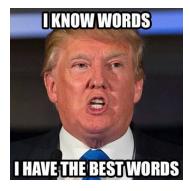
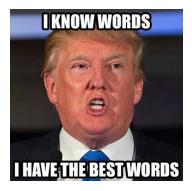
Acquiring Lexical Semantic Knowledge

Vered Shwartz

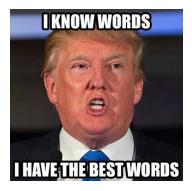
Natural Language Processing Lab, Bar-Ilan University

Stanford NLP Seminar, May 24, 2018

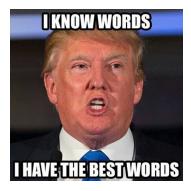




 Knowledge about lexical items (words, MWEs)



- Knowledge about lexical items (words, MWEs)
- How do they relate to each other?



- Knowledge about lexical items (words, MWEs)
- How do they relate to each other?
- Helpful for dealing with lexical variability in NLP applications

Example Application - Question Answering

Question

"When did Donald Trump visit in Alabama?"

Candidate Passages

- 1. Trump visited Huntsville on September 23.
- 2. Trump visited Mississippi on June 21.

Knowledge

Huntsville is a meronym of Alabama, Mississippi is not.

Word Embeddings (are not the solution for any problem)

Provide semantic representations of words

Word Embeddings (are not the solution for any problem)

- Provide semantic representations of words
- Commonly used across NLP applications with great success

Word Embeddings (are not the solution for any problem)

- Provide semantic representations of words
- Commonly used across NLP applications with great success
- Pre-trained / learned / fine-tuned for a specific application

(are not the solution for any problem)

- Provide semantic representations of words
- Commonly used across NLP applications with great success
- Pre-trained / learned / fine-tuned for a specific application

Common claim:

Word embeddings are all you need for lexical semantics

(are not the solution for any problem)

- Provide semantic representations of words
- Commonly used across NLP applications with great success
- Pre-trained / learned / fine-tuned for a specific application

Common claim:

Word embeddings are all you need for lexical semantics

Reality:

They are great in capturing general semantic relatedness

(are not the solution for any problem)

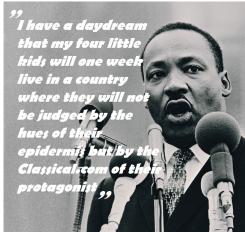
- Provide semantic representations of words
- Commonly used across NLP applications with great success
- Pre-trained / learned / fine-tuned for a specific application

Common claim:

Word embeddings are all you need for lexical semantics

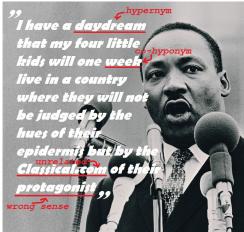
- Reality:
 - They are great in capturing general semantic relatedness
 - ...but they mix all semantic relations together!

To illustrate, take famous texts and replace nouns with their word2vec neighbours:¹



¹More examples here: https://goo.gl/LJHzbi

To illustrate, take famous texts and replace nouns with their word2vec neighbours:¹



¹More examples here: https://goo.gl/LJHzbi

What's in this talk?

Recognizing Lexical Semantic Relations

Interpreting Noun Compounds

The Hypernymy Detection Task

Hypernymy

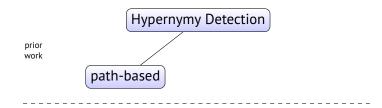
- The hyponym is a subclass of / instance of the hypernym
- (cat, animal), (Google, company)

The Hypernymy Detection Task

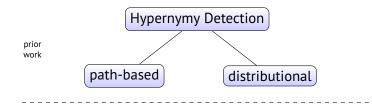
Hypernymy

- The hyponym is a subclass of / instance of the hypernym
- (cat, animal), (Google, company)
- Given two terms, *x* and *y*, decide whether *y* is a hypernym of *x*
 - in some senses of *x* and *y*, e.g. (*apple, fruit*), (*apple, company*)

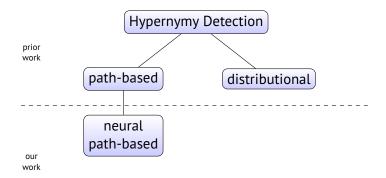
Corpus-based Hypernymy Detection



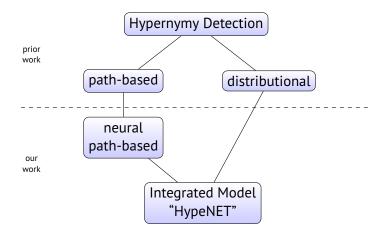
Corpus-based Hypernymy Detection



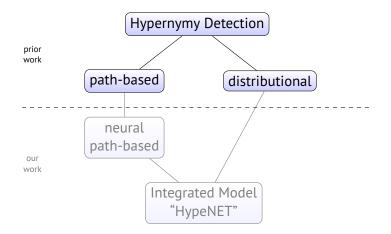
Corpus-based Hypernymy Detection



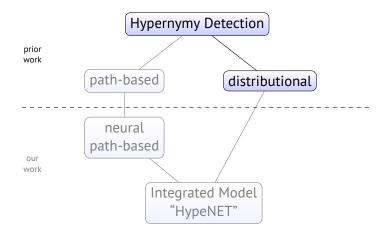
Corpus-based Hypernymy Detection



Prior Methods



Distributional Approach



Supervised Distributional Methods

Recognize the relation between words based on their separate occurrences in the corpus

Supervised Distributional Methods

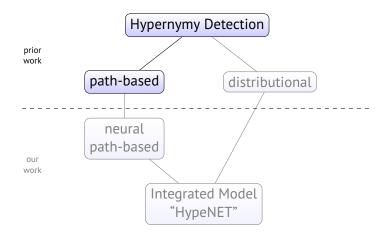
- Recognize the relation between words based on their separate occurrences in the corpus
- Train a classifier to predict hypernymy using the terms' embeddings:
 - Concatenation $\vec{x} \oplus \vec{y}$ [Baroni et al., 2012]
 - Difference $\vec{y} \vec{x}$ [Roller et al., 2014, Weeds et al., 2014]

