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What is “lexical knowledge”?

m Knowledge about lexical items
(words, MWEs)

= How do they relate to each other?

= Helpful for dealing with Llexical
variability in NLP applications
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Example Application - Question Answering

“When did Donald Trump visit in Alabama?”

Candidate Passages

Trump visited Huntsville on September 23.
Trump visited Mississippi on June 21.

Knowledge

Huntsville is a meronym of Alabama, Mississippi is not.
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= Provide semantic representations of words
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Word Embeddings

(are not the solution for any problem)

Provide semantic representations of words
Commonly used across NLP applications with great success

Pre-trained / learned / fine-tuned for a specific application
Common claim:

Word embeddings are all you need for lexical semantics
Reality:

They are great in capturing general semantic relatedness

...but they mix all semantic relations together!



Word Embeddings
m To illustrate, take famous texts and replace nouns with their
word2vec neighbours:*

I have a daydream
 that my four little /
 kids will one week
live in a country |
where they will mot .

"More examples here: https://goo. gl./L.Jszl
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What'’s in this talk?

Recognizing Lexical Semantic Relations

Interpreting Noun Compounds
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The Hypernymy Detection Task

= Hypernymy
= The hyponym is a subclass of / instance of the hypernym
m (cat, animal), (Google, company)
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Recognizing Lexical Semantic Relations

The Hypernymy Detection Task

= Hypernymy
= The hyponym is a subclass of / instance of the hypernym
m (cat, animal), (Google, company)

m Given two terms, x and y, decide whether y is a hypernym of x
= in some senses of x and y, e.q. (apple, fruit), (apple, company)
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Recognizing Lexical Semantic Relations

Corpus-based Hypernymy Detection

[Hypernymy Detection]

prior
work

path-based

Vered Shwartz - Acquiring Lexical Semantic Knowledge - May 2018 9/49



Recognizing Lexical Semantic Relations

Corpus-based Hypernymy Detection

[Hypernymy Detection]

prior
work

path-based distributional

Vered Shwartz - Acquiring Lexical Semantic Knowledge - May 2018 9/49



Corpus-based Hypernymy Detection

[Hypernymy Detectionj

prior
work

path-based distributional

neural
path-based

work




Corpus-based Hypernymy Detection

[Hypernymy Detectionj

prior
work

path-based (distributional |

neural
path-based

Integrated Model
“HypeNET”

our
work




Recognizing Lexical Semantic Relations

Prior Methods

(Hypernymy Detection)
prior
work
(path—based) distributional
neural
path-based
work

Integrated Model
“HypeNET”
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Recognizing Lexical Semantic Relations

Distributional Approach

(Hypernymy Detection)
prior
work
path-based distributional
neural
path-based
work

Integrated Model
“HypeNET”
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Supervised Distributional Methods

Recognize the relation between words based on their separate
occurrences in the corpus

Train a classifier to predict hypernymy using the terms’
embeddings:

Concatenation X ¢ y [Baroni et al., 2012]

Difference y — X [Roller et al., 2014, Weeds et al., 2014]
Achieved very good results on common hypernymy detection /
semantic relation classification datasets
[Levy et al., 2015]: “lexical memorization”: overfitting to the most
common relation of a specific word

Training: (cat, animal), (dog, animal), (cow, animal), ... all labeled as
hypernymy
Model: (x, animal) is a hypernym pair, regardless of x



Recognizing Lexical Semantic Relations

Path-based Approach
(Hypernymy Detection}
prior
work
(path-based} distributional

neural
path-based

Integrated Model
“HypeNET”

our
work
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Path-based Approach

Recognize the relation between x and y based on their joint
occurrences in the corpus
Hearst Patterns [Hearst, 1992] - patterns connecting x and y may
indicate that y is a hypernym of x

e.g. XorotherY, Xisa, Y, including X

Patterns can be represented using dependency paths:
ATTR

= [ e

apple fruit
NOUN VERB DET NOUN

[Snow et al., 2004]: logistic regression classifier, dependency
paths as sparse features
[0Jo0[..[58] 0 [..[97][0]..[0]
/]\
Xand other Y suchYasX
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m The feature space is too sparse:
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Path-based Approach Issues

m The feature space is too sparse:

= Similar paths share no information:
Xinc.isaY
XgroupisaY
X organizationisa Y

m PATTY [Nakashole et al., 2012] generalized paths, by replacing a

word by:
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Path-based Approach Issues

m The feature space is too sparse:

