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A closer 1o0oKk...

Wessex is chivalrous and charming, but semi-betrothed fo Lady Ursula Glynde, whom
he has not seen since her infancy. Wessex is repelled by the idea of having his wife
thrust upon him and purposely avoids Lady Ursula. Unknown to Wessex, the Queen
jealously guards him against Ursula, who is extremely beautiful. As soon as she
realizes the Queen is keeping her away from Wessex, Ursula is angered. She believes
she loves Wessex, for his nobility and goodness, and she is invested heavily in the
betrothal. Although Ursula does not want to lose her independence by marrying, she
seeks to frustrate the Queen's plans and make Wessex notice her.

Who seeks to frustrate the Queen's plans?
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> Can we incorporate some priors about language?

2> One kind of prior - Linguistic Structure

> Can linguistic structure act as an informative prior?
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zSyntax - a foundation for sentence meaning / semantics

»Phrase-based syntax (node — span)

2»Key Intuition: Learn from a complementary structure
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Structured prediction
with an auxiliary structure

Auxiliary structure: syntax

. Primary Structure
Traditionally a pipeline, both at train (Span-based Semantics)

and test time [Gildea & Jurafsky, 2002 ]
> More structured data
> (Cascading errors

Forsaken in most end-to-end models,
but at a cost [Heet. al, 2017]
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™M Coreference

Resolution
>Full-Trees Shallow syntax Syntactic
Scaffold. Span-bas:,ed
Semantics

> Soft syntax-aware representations avoid

cascaded errors \ f

| Input
> Not required during test
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Shallow Syntactic Prediction

2> Desired parts of syntactic tree:

ARGM-TMP
ARGM-TMP
PP
N ARG2
ARGO PP
| \ARGl ARGO ARG2 ARG1 \
) NP NP NP NP | NP
encourage.02 tell.Ol leave.04

After  encouraging them, he told them goodbye and left for Macedonia

 ———

»Span-level classification: For every span, predict phrase

category
gZ(Xa Z) — = Z logp(zi:j ‘ Xi:j)

1<igjgkn
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Training with syntactic
scatfolds

X = Input
y = Output Structure
z = Scaffold Structure

r s Y Zx2(6,)

(X,Y)€EY| Primary Task Mixing (X,2)€Y,
. tacti Ratio Objective
Primary Objective Scaffold !
Dataset Dataset
Shared

input parameters
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The primary objective

Same structures must be scored in both the primary
and the scaffold task.

> Span-based classification, with aggressive
pruning [Lee et. al., 2017 ]

2> Semi-Markov Conditional Random Fields
[ Sarawagi et. al. 2004 ]
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Semi-Markov CRFSs

After encouraging them he told them goodbye and 'left for Macedonia
ARGM-TMP ARGO leave.04 ARGR2
2 Globally normalized model for
segmentations (s) of a sentence (x). P (S ‘ X)

2 Generalization of CRF's:

s ={1.7.V..
2 label and length of an input < > yl °]>
segment

m
2> Training and inference given by (I)(Xa S) — 2 l, ¢(Sk’ xik:jk)
O(ndl) dynamic programs, with a =1
Oth-order Markovian assumption. —
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Model architecture

Semantic
score C ©
Scaffold
score @5 @58
Span @0 @0
embedding A A
Intra-span

+
A

attention L

A\
Bidirectional K/

CO«—>0CO«—>0OO«—00O
LSTM A A

Word
embedding @9 @9 ©9®

@9

After encouraging them, he said goodbye and left for  Macedonia

2 Learn scaffold score when syntactic annotations available.
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Recap:
Confusmn of the Muppets

Wessex is chivalrous and charming, but semi-betrothed to Lady Ursula Glynde, whom
he has not seen since her infancy. Wessex is repelled by the idea of having his wife
thrust upon him and purposely avoids Lady Ursula. Unknown to Wessex, the Queen
jealously guards him against Ursula, who is extremely beautiful. As soon as she
realizes the Queen is keeping her away from Wessex, Ursula is angered. She believes
she loves Wessex, for his nobility and goodness, and she is invested heavily in the
betrothal. Al’rhoug@oes not want to lose her independence by marrying, she
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Natural Language
Inference (NLI)

Given a premise, is a hypothesis true, false or neither?

i ll-l Two dogs are running through a field.

Hypothesis The pets are sitting on a couch.