Supervised Distributional Methods

- Recognize the relation between words based on their separate occurrences in the corpus
- Train a classifier to predict hypernymy using the terms' embeddings:
 - Concatenation $\vec{x} \oplus \vec{y}$ [Baroni et al., 2012]
 - Difference $\vec{y} \vec{x}$ [Roller et al., 2014, Weeds et al., 2014]
- Achieved very good results on common hypernymy detection / semantic relation classification datasets

Supervised Distributional Methods

- Recognize the relation between words based on their separate occurrences in the corpus
- Train a classifier to predict hypernymy using the terms' embeddings:
 - Concatenation $\vec{x} \oplus \vec{y}$ [Baroni et al., 2012]
 - Difference $\vec{y} \vec{x}$ [Roller et al., 2014, Weeds et al., 2014]
- Achieved very good results on common hypernymy detection / semantic relation classification datasets
- [Levy et al., 2015]: "lexical memorization": overfitting to the most common relation of a specific word
 - Training: (*cat, animal*), (*dog, animal*), (*cow, animal*), ... all labeled as hypernymy
 - Model: (*x*, *animal*) is a hypernym pair, regardless of *x*

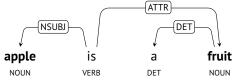


Recognize the relation between x and y based on their joint occurrences in the corpus

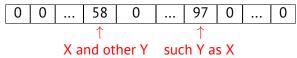
- Recognize the relation between x and y based on their joint occurrences in the corpus
- Hearst Patterns [Hearst, 1992] patterns connecting x and y may indicate that y is a hypernym of x
 - e.g. X or other Y, X is a Y, Y, including X

- Recognize the relation between x and y based on their joint occurrences in the corpus
- Hearst Patterns [Hearst, 1992] patterns connecting x and y may indicate that y is a hypernym of x
 - e.g. X or other Y, X is a Y, Y, including X
- Patterns can be represented using dependency paths:

- Recognize the relation between x and y based on their joint occurrences in the corpus
- Hearst Patterns [Hearst, 1992] patterns connecting x and y may indicate that y is a hypernym of x
 - e.g. X or other Y, X is a Y, Y, including X
- Patterns can be represented using dependency paths:



[Snow et al., 2004]: logistic regression classifier, dependency paths as sparse features



Path-based Approach Issues

The feature space is too sparse:

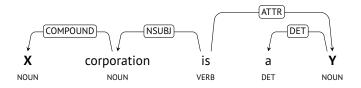
Path-based Approach Issues

- The feature space is too sparse:
 - Similar paths share no information:
 - X inc. is a Y X group is a Y X organization is a Y

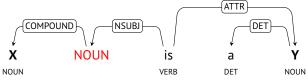
Path-based Approach Issues

- The feature space is too sparse:
 - Similar paths share no information: X inc. is a Y
 X group is a Y
 X organization is a Y

PATTY [Nakashole et al., 2012] generalized paths, by replacing a word by:



- The feature space is too sparse:
 - Similar paths share no information: X inc. is a Y
 X group is a Y
 X organization is a Y
- PATTY [Nakashole et al., 2012] generalized paths, by replacing a word by:
 - its POS tag



- The feature space is too sparse:
 - Similar paths share no information: X inc. is a Y
 X group is a Y
 X organization is a Y

PATTY [Nakashole et al., 2012] generalized paths, by replacing a word by:

a wild-card

- The feature space is too sparse:
 - Similar paths share no information: X inc. is a Y
 X group is a Y
 X organization is a Y

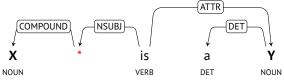
PATTY [Nakashole et al., 2012] generalized paths, by replacing a word by:

a wild-card



Some of these generalizations are too general:
 X is defined as Y ≈ X is described as Y via X is VERB as Y

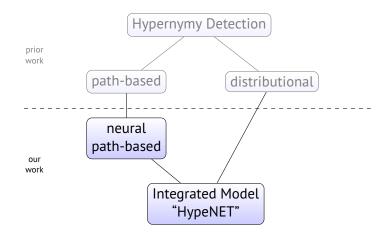
- The feature space is too sparse:
 - Similar paths share no information: X inc. is a Y
 X group is a Y
 X organization is a Y
- PATTY [Nakashole et al., 2012] generalized paths, by replacing a word by:
 - a wild-card



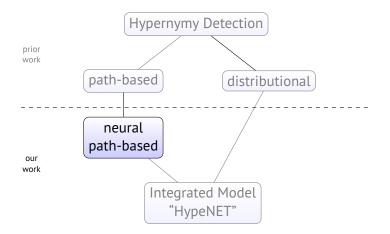
- Some of these generalizations are too general:
 - X is defined as $Y \approx X$ is described as Y via X is VERB as Y
 - **X** is defined as $Y \neq X$ is rejected as Y

Vered Shwartz • Acquiring Lexical Semantic Knowledge • May 2018

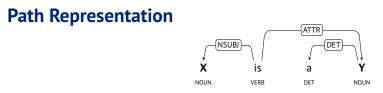
HypeNET: Integrated Path-based and Distributional Method [Shwartz et al., 2016]



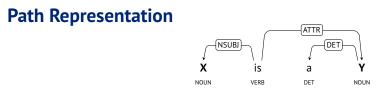
First Step: Improving Path Representation



Vered Shwartz • Acquiring Lexical Semantic Knowledge • May 2018

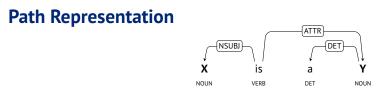


X / NOUN / nsubj / > be / VERB / ROOT / - Y / NOUN / attr / <



X / NOUN / nsubj / > be / VERB / ROOT / - Y / NOUN / attr / <

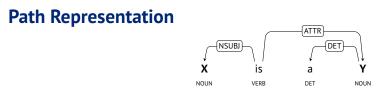
We learn embedding vectors for each component
 Lemma: initialized with pre-trained word embeddings