= Similar paths share no information:
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XgroupisaY
X organizationisa Y
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word by:
m a wild-card
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Recognizing Lexical Semantic Relations

HypeNET: Integrated Path-based and Distributional Method
[Shwartz et al., 2016]

EHypernymy Detectionj

prior
work
path-based distributional
neural
path-based
work

Integrated Model
“HypeNET”
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Recognizing Lexical Semantic Relations

First Step: Improving Path Representation

[Hypernymy Detection]

prior
work

path-based distributional

neural
path-based

our
work

Integrated Model
“HypeNET”
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Recognizing Lexical Semantic Relations

X is a Y

NOUN VERB DET NOUN

Path Representation

1. Split each path to edges, each edge consists of 4 components:

x /|NGUN/ jnsubgl /B ‘be /NERBl/IROOT|/m v /INOUNI/jatER/
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Recognizing Lexical Semantic Relations

X is a Y

NOUN VERB DET NOUN

Path Representation

1. Split each path to edges, each edge consists of 4 components:

x /INGBNI/ [iSUB5) /B 'be /[NEREI/[ROOT/m v /INOUNI/EEEE/ B

m We learn embedding vectors for each component
B Lemma: initialized with pre-trained word embeddings
= The edge’s vector is the concatenation of its components’ vectors:

[ dependent Lenna ; | NN : GSpenacncy VEREY) - IENSSESN |
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Recognizing Lexical Semantic Relations

X is a Y

NOUN VERB DET NOUN

Path Representation

1. Split each path to edges, each edge consists of 4 components:

x /INGUNI/ [nSub3l /B e /NEREl/IROOT/m v /INOUN/ [aEER/E

m We learn embedding vectors for each component
B Lemma: initialized with pre-trained word embeddings
= The edge’s vector is the concatenation of its components’ vectors:
2. Feed the edges sequentially to an LSTM, use the last output
vector as the path embedding:

| [ I
000)( 000 ( 000)( 000
X/NOUN/dobj/> define/VERB/ROOT/- as/ADP/prep/< Y/NOUN/pobj/<

00000
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Term-pair Classification

The LSTM encodes a single path
Each term-pair has multiple paths
Represent a term-pair as its averaged path embedding

Classify for hypernymy (path-based network):

Embeddings:

lemma
S S (N —
dependency label
® direction | | | G average
( 000 ( 000 ( 000 pooling )

X/NOUN/nsubj/> be/VERB/ROOT/-  Y/NOUN/attr/< @ d?;;?;;%’“
O
‘O‘ O
Q ©
O

Vixy

]H[H”H(/

000 000 ( 000)( [)
X/NOUN/dobj/> define/VERB/ROOT/- as/ADP/prep/< Y/NOUN/pobj/<

(x.y) paths in Path LSTM Term-pair Classifier




Recognizing Lexical Semantic Relations

Second Step: Integrating Distributional Information

[Hypernymy Detection]

prior
work
path-based distributional
neural
path-based
our
work

Integrated Model
“HypeNET”

Vered Shwartz - Acquiring Lexical Semantic Knowledge - May 2018 20/49



Second Step: Integrating Distributional Information

Integrated network: add distributional information
Concatenate x and y’s word embeddings to the averaged path

Classify for hypernymy (integrated network):

Embeddings:
ermma | - 0 ez=a==s
T U —— e
dependency label 0 O
® direction I I ] o average e
@oceee oceee Cioeee pooting 1), ()
X/NOUN/nsubj/> be/VERB/ROOT/-  Y/NOUN/attr/< | O EEHTETEY
O (softmax)
Q Q
O O
[ H{ F{H 5
I [ e
000)( 000)( 000 O,
X/NOUN/dobj/> define/VERB/ROOT/- as/ADP/prep/< Y/NOUN/pobj/< =====< -
(x.y) paths in Path LSTM Term-pair Classifier




Recognizing Lexical Semantic Relations

Results

= On a new dataset, built from knowledge resources

method precision | recall Fy
Snow 0.843 0.452 | 0.589
Path-based | Snow + GEN 0.852 0.561 | 0.676

| | | | |
| | | | |

m Path-based:

= Compared to Snow + Snow with PATTY style generalizations
= HypeNET outperforms path-based baselines with improved recall
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Recognizing Lexical Semantic Relations

