in 
the form compatible with PR
Ø Conjunction of  all such constraints specifies Q

Ø Train with modified EM to maximize PR objective:
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JQ(✓) = L(✓)�min
q2Q

KL(q | p✓(Y |X))

Improve data likelihood Emulate human advice

Posterior	Regularization



Synthetic	shape	classification
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Ø Turkers observe samples of  shapes from synthetically 
generated datasets, and describe them through statements.

1. Selected shapes are almost always a square
2. Other shapes rarely have a blue border
3. If a shape has a red fill, it is most likely not a 

selected shape …

ü 50 datasets
ü 30 workers
ü 4.3 statements per task  

on average
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Each	dot	represents	a	dataset	(and	corresponding	classification	task)	
generated	from	a	known	distribution

EasierHarder

Bayes Optimal Accuracy

LN
Q 

Ac
cu

ra
cy



Average	Classification	Accuracy	(Shapes	data)
Approach Avg Accuracy Access to 

labels
Access to 

statements
LNQ 0.751 no yes

Bayes Optimal 0.831 -- --

Logistic Regression 0.737 yes no

Random 0.524 -- --

LNQ (no quantification) 0.545 no yes

LNQ (coarse quantification) 0.679 no yes

Human teacher 0.802 yes yes (writes 
descriptions)

Human learner 0.734 no yes
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Average	Classification	Accuracy	(Shapes	data)
Approach Avg Accuracy Access to 

labels
Access to 

statements
LNQ 0.751 no yes

Bayes Optimal 0.831 -- --

Logistic Regression 0.737 yes no

Random 0.524 -- --

LNQ (no quantification) 0.545 no yes

LNQ (coarse quantification) 0.679 no yes

Human teacher 0.802 yes yes (writes 
descriptions)

Human learner 0.734 no yes
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Average	Classification	Accuracy	(Shapes	data)
Approach Avg Accuracy Access to 

labels
Access to 

statements
LNQ 0.751 no yes

Bayes Optimal 0.831 -- --

Logistic Regression 0.737 yes no

Random 0.524 -- --

LNQ (no quantification) 0.545 no yes

LNQ (coarse quantification) 0.679 no yes

Human teacher 0.802 yes yes (writes 
descriptions)

Human learner 0.734 no yes
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• A	specimen	that	has	a	striped	crown	is	likely	
to	be	a	selected	bird

• Birds	in	the	other	category	rarely	ever	have	
dagger- shaped	beaks	

Example statements:

ü 10 species from CUB-200 
dataset

ü 60 examples per species
ü 53 pre-specified attributes
ü 6.1 statements per task  on 

average

Real	classification	tasks
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Results:	Bird	Species	Identification
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Bird Species



Results:	Emails	Categorization
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Email Categories

Performance by training from both quantification and labels
Ø About a third of  statements used quantifiers
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Rarely Sometimes Often

Majority Most (most)Likely

μ=0.06
σ=0.05

μ=0.46
σ=0.15

μ=0.29
σ=0.18

μ=0.73
σ=0.16

μ=0.81
σ=0.15

μ=0.86
σ=0.09

Empirical	distributions	of	probability	values
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Summary
Ø Declarative NL can supervise learning in limited data settings

Ø Differential associative strengths of linguistic quantifiers can
be effective towards zero-shot concept learning

Ø Possible to learn through a blend of strategies



Other	directions
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Ø Learning with mixed initiative dialog
Ø Allow the learner to ask questions?

Ø Learning from multiple teachers
Ø How to learn from contradictory advice?

Ø Pairing explanations with demonstrations, curricular 
learning,…



Questions?
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