X/NOUN/nsubj/> be/VERB/ROOT/- Y/NOUN/attr/<

- We learn embedding vectors for each component
 - Lemma: initialized with pre-trained word embeddings
- The edge's vector is the concatenation of its components' vectors:

[dependent lemma ; dependent POS ; dependency label ; direction]

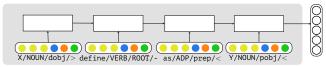


X/NOUN/nsubj/> be/VERB/ROOT/- Y/NOUN/attr/<

- We learn embedding vectors for each component
 - Lemma: initialized with pre-trained word embeddings
- The edge's vector is the concatenation of its components' vectors:

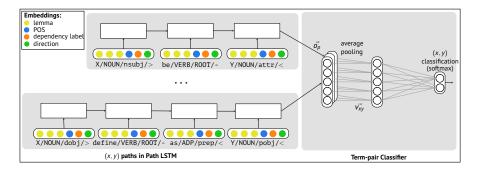
[dependent lemma ; dependent POS ; dependency label ; direction]

2. Feed the edges sequentially to an LSTM, use the last output vector as the path embedding:

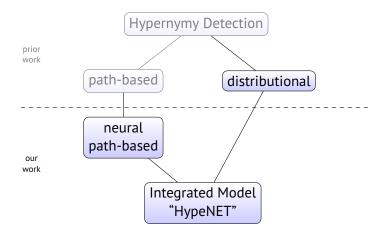


Term-pair Classification

- The LSTM encodes a single path
- Each term-pair has multiple paths
 - Represent a term-pair as its averaged path embedding
- Classify for hypernymy (path-based network):



Second Step: Integrating Distributional Information

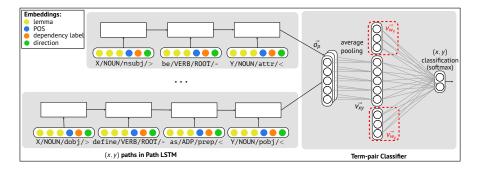


Vered Shwartz • Acquiring Lexical Semantic Knowledge • May 2018

Second Step: Integrating Distributional Information

Integrated network: add distributional information

- Concatenate *x* and *y*'s word embeddings to the averaged path
- Classify for hypernymy (integrated network):



Results

On a new dataset, built from knowledge resources

method		precision	recall	F 1
Path-based	Snow	0.843	0.452	0.589
	Snow + GEN	0.852	0.561	0.676
	HypeNET Path-based	0.811	0.716	0.761
Distributional	Best Supervised	0.901	0.637	0.746
Integrated	HypeNET Integrated	0.913	0.890	0.901

Path-based:

- Compared to Snow + Snow with PATTY style generalizations
- HypeNET outperforms path-based baselines with improved recall

Results

On a new dataset, built from knowledge resources

method		precision	recall	F 1
Path-based	Snow	0.843	0.452	0.589
	Snow + GEN	0.852	0.561	0.676
	HypeNET Path-based	0.811	0.716	0.761
Distributional	Best Supervised	0.901	0.637	0.746
Integrated	HypeNET Integrated	0.913	0.890	0.901

The integrated method substantially outperforms both path-based and distributional methods

Analysis - Path Representation (1/2)

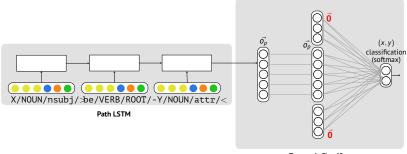
Identify hypernymy-indicating paths:

<u>Baselines</u>: according to logistic regression feature weights

Analysis - Path Representation (1/2)

Identify hypernymy-indicating paths:

- Baselines: according to logistic regression feature weights
- HypeNET: measure path contribution to positive classification:



Term-pair Classifier

Take the top scoring paths according to $softmax(W \cdot [\vec{0}, \vec{o_p}, \vec{0}])[1]$

Analysis - Path Representation (2/2)

Snow's method finds certain common paths:

X company is a Y X ltd is a Y

Analysis - Path Representation (2/2)

Snow's method finds certain common paths:

```
X company is a Y
X ltd is a Y
```

PATTY-style generalizations find very general, possibly noisy paths:

X NOUN is a Y

Analysis - Path Representation (2/2)

Snow's method finds certain common paths:

```
X company is a Y
X ltd is a Y
```

PATTY-style generalizations find very general, possibly noisy paths:

X NOUN is a Y

...

HypeNET makes fine-grained generalizations:

X association is a Y X co. is a Y X company is a Y X corporation is a Y X foundation is a Y X group is a Y

Application of HypeNET for multiple relations

- Application of HypeNET for multiple relations
- LexNET outperforms individual path-based and distributional methods

- Application of HypeNET for multiple relations
- LexNET outperforms individual path-based and distributional methods
- Path-based contribution over distributional info is prominent when:

- Application of HypeNET for multiple relations
- LexNET outperforms individual path-based and distributional methods
- Path-based contribution over distributional info is prominent when:
 - Lexical memorization is disabled (lexical split)

- Application of HypeNET for multiple relations
- LexNET outperforms individual path-based and distributional methods
- Path-based contribution over distributional info is prominent when:
 - Lexical memorization is disabled (lexical split)
 - *x* or *y* are polysemous, e.g. *mero:(piano, key)*.

- Application of HypeNET for multiple relations
- LexNET outperforms individual path-based and distributional methods
- Path-based contribution over distributional info is prominent when:
 - Lexical memorization is disabled (lexical split)
 - *x* or *y* are polysemous, e.g. *mero:(piano, key)*.
 - the relation is not prototypical, e.g. *event:(cherry, pick)*.