Results

= On a new dataset, built from knowledge resources

method precision | recall F1
Snow 0.843 0.452 | 0.589
Path-based Snow + GEN 0.852 0.561 | 0.676
HypeNET Path-based 0.811 0.716 | 0.761
| Distributional | Best Supervised | 0901 [0.637 ]0.746 |

m The integrated method substantially outperforms both
path-based and distributional methods
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Identify hypernymy-indicating paths:
Baselines: according to logistic regression feature weights



Analysis - Path Representation (1/2)

Identify hypernymy-indicating paths:

Baselines: according to logistic regression feature weights
HypeNET: measure path contribution to positive classification:

‘xH —

¢ 000) ( 000) ( 000)
X/NOUN/nsubj/>be/VERB/ROOT/-Y/NOUN/attr/<

Path LSTM

O©OO)COOOOO0)

(=1}

0

Term-pair Classifier

(*x.y)
classification
(softmax)

Take the top scoring paths according to softmax(W - [0, 0p, oD[1]



Recognizing Lexical Semantic Relations

Analysis - Path Representation (2/2)

= Snow’s method finds certain common paths:

X companyisaY
XltdisayY
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Recognizing Lexical Semantic Relations

Analysis - Path Representation (2/2)

= Snow’s method finds certain common paths:
X companyisaY
XltdisaY

m PATTY-style generalizations find very general, possibly noisy
paths:

XNOUNisaY
m HypeNET makes fine-grained generalizations:
X associationisayY
Xco.isayY
X companyisaY
X corporationisaY
X foundationisaY
XgroupisayY

Vered Shwartz - Acquiring Lexical Semantic Knowledge - May 2018 24/49



Recognizing Lexical Semantic Relations

LexNET - Multiple Semantic Relation Classification
[Shwartz and Dagan, 2016a, Shwartz and Dagan, 2016b]

m Application of HypeNET for multiple relations
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LexNET - Multiple Semantic Relation Classification
[Shwartz and Dagan, 2016a, Shwartz and Dagan, 2016b]

Application of HypeNET for multiple relations

LexNET outperforms individual path-based and distributional
methods

Path-based contribution over distributional info is prominent
when:

Lexical memorization is disabled (lexical split)

X or y are polysemous, e.g. mero:(piano, key).

the relation is not prototypical, e.g. event:(cherry, pick).

X or y are rare, e.g. hyper:(mastodon, proboscidean).
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Interpreting Noun Compounds

Noun Compounds

= Noun-compounds hold an implicit semantic relation between
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Noun Compounds
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Interpreting Noun Compounds

Noun Compounds

= Noun-compounds hold an implicit semantic relation between
the head and its modifier(s).

m apple cake: cake made of apples
m birthday cake: cake eaten on a birthday

m They are like “text compression devices” [Nakov, 2013]
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Noun Compounds

Noun-compounds hold an implicit semantic relation between
the head and its modifier(s).

apple cake: cake made of apples
birthday cake: cake eaten on a birthday

They are like “text compression devices” [Nakov, 2013]
We're pretty good in decompressing them!



Interpreting Noun Compounds

We are good at Interpreting Noun-Compounds

S5 KID SANDWICH IDEAS

Apple
Cheddar

Jam

Hummus Banana

and Carrot  Nutella



Interpreting Noun Compounds

We are good at Interpreting Noun-Compounds

S5 KID SANDWICH IDEAS

Bacon Cucumber

H 5 Apple
Avocado Veggie ummus anana bbb
Tomato Ham and Carrot  Nutella s

What goes well
with a kid
in a sandwich?

Vered Shwartz - Acquiring Lexical Semantic Knowledge - May 2018
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Interpreting Noun Compounds

Interpreting new Noun Compounds

= Noun-compounds are prevalent in English, but most are rare
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Interpreting Noun Compounds

Interpreting new Noun Compounds

= Noun-compounds are prevalent in English, but most are rare
= We easily interpret noun-compounds we’ve never seen before
m What is a “parsley cake™?

Happy Birthday
M. Parsiey! ’ c

MRS

>/

cake with/from parsley cake for parsley

(from http://www.bazekalim.com)
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Interpreting Noun Compounds

Interpreting new Noun Compounds
m What can cake be made of?