O True — Entailment

ﬁalse — Contradiction

O Cannot Say — Neutral

6



NLI Datasets

Stanford NLI [Bowman et. al, 2015] 570 K
Multi-genre NLI [Williams et. al., 2017] 433 K
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NLI Datasets
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NLI Datasets

There are
animals
outdoors.

puppies

are
running to
catch a

| The pets
Stanford NLI [Bowman et. al, 2015] 570 K are sitting

Multi-genre NLI [Williams et. al., 2017] 433 K on

a couch.

Q7



Lots of progress

Publication Model Parameters Train (% acc) Test (% acc)

Feature-based models

Bowman et al. '15 Unlexicalized features 49.4 50.4
Bowman et al. '15 + Unigram and bigram features 99.7 78.2
|
|
|
Petersetal.'18 ESIM + ELMo 8.0m 91.6 88.7
Boyuan Pan et al. '18 300D DMAN 9.2m 95.4 88.8
Zhiguo Wanget al. '17 BiMPM Ensemble 6.4m 93.2 88.8
Yichen Gong et al. '17 448D Densely Interactive Inference Network (DIIN, code) Ensemble 17m 92.3 88.9
Seonhoon Kim et al. '18 Densely-Connected Recurrent and Co-Attentive Network 6.7m 93.1 88.9
Zhuosheng Zhang et al. '18 SLRC 6.1Tm 89.1 89.1
Qian Chen et al. 17 KIM Ensemble 43m 93.6 89.1
Ghaeini et al. 18 450D DR-BiLSTM Ensemble 45m 94.8 89.3
Petersetal.'18 ESIM + ELMo Ensemble 40m 92.1 89.3
YiTayetal.'18 300D CAFE Ensemble 17.5m 92.5 89.3
Chuangi Tan et al. '18 150D Multiway Attention Network Ensemble 58m 95.5 89.4
Boyuan Pan et al. 18 300D DMAN Ensemble 79m 96.1 89.6
Radford et al. '18 Fine-Tuned LM-Pretrained Transformer 85m 96.6 89.9
Seonhoon Kim et al. '18 Densely-Connected Recurrent and Co-Attentive Network Ensemble 53.3m 95.0 90.1
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NLI as Text Classification

Two dogs are

running through
a field.

1)

Premise

The pets are

sitting on a
couch.

1)

Hypothesis

Q9
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A simple experiment

Premise X\A

Hypothesis

(CCC)

fastText [Joulin et. al. 2017]



Accuracy (%)

Performance of hypothesis-only

I Majority Class
B Hypothesis-only Over 50% of NLI
70.0 examples can be
correctly classified
without ever
observing the
premise
[ Poliak et. al., 2018,
Glockner et. al., 2018]

SNLI MultiNLI MultiNLI
Matched Mismatched

31
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Revisiting NLI models

DAM - Decomposable Attention Model [Parikh et. al. 2016]
ESIM - Enhanced Sequential Inference Model [Chen et. al., 017]
DIIN - Densely Interactive Inference Network [Gong et. al. 2018]

33
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Revisiting NLI models

MultiNLI
Mismatched MultiNLI Matched

90.0

67.5

45.0

RR.5

0.0

DAM ESIM DIIN  pam ESIM DIIN
B Full " Hard B Easy

DAM - Decomposable Attention Model [Parikh et. al. 2016]
ESIM - Enhanced Sequential Inference Model [Chen et. al., 017]
DIIN - Densely Interactive Inference Network [Gong et. al. 2018]
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Premise Hypothesis

A middle-aged man A man is doing

works under the Modifiers work on a black
engine of a train on [ Amtrak train.
rail tracks.
Neutral
Premise Hypothesis

Three dogs Three cats race

racing on on a track.

racetrack.

Contradiction
Premise Hypothesis
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Can we filter out examples with
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Premlse

—
C
@,
@

Hypothesis

>»Hard examples exhibit their own artifacts!

2 Artifacts are still valid examples...
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Looking Ahead:
Improved Data Collection

2z Partial input baselines. E.g. SWAG [zelters et. al., 2018],
DROP [Duaet. a1, 2019], Diverse NLI [Poliak et. al., 2018 ]

2z Alternatives to human elicitation for building
datasets?
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In conclusion :
It’s an exciting time for NLP!

Che New Nork Cimes

w;——w

Finally, a Machine That

Can Finish Your Sentence

Completing someone else’s thought is not an easy trick for A.I. But

new systems are starting to crack the code of natural language.
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Thanks!

| wvgv | http://www.cs.cmu.edu/~sswayamd