- Application of HypeNET for multiple relations
- LexNET outperforms individual path-based and distributional methods
- Path-based contribution over distributional info is prominent when:
 - Lexical memorization is disabled (lexical split)
 - *x* or *y* are polysemous, e.g. *mero:(piano, key)*.
 - the relation is not prototypical, e.g. event:(cherry, pick).
 - *x* or *y* are rare, e.g. *hyper:(mastodon, proboscidean)*.

Interpreting Noun Compounds

Noun-compounds hold an implicit semantic relation between the head and its modifier(s).

- Noun-compounds hold an implicit semantic relation between the head and its modifier(s).
 - apple cake: cake made of apples

- Noun-compounds hold an implicit semantic relation between the head and its modifier(s).
 - *apple cake*: cake *made of* apples
 - *birthday cake*: cake *eaten on a* birthday

- Noun-compounds hold an implicit semantic relation between the head and its modifier(s).
 - *apple cake*: cake *made of* apples
 - *birthday cake*: cake *eaten on a* birthday
- They are like "text compression devices" [Nakov, 2013]

- Noun-compounds hold an implicit semantic relation between the head and its modifier(s).
 - *apple cake*: cake *made of* apples
 - *birthday cake*: cake *eaten on a* birthday
- They are like "text compression devices" [Nakov, 2013]
- We're pretty good in decompressing them!

Interpreting Noun Compounds

We are good at Interpreting Noun-Compounds

We are good at Interpreting Noun-Compounds

Vered Shwartz • Acquiring Lexical Semantic Knowledge • May 2018

Interpreting Noun Compounds

Interpreting new Noun Compounds

Noun-compounds are prevalent in English, but most are rare

Interpreting new Noun Compounds

- Noun-compounds are prevalent in English, but most are rare
- We easily interpret noun-compounds we've never seen before

- Noun-compounds are prevalent in English, but most are rare
- We easily interpret noun-compounds we've never seen before
- What is a "parsley cake"?

Interpreting new Noun Compounds

- Noun-compounds are prevalent in English, but most are rare
- We easily interpret noun-compounds we've never seen before
- What is a "parsley cake"?

cake with/from parsley
(from http://www.bazekalim.com)

cake for parsley

Interpreting new Noun Compounds

What can cake be made of?

		pus of Contemporary American English 🕧 📄 🛃 🛃 🛃		L ()		
	SEA	RCH FREQUENCY CONTEXT		HELP		
ONTEXT:	CUCK OF	WORD OR SELECT WORDS + (CONTEXT) (HELP)		COMPAR		
		CONTEXT ALL FORMS (SAMPLE): 100 200 500	FREQ	TOTAL 237 UNIQUE 119 +		
1		CAKE WITH CHOCOLATE	31			
2		CAKE WITH LEMON	13			
3		CAKE WITH STRAWBERRES	10			
4		CAKE WITH CANDLES	7			
5		CAKE WITH CARAMEL	7			
6	8	CAKE WITH FROSTING	6	-		
7		CAKE WITH VANELA	6			
8		CAKE WITH BERRIES	5			
9		CAKE WITH EGGS	4			
10		CAKE WITH TOWEL	4			
11		CAKE WITH RASPBERRY	3	-		
12		CAKE WITH ICE	3	-		
13		CAKE WITH MARSHMALLOW	3	-		
14		CAKE WITH HONEY	3	-		
15		CAKE WITH CINNAMON	3	-		
16		CAKE WITH COFFEE	3	-		
17		CAKE WITH BUTTER	3	-		
18		CAKE WITH YOGURT	3	-		
19	8	CAKE WITH ALMOND	2	-		
20	8	CAKE WITH BLUEBERNES	2	-		
21		CAKE WITH COCONUT	2	-		
22		CAKE WITH CITRUS	2	-		
23	8	CAKE WITH BUTTERCREAM	2	-		
24	0	CAKE WITH CREME	2	-		
25		CAKE WITH CREAM	2	-		
26		CAKE WITH DULCE	2	-		
27		CAKE WITH CUSTARD	2	-		
28	8	CAKE WITH FRUIT	2	-		
29	8	CAKE WITH CONFECTIONERS	2	_		

Interpreting new Noun Compounds

What can cake be made of?

	-pus		American English				💶 🕓 🛛	
	SEARCH		FREQUENCY		CONTEXT		HELP	
ONTEXT:	CUCK OF	WORD OR SELECT WORDS + (CO	INTEXTL (HELP)				COMP	
		CONTEXT ALL FORMS (SAM	PLE): 100 200 500			FREQ	TOTAL 237 UNIQUE 119 +	
1		CAKE WITH CHOCOLATE				31		
2		CAKE WITH LEMON				13		
3	8	CAKE WITH STRAWBERRIES				10		
4	8	CAKE WITH CANDLES				7		
5		CAKE WITH CARAMEL				7		
6	8	CAKE WITH FROSTING				6		
7	8	CAKE WITH VANILLA				6		
8		CAKE WITH BERRIES				5	-	
9		CAKE WITH EGGS				4		
10		CAKE WITH TOWEL				4		
11		CAKE WITH RASPBERRY				3	-	
12		CAKE WITH ICE				3	-	
3	8	CAKE WITH MARSHMALLOW				3	-	
4		CAKE WITH HONEY				3	-	
IS		CAKE WITH CINNAMON				3	-	
16	8	CAKE WITH COFFEE				3	-	
7	8	CAKE WITH BUTTER				3	-	
8		CAKE WITH YOGURT				3	-	
19		CAKE WITH ALMOND				2	-	
10	8	CAKE WITH BLUEBERRIES				2	-	
1		CAKE WITH COCONUT				2	-	
2	8	CAKE WITH CITRUS				2	-	
23	8	CAKE WITH BUTTERCREAM				2	 ••••••••••••••••••••••••••••••••••••	
64	0	CAKE WITH CREME				2	-	
15	8	CAKE WITH CREAM				2	-	
66	8	CAKE WITH DULCE				2	-	
7	8	CAKE WITH CUSTARD				2	 • 	
8	8	CAKE WITH FRUIT				2	 • 	
29		CAKE WITH CONFECTIONERS				2	-	

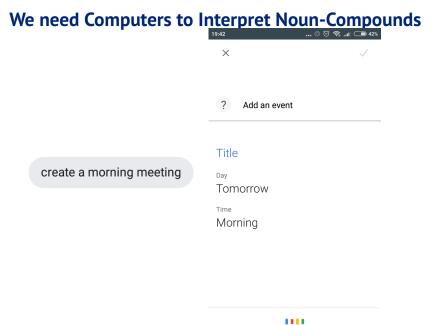
Parsley (sort of) fits into this distribution

Interpreting new Noun Compounds

What can cake be made of?