Corpus of Contemporary American English (@) B

SEARCH

courane

L237 | UNIQUE 1S +

1 CAKE WITH CHOCOLATE 3 —
2 CAKE WITH LEMON 13 —
3 CAKE WITH STRAWBERRIES 0 | —
= CAKE WITH CANDLES 7 —

s O caKewimH caRRMEL 7 —

o O oaxewm prosTNG o

7 CAKE WITHVANILLA 5 |m—

5 CAKE WITH BERRIES 5

5 CakE W EGGs 4 |

0 CAKEWTHTOWEL 4 (e

" CAKE WITH RASPBERRY. 2 mm

2 cake W IcE 3 mm

= © | CAKEWTH MARSHMALLOW 3 mm

1 CAKE WITH HONEY 3 mm

1s CAKE WITH CINNAMON 3 mm

16 CAKE WITH COFFEE 3 mm

v CAKE WITH BUTTER 3 mm

s O cake wimvosuRT ]

" O cakewmi Aonn 2 =

2 O cake wiH BLUEBERRIES 2 =

2 ‘CAKE WTH CocoNUT 2 m

2 cake wTH CITRUS 2 m

= CAKE WITH BUTTERCREAM 2 m

B CAKE WITH CREME 2 m

= CAKE WITH CREAM 2 m

% O ckewmHbuLE 2 m

z O caewm cusTaRD 2 m

= O cwewmruT 2 m

» O caKe wiTH conFecTioneRs 2 m

) O caKewimn orance 2 m |
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Interpreting Noun Compounds

Interpreting new Noun Compounds
m What can cake be made of?

Corpus of Contemporary American English (@) B

SEARCH CONTEXT HELP.

SEE CONTEXT: CLICK ON WORD OR SELECT WORDS + [CONTEXT) [HELP. ) compare

FREQ | ToTAL237 | UNIQUETIS +

1 @ 3 —
2 O caKewmiemon 13 —
b O CaKe wiTH sTRAwBERRIES 0 | —
- O cakewmicanous 7 —

s O caKewimH caRRMEL 7 —

o CAKE WITH FROSTING, o

7 CAKE WITHVANILLA o —

5 CAKE WITH BERRIES 5

5 CakE W EGGs 4 |

) CAKEWTHTOWEL 4

" CAKE WITH RASPBERRY. 3

2 cake W IcE 3

= O GAKEWITH MARSHMALLOW 3

1 O CKEwWTHHONEY 3

1s O GKEWITH CRAMON 3

1 O cakewimn corree 3

&2 O cakewmnsurier 3

s O cake wimvosuRT ]

" O cakewmi Aonn 2 =

2 CAKE WITH BLUEBERRIES 2 =

2 ‘CAKE WTH CocoNUT 2 m

2 cake wTH CITRUS : m

= CAKE WITH BUTTERCREAM 2 m

B CAKE WITH CREME 2 m

= CAKE WITH CREAM 2 m

% CAKEWITH DULCE 2 m

z O owewmH cusTaRD 2 m

= O cwewmruT 2 m

» O caKe wiTH conFecTioneRs 2 m

) O caKewimn orance 2 m

m Parsley (sort of) fits into this distribution
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Interpreting Noun Compounds

Interpreting new Noun Compounds
m What can cake be made of?

RE =
e ——
e e ——

m Parsley (sort of) fits into this distribution
m Similar to “selectional preferences” [Pantel et al., 2007]
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Interpreting Noun Compounds

We need Computers to Interpret Noun-Compounds

O A . C™a2%

?  Addan event

Title
create a morning meeting Day
Tomorrow

Time

Morning
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Noun-Compound Interpretation Tasks

Compositionality Prediction
Noun-compound Paraphrasing
Noun-compound Classification



Noun-Compound Paraphrasing

To multiple prepositional and verbal paraphrases
[Nakov and Hearst, 2006]

olive oil —— [w;] extracted from [wq]
apple cake [w;] made of [wq]
game room [w,] from [w4]
service door

[w3] used for [wq]

babyoil —  ° [w-] for [wi]



Noun-Compound Paraphrasing

To multiple prepositional and verbal paraphrases
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Noun-Compound Paraphrasing
To multiple prepositional and verbal paraphrases
[Nakov and Hearst, 2006]

olive oil —— [w;] extracted from [wq]

apple cake [w2] made of [wy]

game room [WZ] from [Wl]

service door [w,] used for [wq]

babyoil —  ° [w-] for [wi]

SemEval 2013 task 4 [Hendrickx et al., 2013]:

Systems get a list of noun compounds

Extract paraphrases from free text

Rank them

Evaluated for correlation with human judgments
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Prior Methods