	SEARCH		FREQUENCY	CONTEXT	HELP	
SCARCH		No1	THE GOLINGT	CONTEXT	HELP	
NTEXT	сиск о	WORD OR SELECT WORDS + (CO	NTEXT] (HELP)			COMF
		CONTEXT ALL FORMS (SAMP	LE): 100 200 500		FREQ TO	TAL 237 UNIQUE 119 +
1		CAKE WITH CHOCOLATE			31	
2		CAKE WITH LEMON			13	
3	8	CAKE WITH STRAWBERRIES			10	
4		CAKE WITH CANDLES			7	
5		CAKE WITH CARAMEL			7	
5	8	CAKE WITH FROSTING			6	-
	8	CAKE WITH VANILLA			6	-
		CAKE WITH BERRIES			5	-
		CAKE WITH EGGS			4 💻	•
0		CAKE WITH TOWEL			4	•
1		CAKE WITH RASPBERRY			3	1
2		CAKE WITH ICE			3	1
3		CAKE WITH MARSHMALLOW			3	1
4		CAKE WITH HONEY			3	1
5		CAKE WITH CINNAMON			3	1
6	8	CAKE WITH COFFEE			3	1
7		CAKE WITH BUTTER			3	
8		CAKE WITH YOGURT			3	1
9		CAKE WITH ALMOND			2	
0	8	CAKE WITH BLUEBERRIES			2	
1		CAKE WITH COCONUT			2 🔳	
2	8	CAKE WITH CITRUS			2 🔳	
3	8	CAKE WITH BUTTERCREAM			2	
4		CAKE WITH CREME			2	
5	Ξ	CAKE WITH CREAM			2 🔳	
6	8	CAKE WITH DULCE			2 🔳	
7	8	CAKE WITH CUSTARD			2	
8	8	CAKE WITH FRUIT			2	

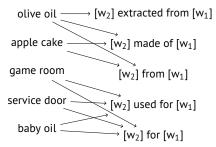
Parsley (sort of) fits into this distribution Similar to "selectional preferences" [Pantel et al., 2007]



Noun-Compound Interpretation Tasks

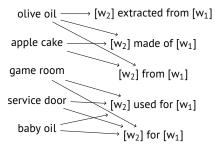
- Compositionality Prediction
- Noun-compound Paraphrasing
- Noun-compound Classification

Noun-Compound Paraphrasing



Noun-Compound Paraphrasing

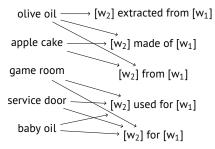
 To multiple prepositional and verbal paraphrases [Nakov and Hearst, 2006]



SemEval 2013 task 4 [Hendrickx et al., 2013]:

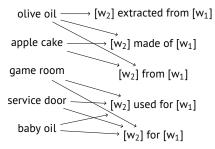
Noun-Compound Paraphrasing

 To multiple prepositional and verbal paraphrases [Nakov and Hearst, 2006]



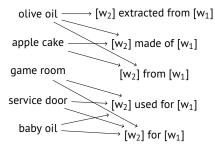
- SemEval 2013 task 4 [Hendrickx et al., 2013]:
 - Systems get a list of noun compounds

Noun-Compound Paraphrasing



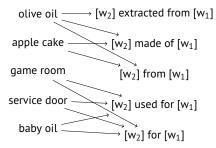
- SemEval 2013 task 4 [Hendrickx et al., 2013]:
 - Systems get a list of noun compounds
 - Extract paraphrases from free text

Noun-Compound Paraphrasing



- SemEval 2013 task 4 [Hendrickx et al., 2013]:
 - Systems get a list of noun compounds
 - Extract paraphrases from free text
 - Rank them

Noun-Compound Paraphrasing



- SemEval 2013 task 4 [Hendrickx et al., 2013]:
 - Systems get a list of noun compounds
 - Extract paraphrases from free text
 - Rank them
 - Evaluated for correlation with human judgments

Prior Work

Based on corpus occurrences of the constituents:

"cake made of apples"

Based on corpus occurrences of the constituents:

"cake made of apples"

SemEval task participants extracted them from Google N-grams

- Based on corpus occurrences of the constituents: "cake made of apples"
- SemEval task participants extracted them from Google N-grams

Problems:

1. Many unseen NCs, no paraphrases in the corpus

- Based on corpus occurrences of the constituents: "cake made of apples"
- SemEval task participants extracted them from Google N-grams

Problems:

- 1. Many unseen NCs, no paraphrases in the corpus
- 2. Many NCs with just a few paraphrases

Based on corpus occurrences of the constituents:

"cake made of apples"

SemEval task participants extracted them from Google N-grams

Problems:

- 1. Many unseen NCs, no paraphrases in the corpus
- 2. Many NCs with just a few paraphrases

Partial solutions:

1. [Van de Cruys et al., 2013]: generalize for unseen NCs with similar NCs, e.g. *pear tart* is similar to *apple cake*

Based on corpus occurrences of the constituents:

"cake made of apples"

SemEval task participants extracted them from Google N-grams

Problems:

- 1. Many unseen NCs, no paraphrases in the corpus
- 2. Many NCs with just a few paraphrases

Partial solutions:

- 1. [Van de Cruys et al., 2013]: generalize for unseen NCs with similar NCs, e.g. *pear tart* is similar to *apple cake*
- 2. [Surtani et al., 2013]: learn "is-a" relations between paraphrases: e.g. " $[w_2]$ extracted from $[w_1]$ " \subset " $[w_2]$ made of $[w_1]$ "

Based on corpus occurrences of the constituents:

"cake made of apples"

SemEval task participants extracted them from Google N-grams

Problems:

- 1. Many unseen NCs, no paraphrases in the corpus
- 2. Many NCs with just a few paraphrases

Partial solutions:

- 1. [Van de Cruys et al., 2013]: generalize for unseen NCs with similar NCs, e.g. *pear tart* is similar to *apple cake*
- 2. [Surtani et al., 2013]: learn "is-a" relations between paraphrases: e.g. " $[w_2]$ extracted from $[w_1]$ " \subset " $[w_2]$ made of $[w_1]$ "

Our solution: multi-task learning to address both problems

Model

Previous approaches: predict a paraphrase for a given NC

- Previous approaches: predict a paraphrase for a given NC
- Our model: multi-task learning problem

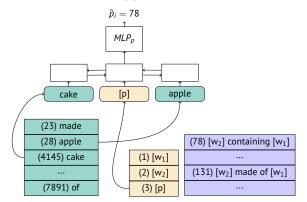
- Previous approaches: predict a paraphrase for a given NC
- Our model: multi-task learning problem
- Training example {*w*₁ = apple, *w*₂ = cake, *p* = "[*w*₂] made of [*w*₁]"}

- Previous approaches: predict a paraphrase for a given NC
- Our model: multi-task learning problem
- Training example {*w*₁ = apple, *w*₂ = cake, *p* = "[*w*₂] made of [*w*₁]"}
 - **1.** Predict a paraphrase p for a given NC w_1w_2 : What is the relation between *apple* and *cake*?

- Previous approaches: predict a paraphrase for a given NC
- Our model: multi-task learning problem
- Training example {*w*₁ = apple, *w*₂ = cake, *p* = "[*w*₂] made of [*w*₁]"}
 - **1.** Predict a paraphrase p for a given NC w_1w_2 : What is the relation between *apple* and *cake*?
 - 2. Predict *w*₁ given a paraphrase *p* and *w*₂: What can *cake* be made of?

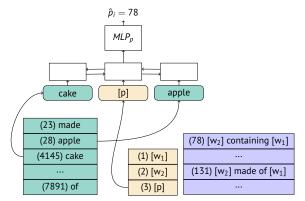
- Previous approaches: predict a paraphrase for a given NC
- Our model: multi-task learning problem
- Training example {*w*₁ = apple, *w*₂ = cake, *p* = "[*w*₂] made of [*w*₁]"}
 - **1.** Predict a paraphrase p for a given NC w_1w_2 : What is the relation between *apple* and *cake*?
 - 2. Predict *w*₁ given a paraphrase *p* and *w*₂: What can *cake* be made of?
 - **3.** Predict *w*₂ given a paraphrase *p* and *w*₁: What can be made of *apple*?

Main Task (1): Predicting Paraphrases What is the relation between *apple* and *cake*?



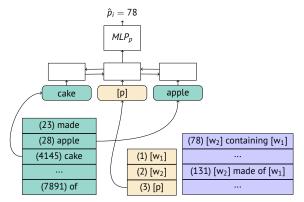
Encode placeholder [p] in "cake [p] apple" using biLSTM

Main Task (1): Predicting Paraphrases What is the relation between *apple* and *cake*?



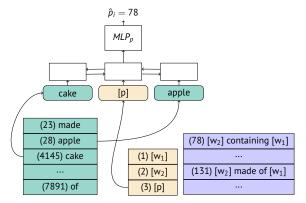
Encode placeholder [p] in "cake [p] apple" using biLSTM
 Predict an index in the paraphrase vocabulary

Main Task (1): Predicting Paraphrases What is the relation between *apple* and *cake*?



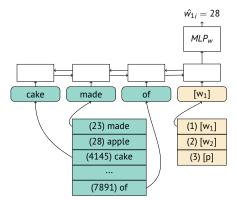
- Encode placeholder [p] in "cake [p] apple" using biLSTM
- Predict an index in the paraphrase vocabulary
- Fixed word embeddings, learned placeholder embeddings

Main Task (1): Predicting Paraphrases What is the relation between *apple* and *cake*?



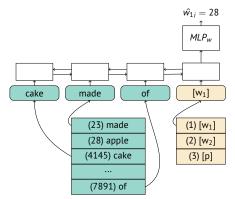
- Encode placeholder [p] in "cake [p] apple" using biLSTM
- Predict an index in the paraphrase vocabulary
- Fixed word embeddings, learned placeholder embeddings
- (1) Generalizes NCs: *pear tart* expected to yield similar results

Helper Task (2): Predicting Missing Constituents What can *cake* be made of?



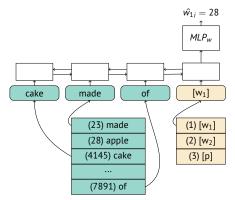
Encode placeholder in "cake made of [w₁]" using biLSTM

Helper Task (2): Predicting Missing Constituents What can *cake* be made of?



Encode placeholder in "cake made of [w₁]" using biLSTM
 Predict an index in the word vocabulary

Helper Task (2): Predicting Missing Constituents What can *cake* be made of?