Based on corpus occurrences of the constituents:
“cake made of apples”
SemEval task participants extracted them from Google N-grams

Problems:
Many unseen NCs, no paraphrases in the corpus
Many NCs with just a few paraphrases

Partial solutions:

[Van de Cruys et al., 2013]: generalize for unseen NCs with
similar NCs, e.g. pear tart is similar to apple cake

[Surtani et al., 2013]: learn “is-a” relations between paraphrases:
e.g. “[w;] extracted from [wy]” C “[w;] made of [wi]”

Our solution: multi-task learning to address both problems
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Previous approaches: predict a paraphrase for a given NC
Our model: multi-task learning problem
Training example {w; = apple, w; = cake, p = “[w;] made of [w1]"}

Predict a paraphrase p for a given NC wyw;:
What is the relation between apple and cake?

Predict wy given a paraphrase p and w;:
What can cake be made of?

Predict w; given a paraphrase p and wy:
What can be made of apple?
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Main Task (1): Predicting Paraphrases
What is the relation between apple and cake?

(23) made
(28) apple (78) [w;] containing [w1]
(4145) cake (1) [wil
(2) [wa] (131) [w,] made of [wi]
(7891) of (3) [p]

Encode placeholder [p] in “cake [p] apple” using biLSTM
Predict an index in the paraphrase vocabulary

Fixed word embeddings,

(1) Generalizes NCs: pear tart expected to yield similar results



Helper Task (2): Predicting Missing Constituents
What can cake be made of?

Wy =28
;
MLP,,
|
S Y T
[ cake ][ made }[ of ][ [wi] ]
(23) made (1) [wi]
(28) apple (2) [wa]
(4145) cake (3) [r]

(7891) of

Encode placeholder in “cake made of [w1]” using biLSTM



Helper Task (2): Predicting Missing Constituents
What can cake be made of?

Wy =28

;

MLP,,

|

S Y T
[ cake }[ made ][ of ][ [wi] ]
(23) made (1) [wi]

(28) apple (2) [wa]

(4145) cake (3) [r]

(7891) of

Encode placeholder in “cake made of [w1]” using biLSTM
Predict an index in the word vocabulary



Helper Task (2): Predicting Missing Constituents
What can cake be made of?

Wy =28

;

MLP,,

|

S Y T
[ cake ][ made ][ of ][ [wi] ]
(23) made (1) [wi]

(28) apple (2) [wa]

(4145) cake (3) [r]

(7891) of

Encode placeholder in “cake made of [w1]” using biLSTM
Predict an index in the word vocabulary
(2) Generalizes paraphrases:

“[w] containing [w1]” expected to yield similar results
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Training Data

Collected from Google N-grams
Input:
Set of NCs
Templates of POS tags (e.g. “[w;] verb prep [w1]")
Weighting by frequency and length
136,609 instances
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Predict top k paraphrases for each noun compound

Learn to re-rank the paraphrases
to better correlate with human judgments

SVM pair-wise ranking with the following features:

POS tags in the paraphrase
Prepositions in the paraphrase
Length

Special symbols

Similarity to predicted paraphrase
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Interpreting Noun Compounds

Results
60 :
54.8 [] MELODI [van de Cruys et aL., 2013]
|:| SemeEval 2013 Baseline [Hendrickx et al., 2013]
[] sFs [verstey, 2013]
40.6 I IIITH [Surtani et al., 2013]
40 |- I PaNiC [Shwartz and Dagan, 2018] B
28.4 28.2
25.8
23.1 23.1
20 17.9 |
13 138
I I
N7 non-isomorphic isomorphic
‘conservative”
models rewards rewards recall
only precision and precision
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Error Analysis
False Positive
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. Valid, missing from gold-standard

(“discussion by group”)

. Too specific

(“life of women in community”)

Incorrect prepositions
E.g., n-grams don’t respect syntactic
structure: “rinse away the oil from

baby ’s head” = “oil from baby”

. Syntactic errors
. Borderline grammatical

(“force of coalition forces”)

. Other errors

44749
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Recap

Two tasks of recognizing semantic relations between nouns:

Between arbitrary nouns / constituents of a noun-compound
Classification to ontological relations / free text paraphrasing

In both tasks, integrating features from joint corpus occurrences
improved performance

Word embeddings are a useful tool, but not the only tool!

Fhanks Kudos fer forthe attending participating!

* Replaced with the most similar words using word2vec
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