- Encode placeholder in "cake made of [w₁]" using biLSTM
- Predict an index in the word vocabulary
- (2) Generalizes paraphrases:

"[w₂] containing [w₁]" expected to yield similar results

Collected from Google N-grams

Training Data

- Collected from Google N-grams
- Input:
 - Set of NCs
 - Templates of POS tags (e.g. "[w₂] verb prep [w₁]")

Training Data

- Collected from Google N-grams
- Input:
 - Set of NCs
 - Templates of POS tags (e.g. "[w₂] verb prep [w₁]")
- Weighting by frequency and length

Training Data

- Collected from Google N-grams
- Input:
 - Set of NCs
 - Templates of POS tags (e.g. "[w₂] verb prep [w₁]")
- Weighting by frequency and length
- 136,609 instances

Evaluation: Paraphrasing

Model

Predict top k paraphrases for each noun compound

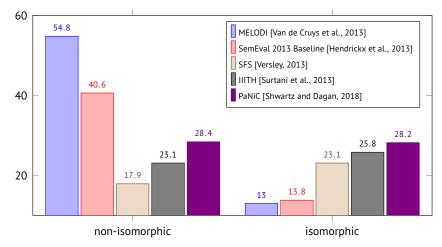
Model

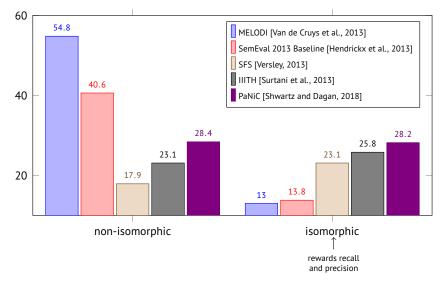
- Predict top k paraphrases for each noun compound
- Learn to re-rank the paraphrases
 - to better correlate with human judgments

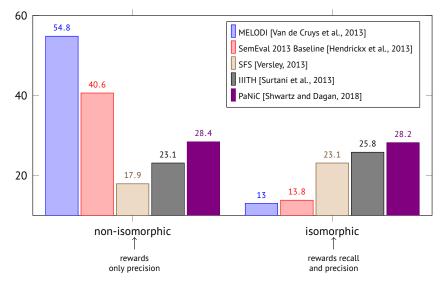
Model

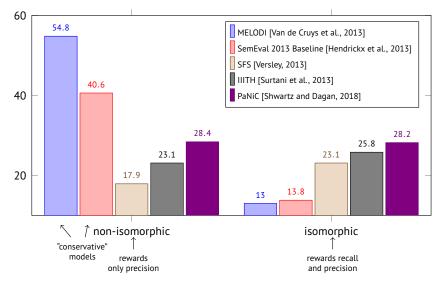
Predict top k paraphrases for each noun compound

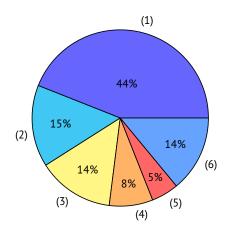
- Learn to re-rank the paraphrases
 - to better correlate with human judgments
- SVM pair-wise ranking with the following features:
 - POS tags in the paraphrase
 - Prepositions in the paraphrase
 - Length
 - Special symbols
 - Similarity to predicted paraphrase



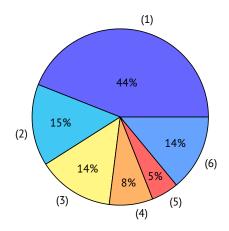




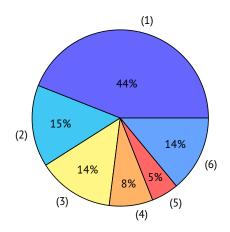




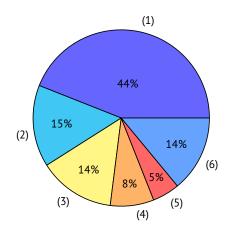
 Valid, missing from gold-standard ("discussion by group")



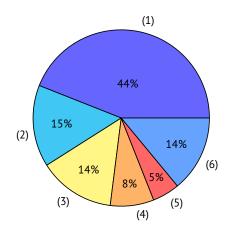
- Valid, missing from gold-standard ("discussion by group")
- 2. Too specific ("life *of women in* community")



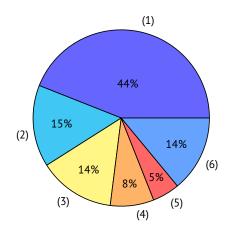
- Valid, missing from gold-standard ("discussion by group")
- 2. Too specific ("life *of women in* community")
- Incorrect prepositions
 E.g., n-grams don't respect syntactic structure: "rinse away the oil from baby 's head" ⇒ "oil from baby"



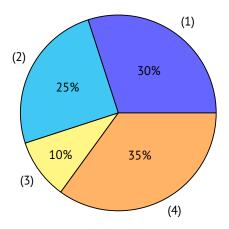
- Valid, missing from gold-standard ("discussion by group")
- 2. Too specific ("life *of women in* community")
- Incorrect prepositions
 E.g., n-grams don't respect syntactic structure: "rinse away the oil from baby 's head" ⇒ "oil from baby"
- 4. Syntactic errors



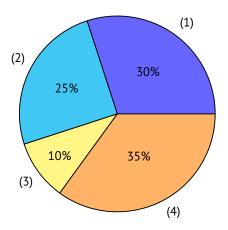
- Valid, missing from gold-standard ("discussion by group")
- 2. Too specific ("life *of women in* community")
- Incorrect prepositions
 E.g., n-grams don't respect syntactic structure: "rinse away the oil from baby 's head" ⇒ "oil from baby"
- 4. Syntactic errors
- Borderline grammatical ("force of coalition forces")



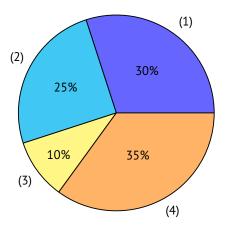
- Valid, missing from gold-standard ("discussion by group")
- 2. Too specific ("life *of women in* community")
- Incorrect prepositions
 E.g., n-grams don't respect syntactic structure: "rinse away the oil from baby 's head" ⇒ "oil from baby"
- 4. Syntactic errors
- Borderline grammatical ("force of coalition forces")
- 6. Other errors



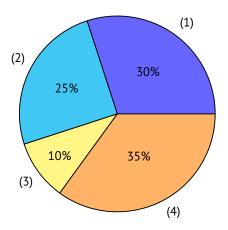
1. Long paraphrase (n > 5)



- **1.** Long paraphrase (n > 5)
- Determiners ("mutation of a gene")



- **1.** Long paraphrase (n > 5)
- Determiners ("mutation of a gene")
- Inflected constituents ("holding of shares")



- **1**. Long paraphrase (n > 5)
- Determiners ("mutation of a gene")
- Inflected constituents ("holding of shares")
- 4. Other errors

Two tasks of recognizing semantic relations between nouns:

- Two tasks of recognizing semantic relations between nouns:
 - Between arbitrary nouns / constituents of a noun-compound

- Two tasks of recognizing semantic relations between nouns:
 - Between arbitrary nouns / constituents of a noun-compound
 - Classification to ontological relations / free text paraphrasing

- Two tasks of recognizing semantic relations between nouns:
 - Between arbitrary nouns / constituents of a noun-compound
 - Classification to ontological relations / free text paraphrasing
- In both tasks, integrating features from *joint* corpus occurrences improved performance

- Two tasks of recognizing semantic relations between nouns:
 - Between arbitrary nouns / constituents of a noun-compound
 - Classification to ontological relations / free text paraphrasing
- In both tasks, integrating features from *joint* corpus occurrences improved performance
- Word embeddings are a useful tool, but not the only tool!

- Two tasks of recognizing semantic relations between nouns:
 - Between arbitrary nouns / constituents of a noun-compound
 - Classification to ontological relations / free text paraphrasing
- In both tasks, integrating features from *joint* corpus occurrences improved performance
- Word embeddings are a useful tool, but not the only tool!

Thanks Kudos for forthe attending participating!*

* Replaced with the most similar words using word2vec

Vered Shwartz • Acquiring Lexical Semantic Knowledge • May 2018

References I

[Baroni et al., 2012] Baroni, M., Bernardi, R., Do, N-Q., and Shan, C-c. (2012). Entailment above the word level in distributional semantics. In EACL, pages 23–32.

[Hearst, 1992] Hearst, M. A. (1992). Automatic acquisition of hyponyms from large text corpora. In ACL, pages 539-545.

- [Hendrickx et al., 2013] Hendrickx, I., Kozareva, Z., Nakov, P., Ó Séaghdha, D., Szpakowicz, S., and Veale, T. (2013). Semeval-2013 task 4: Free paraphrases of noun compounds. In Second Joint Conference on Lexical and Computational Semantics ("SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013), pages 138–143. Association for Computational Linguistics.
- [Levy et al., 2015] Levy, O., Remus, S., Biemann, C., and Dagan, I. (2015). Do supervised distributional methods really learn lexical inference relations. NAACL.
- [Nakashole et al., 2012] Nakashole, N., Weikum, G., and Suchanek, F. (2012). Patty: a taxonomy of relational patterns with semantic types. In *EMNLP and CoNLL*, pages 1135–1145.
- [Nakov, 2013] Nakov, P. (2013). On the interpretation of noun compounds: Syntax, semantics, and entailment. Natural Language Engineering, 19(03):291–330.
- [Nakov and Hearst, 2006] Nakov, P. and Hearst, M. (2006). Using verbs to characterize noun-noun relations. In International Conference on Artificial Intelligence: Methodology, Systems, and Applications, pages 233–244. Springer.
- [Pantel et al., 2007] Pantel, P., Bhagat, R., Coppola, B., Chklovski, T., and Hovy, E. (2007). ISP: Learning inferential selectional preferences. In Human Language Technologies 2007: The Conference of the North American Chapter of the Association for Computational Linguistics; Proceedings of the Main Conference, pages 564–571, Rochester, New York. Association for Computational Linguistics.
- [Roller et al., 2014] Roller, S., Erk, K., and Boleda, G. (2014). Inclusive yet selective: Supervised distributional hypernymy detection. In COLING, pages 1025–1036.

References II

- [Shwartz and Dagan, 2016a] Shwartz, V. and Dagan, I. (2016a). path-based vs. distributional information in recognizing lexical semantic relations. In Proceedings of the 5th Workshop on Cognitive Aspects of the Lexicon (CogALex-V), in COLING, Osaka, Japan.
- [Shwartz and Dagan, 2016b] Shwartz, V. and Dagan, I. (2016b). cogalex-v shared task: Lexnet integrated path-based and distributional method for the identification of semantic relations. In Proceedings of the 5th Workshop on Cognitive Aspects of the Lexicon (CogALex-V), in COLING, Osaka, Japan.
- [Shwartz and Dagan, 2018] Shwartz, V. and Dagan, I. (2018). Paraphrase to explicate: Revealing implicit noun-compound relations. In *The 56th Annual Meeting of the Association for Computational Linguistics (ACL)*, Melbourne, Australia.
- [Shwartz et al., 2016] Shwartz, V., Goldberg, Y., and Dagan, I. (2016). Improving hypernymy detection with an integrated path-based and distributional method. In ACL, pages 2389–2398.
- [Snow et al., 2004] Snow, R., Jurafsky, D., and Ng, A. Y. (2004). Learning syntactic patterns for automatic hypernym discovery. In *NIPS*.
- [Surtani et al., 2013] Surtani, N., Batra, A., Ghosh, U., and Paul, S. (2013). liit-h: A corpus-driven co-occurrence based probabilistic model for noun compound paraphrasing. In Second Joint Conference on Lexical and Computational Semantics (* SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013), volume 2, pages 153–157.
- [Van de Cruys et al., 2013] Van de Cruys, T., Afantenos, S., and Muller, P. (2013). Melodi: A supervised distributional approach for free paraphrasing of noun compounds. In Second Joint Conference on Lexical and Computational Semantics ("SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013), pages 144–147, Atlanta, Georgia, USA. Association for Computational Linguistics.
- [Versley, 2013] Versley, Y. (2013), Sfs-tue: Compound paraphrasing with a language model and discriminative reranking. In Second Joint Conference on Lexical and Computational Semantics (* SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013), volume 2, pages 148–152.

[Weeds et al., 2014] Weeds, J., Clarke, D., Reffin, J., Weir, D., and Keller, B. (2014). Learning to distinguish hypernyms and co-hyponyms. In COLING, pages 2249–2259.